header advert
Results 801 - 900 of 4366
Results per page:
Bone & Joint 360
Vol. 11, Issue 1 | Pages 50 - 51
1 Feb 2022
Das A


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 30 - 30
1 Dec 2021
Vogt A Darlington I Brooks R Birch M McCaskie A Khan W
Full Access

Abstract

Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties. We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory based experiments to assess these properties. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the infrapatellar fat pad using a method developed in our laboratory. The growth kinetics was determined by calculating the population doublings per day. Following expansion in culture, MSCs at P2 were characterised for a panel of cell surface markers using flow cytometry. The cells were positive for CD73, CD90 and CD105, and negative for CD34 and CD45. The differentiation potential of the MSCs was assessed through tri-lineage differentiation assays. Chronological age-related changes in MSC function have important implications on the use of these cells in clinical applications for an ageing population. The results from this study will be used to plan further work looking at the effects of chronological age on cellular senescence and identify pathways that could be targeted to potentially reverse any age-related changes.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 36 - 36
1 Dec 2021
Hussain A Rohra S Hariharan K
Full Access

Abstract

Background

Tibiotalocalcaneal (TTC) fusion is indicated for severe arthritis, failed ankle arthroplasty, avascular necrosis of talus and as a salvage after failed ankle fixation. Patients in our study had complex deformities with 25 ankles having valgus deformities (range 50–8 degrees mean 27 degrees). 12 had varus deformities (range 50–10 degrees mean 26 degrees) 5 ankles an accurate measurement was not possible on retrospective images. 10 out of 42 procedures were done after failed previous surgeries and 8 out of 42 had talus AVN.

Methods

Retrospective case series of patients with hindfoot nails performed in our centre identified using NHS codes. Total of 41 patients with 42 nails identified with mean age of 64 years. Time to union noted from X-rays and any complications noted from the follow-up letters. Patients contacted via telephone to complete MOXFQ and VAS scores and asked if they would recommend the procedure to patients suffering similar conditions. 17 patients unable to fill scores (5 deceased, 4 nails removed, 2 cognitive impairment and 6 uncontactable)


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 12 - 12
1 Dec 2021
Samsami S Pätzold R Winkler M Herrmann S Müller PE Chevalier Y Augat P
Full Access

Abstract

Objective

Bi-condylar tibia plateau fractures are one of challenging injuries due to multi-planar fracture lines. The risk of fixation failure is correlated with coronal splits observed in CT images, although established fracture classifications and previous studies disregarded this critical split. This study aimed to experimentally and numerically compare our innovative fracture model (Fracture C), developed based on clinically-observed morphology, with the traditional Horwitz model (Fracture H).

Methods

Fractures C and H were realized using six samples of 4th generation tibia Sawbones and fixed with Stryker AxSOS locking plates. Loading was introduced through unilateral knee replacements and distributed 60% medially. Loading was initiated with six static ramps to 250 N and continued with incremental fatigue tests until failure. Corresponding FE models of Fractures C and H were developed in ANSYS using CT scans of Sawbones and CAD data of implants. Loading and boundary conditions similar to experimental situations were applied. All materials were assumed to be homogenous, isotropic, and linear elastic. Von-Mises stresses of implant components were compared between fractures.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 14 - 14
1 Dec 2021
Darlington I Vogt A Williams EC Brooks R Birch M Mohorianu I Khan W McCaskie A
Full Access

Abstract

Focal articular cartilage defects do not heal and, left untreated, progress to more widespread degenerative changes. A promising new approach for the repair of articular cartilage defects is the application of cell-based regenerative therapies using mesenchymal stromal cells (MSCs). MSCs are however present in a number of tissues and studies suggest that they vary in their proliferation, cell surface characterisation and differentiation. As the phenotypic properties of MSCs vary depending on tissue source, a systematic comparison of the transcriptomic signature would allow a better understanding of these differences between tissues, and allow the identification of markers specific to a MSC source that is best suited for clinical application. Tissue was used from patients undergoing total knee replacement surgery for osteoarthritis following ethical approval and informed consent. MSCs were isolated from bone, cartilage, synovium and infrapatellar fat pad. MSC number and expansion were quantified. Following expansion in culture, MSCs were characterised using flow cytometry with several cell surface markers; the cells from all sources were positive for CD44, CD90 and CD105. Their differentiation potential was assessed through tri-lineage differentiation assays. In addition, bulk mRNA-sequencing was used to determine the transcriptomic signatures. Differentially expressed (DE) genes were predicted. An enrichment analysis focused on the DE genes, against GO and pathway databases (KEGG and Reactome) was performed; protein-protein interaction networks were also inferred (Metascape, Reactome, Cytoscape). Optimal sourcing of MSCs will amplify their cartilage regeneration potential. This is imperative for assessing future therapeutic transplantation to maximise the chance of successful cartilage repair. A better understanding of differences in MSCs from various sources has implications beyond cartilage repair.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 19 - 19
1 Dec 2021
Brzeszczynski F Brzeszczynska J Murray I Duckworth A Simpson H Hamilton D
Full Access

Abstract

Objectives

Sarcopenia is characterised by generalised progressive loss of physical performance, skeletal muscle mass and strength. This systematic review evaluated the effects of sarcopenia on postoperative functional recovery outcomes and mortality in patients undergoing orthopaedic surgery and secondarily assessed the methods used to diagnose and define sarcopenia in orthopaedic literature.

Methods

A systematic search was conducted in MEDLINE, EMBASE and Google Scholar databases according to the PRISMA guidelines. Studies involving sarcopenic patients who underwent defined orthopaedic surgery and recorded postoperative outcomes were included. The quality of the criteria by which a sarcopenia diagnosis was made was evaluated and publication quality was assessed using Newcastle-Ottawa Scale.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 42 - 42
1 Dec 2021
Awadallah M Parker M Easey S Gurusamy K
Full Access

Abstract

BACKGROUND

The effectiveness of anti-embolic graduated compression stockings (GCSs) has recently been questioned. The aim of this study is to systematically review all the relevant randomised controlled trials published to date.

PATIENTS AND METHODS

We systematically reviewed all the randomised controlled trials comparing anti-embolism stockings with no stockings. We searched the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE and CINAHL, Cochrane Musculoskeletal Injuries Group specialized register and the reference lists of articles as well as hand search results. Trials were independently assessed and data for the main outcome measures; deep vein thrombosis (DVT), pulmonary embolism and skin ulceration, were extracted by two reviewers.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 11 - 11
1 Dec 2021
Hulme C Gallacher P Jermin P Roberts S Wright K
Full Access

Abstract

Purpose

Stratification is required to ensure that only patients likely to benefit, receive Autologous Chondrocyte Implantation (ACI). At Stage I (SI), healthy cartilage is harvested from the joint and chondrocytes culture expanded before being implanted into a chondral/osteochondral defect at Stage II (SII). In ACI non-responders, there is a marked shift in the profile and abundance of proteins detectable in the synovial fluid (SF) at SII, many being associated with an acute phase response (APR). However, clinical biomarkers are easier to measure in blood than SF, so we have now performed this investigation in plasma.

