Abstract
For chondral damage in younger patients, surgical best practice is microfracture, which involves drilling into the bone to liberate the bone marrow. This leads to a mechanically inferior fibrocartilage formed over the defect as opposed to the desired hyaline cartilage that properly withstands joint loading. While some devices have been developed to aid microfracture and enable its use in larger defects, fibrocartilage is still produced and there is no clear clinical improvement over microfracture alone in the long term. Our goal is to develop 3D printed devices, which surgeons can implant with a minimally invasive technique. The scaffolds should match the functional properties of cartilage and expose endogenous marrow cells to suitable mechanobiological stimuli in-situ, in order to promote healing of articular cartilage lesions before they progress to osteoarthritis, and rapidly restore joint health and mobility. Importantly, scaffolds should direct a physiological host reaction, instead of a foreign body reaction, associated with chronic inflammation and fibrous capsule formation, negatively influencing the regenerative outcome.
Our novel silica/polytetrahydrofuran/polycaprolactone hybrids were prepared by sol-gel synthesis and scaffolds were 3D printed by direct ink writing. 3D printed hybrid scaffolds with pore channels of ~250 µm mimic the compressive behaviour of cartilage. Our results show that these scaffolds support human bone marrow stem/stromal cell (hMSC) differentiation towards chondrogenesis in vitro under hypoxic conditions to produce markers integral to articular cartilage-like matrix evaluated by immunostaining and gene expression analysis. Macroscopic and microscopic evaluation of subcutaneously implanted scaffolds in mice showed that scaffolds caused a minimal resolving inflammatory response. Our findings show that 3D printed hybrid scaffolds have the potential to support cartilage regeneration.
Acknowledgements: Authors acknowledge funding provided by EPSRC grant EP/N025059/1.