Methods

Isobaric tag for relative and absolute quantitation mass-spectrometry was used to assess the proteome in plasma pooled from ACI responders (mean Lysholm improvement of 33, n=10) or non-responders (mean: −13 points, n=10), collected at SI or SII surgeries. Interactome networks were generated using STRING. Plasma proteome data were compared to matched SF data, previously analysed, to identify any proteins that changed across the fluids. Clusterin concentration was quantitated (ELISA; Biotechne).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 56 - 56
1 Dec 2021
Alves J Owen M Mason D
Full Access

Abstract

Cranial cruciate ligament (CrCL) disease/rupture causes pain and osteoarthritis (OA) in dogs. α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-2 and kainate (KA)-1 glutamate receptors (GluR) and the excitatory amino acid transporter-1 (EAAT-1) and EAAT-3 are expressed in joint tissues from OA patients and rodent arthritis models and represent potential therapeutic targets.

Objectives

To evaluate glutamate signalling in canine diseased and normal CrCL and meniscus by immunohistochemistry (IHC).

Methods

Surgical waste (CrCL, n=5 and medial meniscus, n=3) were obtained from canines with CrCL disease (RCVS ethics approval:2017/14/Alves) and normal analogous tissues (n=2). IHC optimization was performed for rabbit polyclonal (AMPA-2:ab52176, KA-1:ab67402, EAAT-1:ab416) and monoclonal (EAAT-3:ab124802) antibodies from Abcam. IHC was optimised over antibody dilutions from 1:100 to 1:5000 alongside equivalent IgG isotype controls (ab37415 and ab172730) and negative controls (TBS/Tween buffer without primary antibodies). IHC staining was compared in diseased and normal tissues and disclosed with 3,3’-Diaminobenzidine (DAB).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 59 - 59
1 Dec 2021
Vemulapalli KV Kumar KHS Khanduja V
Full Access

Abstract

Purpose

Clinical registries are an important aspect of orthopaedic research in assessing the outcomes of surgical intervention and track medical devices. This study aimed to explore the research methodology available to account for patients lost to follow-up (LTFU) specifically in studies related to arthroscopic intervention and whether the rates of patient LTFU are within the acceptable margins for survey studies.

Methods

A scoping review, where a literature search for studies from nine arthroscopy registries, was performed on EMBASE, MEDLINE, and the annual reports of each registry. Inclusion criteria included studies with information on patient-reported outcome measures and being based on nine national registries identified. Exclusion criteria included review articles, conference abstracts, studies not based on registry data, and studies from regional, claims-based, or multi-centre registries. Studies were then divided into categories based on method of LTFU analysis used.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 67 - 67
1 Dec 2021
MacLeod A Belvedere C Fabbro GD Grassi A Nervuti G Leardini A Casonato A Zaffagnini S Gill H
Full Access

Abstract

Objectives

High tibial osteotomy for knee realignment is effective at relieving symptoms of knee osteoarthritis but the operation is surgically challenging. A new personalised treatment with simpler surgery using pre-operatively planned measurements from computed tomography (CT) imaging and 3D-printed implants and instrumentation has been designed and is undergoing clinical trial. The aim of this study was to evaluate the early clinical results of a preliminary pilot study evaluating the safety of this new personalised treatment.

Methods

The single-centre prospective clinical trial is ongoing (IRCCS Istituto Ortopedico Rizzoli; IRB-0013355; ClinicalTrials.gov NCT04574570), with recruitment completed and all patients having received the novel custom surgical treatment. To preserve the completeness of the trial reporting, only surgical aspects were evaluated in the present study. Specifically, the length of the implanted osteosynthesis screws was considered, being determined pre-operatively eliminating intraoperative measurements, and examined post-operatively (n=7) using CT image processing (ScanIP, Synopsys) and surface distance mapping. The surgical time, patient discharge date and ease of wound closure were recorded for all patients (n=25).


Bone & Joint 360
Vol. 10, Issue 6 | Pages 48 - 50
1 Dec 2021
Evans JT French JMR Whitehouse MR


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 8 - 8
1 Dec 2021
Khojaly R Rowan F Nagle M Shahab M Ahmed AS Taylor C Cleary M Mac Niocaill R
Full Access

Abstract

Objectives

The purpose of this trial is to investigate the safety and efficacy of immediate weight-bearing (IWB) and range of motion exercise regimes following ORIF of unstable ankle fractures with a particular focus on functional outcomes and complication rates.

Methods

A pragmatic randomised controlled multicentre trial, comparing IWB in a walking boot and ROM within 24 hours versus NWB and immobilisation in a cast for six weeks, following ORIF of all types of unstable adult ankle fractures. The exclusion criteria are skeletal immaturity and tibial plafond fractures. The primary outcome measure is the functional Olerud-Molander Ankle Score (OMAS). Secondary outcomes include wound infection, displacement of osteosynthesis, the full arc of ankle motion, RAND-36 Item Short Form Survey (SF-36) scoring, time to return to work and postoperative hospital length of stay.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 9 - 9
1 Dec 2021
Edwards T Soussi D Gupta S Patel A Liddle A Khan S Cobb J Logishetty K
Full Access

Abstract

Objectives

Non-technical skills including teamwork play a pivotal role in surgical outcomes. Virtual reality is effective at improving technical skills, however there is a paucity of evidence on team-based virtual reality (VR) training. This study aimed to assess if multiplayer virtual reality training was superior to solo training for acquisition of both technical and non-technical skills in learning the complex anterior approach total hip arthroplasty operation.

Methods

10 novice surgeons and 10 novice scrub nurses, were randomised to solo or team virtual reality training to perform anterior approach total hip arthroplasty. Solo participants trained with virtual avatar counterparts, whilst teams trained in pairs (surgeon and scrub nurse). Both groups underwent 5 VR training sessions over 6 weeks. Then, they underwent a real-life assessment in which they performed AA-THA on a high-fidelity model with real equipment in a simulated operating theatre. Teams performed together and solo participants were randomly paired up with a solo player of the opposite role. Videos of the assessment were marked by two blinded expert assessors. Outcomes were procedure time, procedural errors from an expert pre-defined protocol and acetabular component positioning. Non-technical skills were assessed using the NOTECHs II and NOTSS scores.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 54 - 54
1 Dec 2021
Maslivec A Ng KCG Cobb J
Full Access

Abstract

Objectives

Although hip replacement and resurfacing procedures both aim to restore mobility, improve joint function, and relieve pain, it is unclear how each differ in terms of gait mechanics and if they are affected by varying walking speeds. We compared limb symmetry and ground reaction force (GRF) profiles between bilateral total hip arthroplasty patients (THA), bilateral hip resurfacing arthroplasty patients (HRA), and healthy control participants (CON) during level-treadmill walking at different speeds.

Methods

Bilateral THA and bilateral HRA patients (nTHA = 15; nHRA = 15; postoperative 12–18 months), and age-, mass-, and height-matched CON participants (nCON = 20) underwent gait analysis on an instrumented treadmill. Walking trials started at 4 km/h and increased in 0.5 km/h increments until top walking speed (TWS) was achieved. Gait symmetry index (SI = 0% for symmetry) was assessed between limbs during weight-acceptance, mid-stance and push-off phases of gait; and vertical GRFs were captured for the normalised stance phase using statistical parametric mapping (SPM; CI = 95%).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 57 - 57
1 Dec 2021
Gilbert S Boye J Mason D
Full Access

Abstract

INTRODUCTION

The mechanisms underlying abnormal joint mechanics are poorly understood despite it being a major risk factor for developing osteoarthritis. Glutamate signalling has been implicated in osteoarthritic bone changes and AMPA/kainate glutamate receptor (GluR) antagonists alleviate degeneration in rodent models of osteoarthritis. We investigated whether glutamate signalling molecules are mechanically regulated in a human, cell-based 3D model of bone.

METHODS

Human Y201 MSC cells embedded in 3D type I collagen gels (0.05 × 106 cell/gel) differentiated to osteocytes were mechanically loaded in silicone plates (5000 µstrain, 10Hz, 3000 cycles) or not loaded (n=5/group). RNA extracted 1-hr post load was quantified by RTqPCR and RNAseq whole transcriptome analysis (NovaSeq S1 flow cell 2 × 100bp PE reads). Differentially expressed GluRs and glutamate transporters (GluTs) were identified using DEseq2 analysis on normalised count data. Genes were considered differentially expressed if >2 fold change and FDR p<0.05.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 62 - 62
1 Dec 2021
Carregosa A Dewitt S Aeschlimann D
Full Access

Abstract

Objectives

Despite overwhelming need, with about 9 million osteoarthritis (OA) sufferers in UK alone, little progress has been made towards pathogenesis-based categorising of patients and subsequent intervention. Experimental studies relied heavily on animal models, which is inefficient and expensive, and has often produced drugs failing in phase I/II clinical trials due to off-target side effects or failure to predict human disease in animal models. This project aims to address this challenge by developing a scalable in vitro human organotypic tissue model. The model can be used to simulate OA processes and ultimately, exploited to seek biomarkers for early diagnosis or screen potential drugs for efficacy.

Methods

We have previously shown that a stratified 3D-tissue akin of articular cartilage can be generated over a 35-day period using a tissue engineering approach with primary human chondrocyte progenitor cells. The engineered tissue mimics native cartilage both in structural organization and biochemical composition. Here, we explore the influence of the nature and homogeneity of initial cell population on cartilage development and maturation.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 63 - 63
1 Dec 2021
Ahmed R Ward A Thornhill E
Full Access

Abstract

Objectives

Ankle fractures have an incidence of around 90,000 per year in the United Kingdom. They affect younger patients following high energy trauma and, in the elderly, following low energy falls. Younger patients with pre-existing comorbidities including raised BMI or poor bone quality are also at risk of these injuries which impact the bony architecture of the joint and the soft tissues leading to a highly unstable fracture pattern, resulting in dislocation. At present, there is no literature exploring what effect ankle fracture-dislocations have on patients’ quality of life and activities of daily living, with only ankle fractures being explored.

Methods

Relevant question formatting was utilised to generate a focused search. This was limited to studies specifically mentioning ankle injuries with a focus on ankle fracture-dislocations. The number of patients, fracture-dislocation type, length of follow up, prognostic factors, complications and outcome measures were recorded.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 66 - 66
1 Dec 2021
Felix-Ilemhenbhio F Deshmukh SR Sudbery I Kiss-Toth E Wilkinson JM
Full Access

Abstract

Objectives

The term heterotopic ossification (HO) describes lamellar bone formation within soft tissues following injury. A genome-wide scan of patients after hip arthroplasty has identified that variation within the lncRNA CASC20 is associated with HO susceptibility. Previous findings in our lab have demonstrated upregulation of CASC20 during BMP2-induced osteodifferentiation of adipose-derived stem cells (hMAD) alongside osteodifferentiation markers, RUNX2 and OSX. We hypothesize that CASC20 is a novel regulator of bone formation and aim to investigate CASC20 function in bone formation.

Methods

1) We used miRanda prediction algorithm and the ENCORI database to respectively predict which miRNAs CASC20 interacts with and to select for experimentally validated miRNAs. 2) We characterized the expression and functional role of CASC20-interacting miRNAs by respectively analyzing publicly available datasets (GSE107279 and pubmed.ncbi.nlm.nih.gov/26175215/) and by using Gene Ontology (GO) analysis. 3) We overexpressed CASC20 in hMAD using a lentiviral system and tested the effect of CASC20 overexpression in osteodifferentiation and expression of putative CASC20-interacting miRNAs.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 69 - 69
1 Dec 2021
MacLeod A Taylor R Casonato A Gill H
Full Access

Abstract

Objectives

Additive manufacturing has led to numerous innovations in orthopaedic surgery: surgical guides; surface coatings/textures; and custom implants. Most contemporary implants are made from titanium alloy (Ti-6Al-4V). Despite being widely available industrially and clinically, there is little published information on the performance of this 3D printed material for orthopaedic devices with respect to regulatory approval. The aim of this study was to document the mechanical, chemical and biological properties of selective laser sintering (SLS) manufactured specimens following medical device (TOKA®, 3D Metal Printing LTD, UK) submission and review by the UK Medicines and Healthcare Products Regulatory Agency (MHRA).

Methods

All specimens were additively manufactured in Ti-6Al-4V ELI (Renishaw plc, UK). Mechanical tests were performed according to ISO6892-1, ISO9585 and ISO12107 for tensile (n=10), bending (n=3) and fatigue (n=16) respectively (University of Bath, UK). Appropriate chemical characterisation and biological tests were selected according to recommendations in ISO10993 and conducted by external laboratories (Wickham Labs, UK; Lucideon, UK; Edwards Analytical, UK) in adherence with Good Lab Practise guidelines. A toxicological review was conducted on the findings (Bibra, UK).


Abstract

Objectives

To evaluate the safety and efficacy of vertebroplasty with short segmented cement augmented pedicle screws fixation for severe osteoporotic vertebral compression fractures (OVCF) with posterior/anterior wall fractured patients.

Methods

A retrospective study of 24 patients of DGOU type-4 (vertebra plana) OVCF with posterior/anterior wall fracture, were treated by vertebroplasty and short segment PMMA cement augmented pedicle screws fixation. Radiological parameters (kyphosis angle and compression ratio) and clinical parameters Visual analogue scale (VAS) and Oswestry disability index (ODI) were analysed.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 32 - 32
1 Dec 2021
Edwards T Khan S Patel A Gupta S Soussi D Liddle A Cobb J Logishetty K
Full Access

Abstract

Objectives

Evidence supporting the use of immersive virtual reality (iVR) training in orthopaedic procedures is rapidly growing. However, the impact of the timing of delivery of this training is yet to be tested. This study investigated whether spaced iVR training is more effective than massed iVR training for novices learning hip arthroplasty.

Methods

24 medical students with no hip arthroplasty experience were randomised to learning total hip arthroplasty using the same iVR simulation training either once-weekly or once-daily for four sessions. Participants underwent a baseline physical world assessment to orientate an acetabular component on a saw bone pelvis, and a baseline knowledge test. In iVR, we recorded procedural errors, time, numbers of prompts required and path lengths of the hands and head across 4 sessions. To assess skill retention, the iVR and baseline physical world assessments were repeated at one-week and one-month.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 34 - 34
1 Dec 2021
Elkington R Beadling A Hall R Pandit H Bryant M
Full Access

Abstract

Objectives

Current use of hard biomaterials such as cobalt-chrome alloys or ceramics to articulate against the relatively soft, compliant native cartilage surface reduces the joint contact area by up to two thirds. This gives rise to high and abnormal loading conditions which promotes degradation and erosion of the mating cartilage leading to pain, stiffness, and loss of function. Biomimetic soft lubrication strategies have been developed by grafting hydrophilic polymers onto substrates to form a gel-type surface. Surface grafted gels mimic the natural mechanisms of friction dissipation in synovial joints, showing a promising potential for use in hemiarthroplasty. This project aims to develop implant surfaces with properties tailored to match articular cartilage to retain and promote natural joint function ahead of total joint replacement.

Methods

Four different types of monomers were grafted in a one-step photopolymerisation procedure onto polished PEEK substrates. The functionalised surfaces were investigated using surface wettability, FTIR, and simplified 2D-tribometry tests against glass and animal cartilage specimens to assess their lubricity and mechanical properties for hemiarthroplasty articulations.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 39 - 39
1 Dec 2021
Luo J Dolan P Adams M Annesley-Williams D
Full Access

Abstract

Objectives

A damaged vertebral body can exhibit accelerated ‘creep’ under constant load, leading to progressive vertebral deformity. However, the risk of this happening is not easy to predict in clinical practice. The present cadaveric study aimed to identify morphometric measurements in a damaged vertebral body that can predict a susceptibility to accelerated creep.

Methods

Mechanical testing of 28 human spinal motion segments (three vertebrae and intervening soft tissues) showed how the rate of creep of a damaged vertebral body increases with increasing “damage intensity” in its trabecular bone. Damage intensity was calculated from vertebral body residual strain following initial compressive overload. The calculations used additional data from 27 small samples of vertebral trabecular bone, which examined the relationship between trabecular bone damage intensity and residual strain.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 24 - 24
1 Dec 2021
Hayward S Miles T Keogh P Gheduzzi S
Full Access

Abstract

Introduction

Back pain affects 80% of the population at some stage in their life with significant costs to society. Mechanisms and causes of pain have been investigated by studying the behaviour of functional spinal units (FSUs) subjected to displacement- or load control protocols in 6 degrees of freedom (DOF). Load control allows specimens to move physiologically in response to applied loads whereas displacement control constrains motion to individual axes. The displacement control system of the Bath University six-axis spine simulator has been validated and the load control system is in the process of iterative development.

Objectives

The objective was to build a computational model of the spine simulator to develop a complete 6 DOF load control system to enable accurate specimen testing under load control.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 43 - 43
1 Dec 2021
Doran C Pettit M Singh Y Kumar KHS Khanduja V
Full Access

Abstract

Background

Femoroacetabular impingement (FAI) has been extensively investigated and is strongly associated with athletic participation. The aim of this systematic review is to assess: the prevalence of cam-type FAI across various sports, whether kinematic variation between sports influences hip morphology, and whether performance level, duration and frequency of participation or other factors influence hip morphology in a sporting population.

Methods

A systematic search of Embase, PubMed and the Cochrane Library was undertaken following PRISMA guidelines. The study was registered on the PROSPERO database (CRD4202018001). Prospective and retrospective case series, case reports and review articles published after 1999 were screened and those which met the inclusion criteria decided a priori were included for analysis.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 46 - 46
1 Dec 2021
Yarwood W Kumar KHS Ng KCG Khanduja V
Full Access

Abstract

Purpose

The aim of this study was to assess how biomechanical gait parameters (kinematics, kinetics, and muscle force estimations) differ between patients with camtype FAI and healthy controls, through a systematic search.

Methods

A systematic review of the literature from PubMed, Scopus, and Medline and EMBASE via OVID SP was undertaken from inception to April 2020 using PRISMA guidelines. Studies that described kinematics, kinetics, and/or estimated muscle forces in cam-type FAI were identified and reviewed.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 13 - 13
1 Dec 2021
Ramesh K Yusuf M Makaram N Milton R Mathew A Srinivasan M
Full Access

Abstract

Objective

To investigate the safety and cost-effectiveness of interscalene brachial plexus block/regional anaesthesia (ISB-RA) in patients undergoing reverse total shoulder replacement.

Methods

This retrospective study included 15 patients with symptomatic rotator cuff arthropathy who underwent reverse total shoulder arthroplasty (rTSA) under ISB-RA without general anaesthesia in the beach chair position from 2010 to 2018. The mean patient age was 77 years (range 59–82 years). Patients had associated medical comorbidities: American Society of Anesthesiologists (ASA) grade 2–4. Assessed parameters were: duration of anaesthesia, intra-operative systolic blood pressure variation, sedation and vasopressor use, duration of post-operative recovery, recovery scores, length of stay, and complications. A robust cost analysis was also performed.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 65 - 65
1 Dec 2021
Addai D Zarkos J Pettit M Kumar KHS Khanduja V
Full Access

Abstract

Objectives

Outcomes following different types of surgical intervention for FAI are well reported individually but comparative data is deficient. The purpose of this study was to conduct a systematic review (SR) and meta-analysis to analyse the outcomes following surgical management of FAI by hip arthroscopy (HA), anterior mini open approach (AMO) and surgical hip dislocation (SHD).

Methods

This SR was registered with PROSPERO. An electronic database search of Pubmed, Medline and EMBASE for English and German language articles over the last 20 years was carried out according to the PRISMA guidelines. We specifically analysed and compared changes in patient reported outcome measures PROMs, α-angle, rate of complications, rate of revision and conversion to total hip arthroplasty (THA).


Abstract

Background

Rotator cuff injuries have traditionally been managed by either single-row or double-row arthroscopic repair techniques. Novel and more complex single-row methodologies have recently been proposed as a biomechanically stronger alternative. However, no rigorous meta-analysis has evaluated the effectiveness of complex single-row against double-row repair. This meta-analysis aims to evaluate clinical outcomes in patients with full-thickness rotator cuff injuries treated with both simple and complex single-row, as well as transosseous-equivalent double-row procedures.

Methods

An up-to-date literature search was performed using the pre-defined search strategy. All studies that met the inclusion criteria were assessed for methodological quality and included in the meta-analysis. Pain score, functional score, range-of-motion and Re-tear rate were all considered in the study.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 7 - 7
1 Dec 2021
Jamal S Ibrahim Y Akhtar K
Full Access

Abstract

Objective

Open fracture management in the United Kingdom and several other countries is guided by the British Orthopaedic Association's Standards for Trauma Number 4 (BOAST-4). This is updated periodically and is based on the best available evidence at the time. The aim of this study is to evaluate the evidence base forming this guidance and to highlight new developments since the last version in 2017.

Methods

Searches have been performed using the PubMed, Embase and Medline databases for time periods a) before December 31, 2017 and from 01/01/2018–01/02/2021. Results have been summarised and discussed.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 27 - 27
1 Dec 2021
Edwards T Donovan R Whitehouse M
Full Access

Abstract

Objectives

Intra-articular corticosteroid injections (IACIs) are a well-established non-surgical treatment for the symptoms of osteoarthritis (OA), which can provide short-term improvements in pain, disability and quality of life (QoL). Many patients receive recurrent IACIs as temporary relief of their symptoms. Longer-term outcomes for recurrent IACIs remain less well-researched. This meta-analysis aimed to investigate the longer-term risks and benefits of IACIs beyond 3 months.

Methods

We searched MEDLINE, EMBASE, and CENTRAL from inception to January 07, 2021, for randomised controlled trials (RCTs) where patients with OA had received recurrent IACIs. Our primary outcomes were pain and function. Secondary outcomes included QoL, disease progression, radiological changes, and adverse events. Mean differences with 95% confidence intervals were reported.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 55 - 55
1 Dec 2021
Phillips A
Full Access

Abstract

Several experimental studies derived relationships between density and macroscale material properties of trabecular bone, taking the form E=αρβ, where E is Young's modulus, ρ is density, and α and β are constants. Classical structural mechanics demonstrates β can vary between 1 (behaviour of the trabecular lattice is dominated by the axial stiffness of individual trabeculae) and 3 (behaviour is dominated by the bending stiffness of individual trabeculae). The ratio between rods (round trabeculae characterised by radius) and plates (flat trabeculae characterised by thickness) is also believed to govern the macroscale material properties of trabecular bone. To assess feasible ranges of α and β for trabecular bone, and their dependence on rod to plate ratio, 25 virtual samples of trabecular bone were generated as Voronoi lattices. Each 8×8×8mm sample was composed of 320 randomly generated Voronoi cells forming a foam like structure. Edges formed the rod network. Faces formed the plate network. Tissue level Young's modulus was set to 18,000MPa. Relative density was varied: 0.05, 0.1, 0.15, 0.2, 0.25. Rod to plate ratio was varied: 100:0, 75:25, 50:50, 25:75, 0:100. Macroscale Young's modulus was averaged in three orthotropic directions and used to find α and β. Around 14,000 3-noded quadratic beam elements represented rods, with average length of 0.63mm, and around 42,000 8-noded quadratic shell elements represented plates, with average area of 0.10mm2. Results for α and β were 3274 and 1.463 for 100% rods, 3646 and 1.067 for 50:50 rods and plates, and 4981 and 1.062 for 100% plates, showing the presence of plates improves the stiffness characteristics of trabecular bone. Work investigating the impact of element based geometry optimisation is ongoing. The work has important implications for the onset of conditions including osteoporosis and osteoarthritis, as well as those designing 3D printed scaffolds and implants.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 68 - 68
1 Dec 2021
Bowd J Williams D de Vecchis M Wilson C Elson D Whatling G Holt C
Full Access

Abstract

Objectives

Principal Component Analysis (PCA) is a useful method for analysing human motion data. The objective of this study was to use PCA to quantify the biggest variance in knee kinematics waveforms between a Non-Pathological (NP) group and individuals awaiting High Tibial Osteotomy (HTO) surgery.

Methods

Thirty knees (29 participants) who were scheduled for HTO surgery were included in this study. Twenty-eight NP volunteers were recruited into the study. Human motion analysis was performed during level gait using a modified Cleveland marker set. Subjects walked at their self-selected speed for a minimum of 6 successful trials. Knee kinematics were calculated within Visual3D (C-Motion). The first three Principal Components (PCs) of each input variable were selected. Single-component reconstruction was performed alongside representative extremes of each PC to aid interpretation of the biomechanical feature reconstructed by each component.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 70 - 70
1 Dec 2021
McCabe-Robinson O Nesbitt P
Full Access

Abstract

Introduction

Bipolar hemiarthroplasty(BPHA) for displaced intracapsular neck of femur fractures(DICNOF) is a controversial topic as conflicting evidence exists. The most common reason for revision to total hip arthroplasty(THA) from BPHA is acetabular erosion. In our study, we sought to quantify the direction of migration of the bipolar head within the first 3 years post-operatively.

Methods

A proportional index in the horizontal and vertical planes of the pelvis were used to quantify migration. This method removed the need to account for magnification and rotation of the radiographs.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 20 - 20
1 Dec 2021
Yang I Gammell JD Murray DW Mellon SJ
Full Access

Abstract

Background

The Oxford Domed Lateral (ODL) Unicompartmental Knee Replacement (UKR) has some advantages over other lateral UKRs, but the mobile bearing dislocation rate is high (1–6%). Medial dislocations, with the bearing lodged on the tibial component wall, are most common. Anterior/posterior dislocations are rare. For a dislocation to occur distraction of the joint is required. We have developed and validated a dislocation analysis tool based on a computer model of the ODL with a robotics path-planning algorithm to determine the Vertical Distraction required for a Dislocation (VDD), which is inversely related to the risk of dislocation.

Objectives

To modify the ODL design so the risk of medial dislocation decreases to that of an anterior/posterior dislocation.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 21 - 21
1 Dec 2021
Langley B Page R Whelton C Chalmers O Morrison S Cramp M Dey P Board T
Full Access

Abstract

Objectives

The objective of this proof of concept study was to explore whether some total hip arthroplasty (THA) patients with well-functioning implants achieve normal sagittal plane hip kinematics during walking gait.

Methods

Sagittal plane hip kinematics were recorded in eleven people with well-functioning THA (71 ± 8 years, Oxford Hip Score = 46 ± 3) and ten healthy controls (61 ± 5 years) using a three-dimensional motion capture system as they walked over-ground at a self-selected velocity. THA patients were classified as high- or low-functioning (HF and LF, respectively) depending on whether the mean absolute difference between their sagittal plane hip kinematics was within one standard deviation of the control group (5.4°) or not. Hedge's g effect size was used to compare the magnitude of the difference from the control group for the HF and LF THA groups.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 25 - 25
1 Dec 2021
Solis J Edwards JH Fermor H Brockett C Herbert A
Full Access

Abstract

Decellularised porcine superflexor tendon (pSFT) provides an off-the-shelf, cost-efficient option for ACL reconstruction (ACLR). During decellularisation, phosphate buffered saline (PBS) is used for washing out cytotoxic solutes and reagents, maintaining tissue hydration. It has been shown to increase water content in tendon, swelling the tissue reducing mechanical properties. End stage PBS washes in the standard protocol were substituted with alternative solutions to study tissue swelling and its impact on the mechanical behaviour and matrix composition of pSFTs. 25%, 100% Ringers and physiological saline test groups were used (n=6 for all groups). pSFTs were subject to tensile and confined compression testing. Relative hydroxyproline (HYP), glycosaminoglycan (GAG) and denatured collagen content (DNC) were quantified. Modified decellularised tendon groups were compared to tendons decellularised using the standard protocol and native tendons. Specimen dimensions reduced (p=0.004) post-decellularisation only in 25% Ringers group. In all other modified groups, less swelling was apparent but not statistically different from standard group. Only 25% Ringers group had higher linear modulus (p=0.0035) and UTS (p=0.013) compared to standard group. All decellularised groups properties were reduced compared to native pSFTs. Stress relaxation properties showed a significant reduction in decellularised groups compared to native. Compression testing showed no significant differences in peak stress for modified decellularised groups compared to native. A reduction (p=0.036) was observed in standard group. Quantification of GAGs and DNC showed no significant differences between groups. HYP content was higher (p<0.0001) for saline group. A significant reduction in tissue swelling could be related to improved mechanical properties of decellularised pSFTs. Alternative solutions in end stage washes had no significant effect on quantities of matrix components, but altered structure/function could explain the differences in tensile and compressive behaviour, and should be further studied. In all decellularised groups, pSFTs retained suitable mechanical properties for ACLR.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 26 - 26
1 Dec 2021
Edwards T Daly C Donovan R Whitehouse M
Full Access

Abstract

Objectives

There is debate regarding the optimal surgical technique for fixing femoral diaphyseal fractures in children aged 4 to 12 years. The aim of this study was to conduct a systematic review and meta-analysis to compare the complication rate following flexible intramedullary nailing (FIN), plate fixation and external fixation (EF) for traumatic femoral diaphyseal fractures in children aged 4 to 12.

Methods

We searched MEDLINE, EMBASE and CENTRAL databases for interventional and observational studies. Two independent reviewers screened, assessed quality and extracted data from the identified studies. The primary outcome was the risk of any complication.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 44 - 44
1 Dec 2021
Pettit M Doran C Singh Y Saito M Kumar KHS Khanduja V
Full Access

Abstract

Objective

A higher prevalence of cam morphology has been reported in the athletic population but the development of the cam morphology is not fully understood. The purpose of this systematic review is to establish the timing of development of the cam morphology in athletes, the proximal femoral morphologies associated with its development, and other associated factors.

Methods

Embase, MEDLINE and the Cochrane Library were searched for articles related to development of the cam morphology, and PRISMA guidelines were followed. Data was pooled using random effects meta-analysis. Study quality was assessed using the Downs and Black criteria and evidence quality using the GRADE framework.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 49 - 49
1 Dec 2021
Edwards T Prescott R Stebbins J Wright J Theologis T
Full Access

Abstract

Objectives

Single-event multilevel surgery (SEMLS) is the standard orthopaedic treatment for gait abnormalities in children with diplegic cerebral palsy (CP). The primary aim of this study was to report the long-term functional mobility of these patients after surgery. The secondary aim was to assess the relationship between functional mobility and quality of life (QoL).

Methods

Patients were included if they met the following criteria: 1) diplegic CP; 2) Gross Motor Function Classification System (GMFCS) I to III; 3) SEMLS at age ≤ 18. A total of 61 patients, mean age at surgery 11 years eight months (SD 2y 5m), were included. A mean of eight years (SD 3y 10m) after SEMLS, patients were contacted and asked to complete the Functional Mobility Scale (FMS) questionnaire over the telephone and given a weblink to complete an online version of the CP QOL Teen. FMS was recorded for all patients and CP QOL Teen for 23 patients (38%).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 72 - 72
1 Dec 2021
Komperla S Giles W Flatt E Gandhi MJ Eyre-Brook AE Jones V Papanna M Eves T Thyagarajan D
Full Access

Abstract

Shoulder replacements have evolved and current 4th generation implants allow intraoperative flexibility to perform anatomic, reverse, trauma, and revision shoulder arthroplasty. Despite high success rates with shoulder arthroplasty, complication rates high as 10–15% have been reported and progressive glenoid loosening remains a concern.

Objectives

To report medium term outcomes following 4th generation VAIOS® shoulder replacement.

Methods

We retrospectively analysed prospectively collected data following VAIOS® shoulder arthroplasty performed by the senior author between 2014–2020. This included anatomical (TSR), reverse(rTSR), revision and trauma shoulder replacements. The primary outcome was implant survival (Kaplan-Meier analysis). Secondary outcomes were Oxford Shoulder Scores (OSS), radiological outcomes and complications.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 73 - 73
1 Dec 2021
Jones R Gilbert S Mason D
Full Access

Abstract

INTRODUCTION

Knee tactile afferents act as synovial joint limit detectors, eliciting signalling upon excessive fibrous tissue strain but play little role in joint function as disruption of their activity does not induce impairments in movement or sensation. In contrast, knee nociceptive afferents gain activity upon inflammation producing painful sensation in pathology such as osteoarthritis. We hypothesize that similar in origin, fast-conducting tactile afferents become sensitized by inflammatory mediators and gain activity causing proprioceptive sensation impairment in patients with knee pathology, driving gait abnormalities and osteoarthritis progression. To investigate the activity of these neurons, we will produce a co-culture model using our existing 3D bone mimetic and iPSC derived tactile sensory neurons by utilizing the NGN2-BRN3A plasmid produced by Nickolls et al producing a model of these tactile neurons at their position within the joint at the fibrous/bony interface.

METHODS

Human Y201 MSC cells embedded in type I collagen gels (0.05 × 106 cell/gel) were differentiated to osteocytes andmechanically loaded in silicone plates (5000 µstrain, 10Hz, 3000 cycles) (n=5). RNA quantified by RNAseq analysis (NovaSeq S1) and neuronal communication pathways identified using DEseq2 analysis.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 76 - 76
1 Dec 2021
de Mello FL Kadirkamanathan V Wilkinson JM
Full Access

Abstract

Objectives

Conventional approaches (including Tobit) do not accurately account for ceiling effects in PROMs nor give uncertainty estimates. Here, a classifier neural network was used to estimate postoperative PROMs prior to surgery and compared with conventional methods. The Oxford Knee Score (OKS) and the Oxford Hip Score (OHS) were estimated with separate models.

Methods

English NJR data from 2009 to 2018 was used, with 278.655 knee and 249.634 hip replacements. For both OKS and OHS estimations, the input variables included age, BMI, surgery date, sex, ASA, thromboprophylaxis, anaesthetic and preoperative PROMs responses. Bearing, fixation, head size and approach were also included for OHS and knee type for OKS estimation. A classifier neural network (NN) was compared with linear or Tobit regression, XGB and regression NN. The performance metrics were the root mean square error (RMSE), maximum absolute error (MAE) and area under curve (AUC). 95% confidence intervals were computed using 5-fold cross-validation.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 58 - 58
1 Dec 2021
Arshad Z Maughan HD Kumar KHS Pettit M Arora A Khanduja V
Full Access

Abstract

Purpose The aim of this study was investigate the relationship between version and torsional abnormalities of the acetabulum, femur and tibia in patients with symptomatic FAI. Methods A systematic review was performed according to PRISMA guidelines using the EMBASE, MEDLINE, PubMed and Cochrane databases. Original research articles evaluating the described version and torsional parameters in FAI were included. The MINORS criteria was used to appraise study quality and risk of bias. Mean version and torsion values were displayed using forest plot and the estimated proportion of hips displaying abnormalities in version/torsion were calculated.

Results

A total of 1206 articles were identified from the initial search, with 43 articles, involving 8,861 hips, meeting the inclusion criteria. All studies evaluating femoral or acetabular version in FAI reported ‘normal’ mean version values (100 to 250). However, distribution analysis revealed that an estimated 31% and 51% of patients with FAI displayed abnormal central acetabular and femoral version respectively.

Conclusion

Up to 51% of patients presenting with symptomatic FAI show an abnormal femoral version, whilst up to 31% demonstrate abnormal acetabular version. This high percentage of version abnormalities highlights the importance of evaluating these parameters routinely during assessment of patients with FAI, in order to guide clinical decision making.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 60 - 60
1 Dec 2021
Rai A Khokher Z Kumar KHS Kuroda Y Khanduja V
Full Access

Abstract

Introduction

Recent reports show that spinopelvic mobility influences outcome following total hip arthroplasty. This scoping review investigates the relationship between spinopelvic parameters (SPPs) and symptomatic femoroacetabular impingement (FAI).

Methods

A systematic search of EMBASE, PubMed and Cochrane for literature related to SPPs and FAI was undertaken as per PRISMA guidelines. Clinical outcome studies and prospective/retrospective studies investigating the role of SPPs in symptomatic FAI were included. Review articles, case reports and book chapters were excluded. Information extracted pertained to symptomatic cam deformities, pelvic tilt, acetabular version, biomechanics of dynamic movements and radiological FAI signs.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 71 - 71
1 Dec 2021
Giles W Komperla S Flatt E Gandhi M Eyre-Brook A Jones V Papanna M Eves T Thyagarajan D
Full Access

Abstract

Background/Objectives

The incidence of reverse total shoulder replacement (rTSR) implantation is increasing globally, but apprehension exists regarding complications and associated challenges. We retrospectively analysed the senior author's series of rTSR from a tertiary centre using the VAIOS shoulder system, a modular 4th generation implant. We hypothesised that the revision rTSR cohort would have less favourable outcomes and more complications.

Methods

114 patients underwent rTSR with the VAIOS system, over 7 years. The primary outcome was implant survival. Secondary outcomes were Oxford shoulder scores (OSS), radiographic analysis (scapular notching, tuberosity osteolysis, and periprosthetic radiolucent lines) and complications.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 45 - 45
1 Dec 2021
Lu V Tennyson M Zhang J Khan W
Full Access

Abstract

Objectives

Tendon and ligament injury poses an increasingly large burden to society. With surgical repair and grafting susceptible to high failure rates, tissue engineering provides novel avenues for treatment. This systematic review explores in vivo evidence whether mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) can facilitate tendon and ligament repair in animal models.

Methods

On May 26th 2021, a systematic search was performed on PubMed, Web of Science, Cochrane Library, Embase, using search terms ‘mesenchymal stem cell’ or ‘multipotent stem cell’ AND ‘extracellular vesicles’ or ‘exosomes’ AND ‘tendon’ or ‘ligament’ or ‘connective tissue’. Risk of bias was assessed using SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) tool. Studies administering EVs isolated from human or animal-derived MSCs into in vivo models of tendon/ligament injury were included. In vitro, ex vivo, in silico studies were excluded, and studies without a control group were excluded. Data on isolation and characterisation of MSCs and EVs, and in vivo findings in animal models were extracted.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 47 - 47
1 Dec 2021
Kayode O Day G Wijayathunga N Mengoni M Wilcox R
Full Access

Abstract

Introduction

Osteoarthritis (OA) is one of the lead causes of pain and disability in adults. Bone marrow lesions (BMLs) are one feature of subchondral bone involvement in OA. MRI images suggest changes in tissue content and properties in the affected regions however, it is not known if this alters the mechanical behavior of the bone, which could in turn affect OA progression. The aim of this study was to characterize the mechanical properties of BMLs, using a combined experimental and computational approach.

Methods

Six human cadaveric patellae from donors aged 56–76 were used in this study; all exhibited BML regions under MRI. Bone plugs were taken from non-BML (n = 6) and BML (n = 7) regions within the patellae, with guidance from the MRI. The plugs were imaged at 82µm resolution using micro computed tomography (µCT) and tested under uniaxial compression. Finite element (FE) models were created for each plug from the µCT scans and morphological properties such as bone volume fraction (BV/TV) were also determined. The relationship between bone volume fraction and apparent modulus was investigated for both sample groups.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 48 - 48
1 Dec 2021
Alkhrayef MN Hotchen AJ McCaskie AW Birch MA
Full Access

Abstract

Objectives

Mesenchymal stromal/stem cells (MSCs) are increasingly recognized as regulators of immune cells during disease or tissue repair. During these situations, the extracellular matrix (ECM) is very dynamic and therefore, our studies aim to understand how ECM influences the activity of MSCs.

Methods

Human MSCs cultured on tissue culture plastic (TCP) and encapsulated within collagen type I, fibrin, or mixed Collagen-Fibrin were exposed to low dose TNFα and IFNɣ. Transcription profiles were examined using bulk RNA sequencing (RNAseq) after 24h of treatment. ELISA, Western blot, qPCR and immunofluorescence were employed to validate RNAseq results and to investigate the significance of transcriptional changes. Flow cytometry evaluated monocyte/macrophage phenotype.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 53 - 53
1 Dec 2021
De Vecchis M Naili JE Wilson C Whatling GM Holt CA
Full Access

Abstract

Objectives

Exploring the relationship of gait function pre and post total knee replacement (TKR) in two groups of patients.

Methods

Three-dimensional gait analysis was performed at Cardiff University, UK, and Karolinska University Hospital, Sweden, on 29 and 25 non-pathological (NP) volunteers, and 39 and 28 patients with end-stage knee osteoarthritis (OA), respectively. Patients were assessed pre and one-year post-TKR. Data reduction was performed via Principal Component (PC) analysis on twenty-four kinematic and kinetic waveforms in both NP and pre/post-TKR. Cardiff's and Karolinska's cohorts were analysed separately. The Cardiff Classifier, a classification system based on the Dempster-Shafer theory, was trained with the first 3 PCs of each variable for each cohort. The Classifier classifies each participant by assigning them a belief in NP, belief in OA (BOA) and belief in uncertainty, based on their biomechanical features. The correlation between patient's BOA values (range: 0–1, 0 indicates null BOA and 1 high BOA) pre and post-TKR was tested through Spearman's correlation coefficient in each cohort. The related-samples Wilcoxon signed-rank test (α=0.05) determined the significant changes in BOA in each cohort of patients. The Mann-Whitney U test (α=0.05) was run to explore differences between the patients’ cohorts.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 15 - 15
1 Dec 2021
Mohamed H
Full Access

Abstract

Background

Benign osteolytic lesions of bone represent a diverse group of pathological and clinical entities. The aim of this study is to highlight the importance of intraoperative endoscopic assessment of intramedullary osteolytic lesions in view of the rate of complications during the postoperative follow up period.

Methods

69 patients (median age 27 years) with benign osteolytic lesion had been prospectively followed up from December 2017 to December 2018 in a university hospital in Cairo, Egypt and in a level-1 trauma center in United Kingdom. All patients had been treated by curettage with the aid of endoscopy through a standard incision and 2 portals. Histological analysis was confirmed from intraoperative samples analysis. All patients had received bone allografts from different donor sites (iliac crest, fibula, olecranon, etc). None of them received chemo or radiotherapy.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 16 - 16
1 Dec 2021
Munford M Stoddart J Liddle A Cobb J Jeffers J
Full Access

Abstract

Objectives

Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but monolithic implants disrupt the natural homeostasis of bone which leads to bone loss over time. This can cause problems if the implant needs to be revised. This study aimed to demonstrate that tibial implants made from titanium lattice could replace the tibial condyle surface while minimising disruption of the bone's natural mechanical loading environment. A secondary aim was to determine whether implants perform better if they replicate more closely bone's mechanical modulus, anisotropy and spatial heterogeneity. This study was conducted in a human cadaveric model.

Methods

In a cadaveric model, UKA and TKA procedures were performed on 8 fresh-frozen knee specimens by a board-certified consultant orthopaedic surgeon, using tibial implants made from conventional monolithic material and titanium lattice structures. Stress at the bone-implant interfaces was measured with pressure film and compared to the native knee.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 75 - 75
1 Dec 2021
Stoddart J Garner A Tuncer M Cobb J van Arkel R
Full Access

Abstract

Objectives

There is renewed interest in bi-unicondylar arthroplasty (Bi-UKA) for patients with medial and lateral tibiofemoral osteoarthritis, but a spared patellofemoral compartment and functional cruciate ligaments. The bone island between the two tibial components may be at risk of tibial eminence avulsion fracture, compromising function. This finite element analysis compared intraoperative tibial strains for Bi-UKA to isolated medial unicompartmental arthroplasty (UKA-M) to assess the risk of avulsion.

Methods

A validated model of a large, high bone-quality tibia was prepared for both UKA-M and Bi-UKA. Load totalling 450N was distributed between the two ACL bundles, implant components and collateral ligaments based on experimental and intraoperative measurements with the knee extended and appropriately sized bearings used. 95th percentile maximum principal elastic strain was predicted in the proximal tibia. The effect of overcuts/positioning for the medial implant were studied; the magnitude of these variations was double the standard deviation associated with conventional technique.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 5 - 5
1 Dec 2021
Agarwal N Mak CC Bojanic C To K Khan W
Full Access

Abstract

Osteoarthritis (OA) is a degenerative disorder associated with cartilage loss and is a leading cause of disability around the world. In old age, the capacity of cartilage to regenerate is diminished. With an aging population, the burden of OA is set to rise. Currently, there is no definitive treatment for OA. However, cell-based therapies derived from adipose tissue are promising. A PRISMA systematic review was conducted employing four databases (MEDLINE, EMBASE, Cochrane, Web of Science) to identify all clinical studies that utilized adipose tissue derived mesenchymal stem cells (AMSCs) or stromal vascular fraction (SVF) for the treatment of knee OA. Eighteen studies were included, which met the inclusion criteria. Meta-analyses were conducted on fourteen of these studies, which all documented WOMAC scores after the administration of AMSCs. Pooled analysis revealed that cell-based treatments definitively improve WOMAC scores, post treatment. These improvements increased with time. The studies in this meta-analysis have established the safety and efficacy of both AMSC therapy and SVF therapy for knee OA in old adults and show that they reduce pain and improve knee function in symptomatic knee OA suggesting that they may be effective therapies to improve mobility in an aging population.


Abstract

Objectives

The principle of osteoporotic vertebral compression fracture (OVCF) is fixing instability, providing anterior support, and decompression. Contraindication for vertebroplasty is anterior or posterior wall fracture. The study objectives was to evaluate the efficacy and safety of vertebroplasty with short segmented PMMA cement augmented pedicle screws for OVCF with posterior/anterior wall fracture patients.

Methods

A retrospective study of 24 patients of DGOU type-4 (vertebra plana) OVCF with posterior/anterior wall fracture, were treated by vertebroplasty and short segment PMMA cement augmented pedicle screws fixation. Radiological parameters (kyphosis angle and compression ratio) and clinical parameters Visual analogue scale (VAS) and Oswestry disability index (ODI) were analysed.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 6 - 6
1 Dec 2021
Lau E Arshad Z Leow SH Bhatia M
Full Access

Abstract

Objectives

Achilles tendon ruptures are common in the UK, with data demonstrating a significant rise in incidence over the past years. Chronic Achilles ruptures have been less well defined in literature, and repair techniques vary significantly. A surge in publications reporting various management options for chronic Achilles ruptures has necessitated a review that systematically maps and summarises current evidence regarding treatments and identifies areas for future research. This scoping review aims to improve knowledge of various treatment strategies and their associated outcomes, thereby aiding clinicians in optimising treatment protocols.

Methods

The Arksey and O'Malley, Levac and Peters frameworks were used. A computer-based search in PubMed, Embase, Emcare, Cinahl, ISI Web of Science and Scopus was performed for articles reporting the treatment of chronic Achilles ruptures. Two reviewers independently performed title/abstract and full text screening according to a pre-defined selection criteria.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 35 - 35
1 Dec 2021
Wang K Kenanidis E Miodownik M Tsiridis E Moazen M
Full Access

Abstract

Objectives

Stem malalignment in total hip arthroplasty (THA) has been associated with poor long-term outcomes and increased complications (e.g. periprosthetic femoral fractures). Our understanding of the biomechanical impact of stem alignment in cemented and uncemented THA is still limited. This study aimed to investigate the effect of stem fixation method, stem positioning, and compromised bone stock in THA.

Methods

Validated FE models of cemented (C-stem – stainless steel) and uncemented (Corail – titanium) THA were developed to match corresponding experimental model datasets; concordance correlation agreement of 0.78 & 0.88 for cemented & uncemented respectively. Comparison of the aforementioned stems was carried out reflecting decisions made in the current clinical practice. FE models of the implant positioned in varus, valgus, and neutral alignment were then developed and altered to represent five different bone defects according to the Paprosky classification (Type I – Type IIIb). Strain was measured on the femur at 0mm (B1), 40mm (B2), and 80mm (B3) from the lesser trochanter.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 37 - 37
1 Dec 2021
Chen H Gulati A Mangwani J Brockett C Pegg E
Full Access

Abstract

Objectives

The aim of this study was to develop an open-source finite element model of the ankle for identification of the best clinical treatment to restore stability to the ankle after injury.

Methods

The ankle geometry was defined from the Visible Human Project Female CT dataset available from the National Library of Medicine, and segmented using Dragonfly software (Object Research Systems, 2020). The finite element model was created with FEBio (University of Utah, 2021) using the dynamic nonlinear implicit solver. Linear isotropic material properties were assigned to the bones (E=7300MPa, ν=0.3, ρ=1730kg/m3) and cartilage (E=10MPa, ν=0.4, ρ=1100kg/m3). Spring elements were used to represent the ligaments and material properties were taken from Mondal et al. [1]. Lagrangian contact was defined between the cartilaginous surfaces with μ=0.003. A standing load case was modelled, assuming even distribution of load between the feet. A reaction force of 344.3N was applied to the base of the foot, a muscle force of 252.2N, and the proximal ends of the tibia and fibula were fully constrained.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 38 - 38
1 Dec 2021
Hopkins T Wright K Roberts S Jermin P Gallacher P Kuiper JH
Full Access

Abstract

Objectives

In the human knee, the cells of the articular cartilage (AC) and subchondral bone (SB) communicate via the secretion of biochemical factors. Chondrocyte-based AC repair strategies, such as articular chondrocyte implantation, are widely used but there has been little investigation into the communication between the native SB cells and the transplanted chondrocytes. We hypothesise that this communication depends on the health state of the SB and could influence the composition and quality of the repair cartilage.

Methods

An indirect co-culture model was developed using transwell inserts, representing a chondrocyte/scaffold-construct for repair of AC defects adjoining SB with varying degrees of degeneration. Donor-matched populations of human bone-marrow derived mesenchymal stromal cells (BM-MSCs) were isolated from the macroscopically and histologically best and worst osteochondral tissue, representing “healthy” and “unhealthy” SB. The BM-MSCs were co-cultured with normal chondrocytes suspended in agarose, with the two cell types separated by a porous membrane. After 0, 7, 14 and 21 days, chondrocyte-agarose scaffolds were assessed by gene expression and biochemical analyses.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 40 - 40
1 Dec 2021
Cheong VS Roberts B Kadirkamanathan V Dall'Ara E
Full Access

Abstract

Objectives

Current therapies for osteoporosis are limited to generalised antiresorptive or anabolic interventions, which do not target specific regions to improve skeletal health. Moreover, the adaptive changes of separate and combined pharmacological and biomechanical treatments in the ovariectomised (OVX) mouse tibia has not been studied yet. Therefore, this study combines micro- computed tomography (micro-CT) imaging and computational modelling to evaluate the efficacies of treatments in reducing bone loss.

Methodology

In vivo micro-CT (10.4µm/voxel) images of the right tibiae of N=18 female OVX C57BL/6 mice were acquired at weeks 14, 16, 18, 20 and 22 of age for 3 groups: mechanical loading (ML), parathyroid hormone (PTH) or combined therapies (PTHML). All mice received either injection of PTH (100μg/kg/day, 5days/week) or vehicle from week 18. The right tibiae were mechanically loaded in vivo at week 19 and 21 with a 12N peak load, 40 cycles/day and 3 days/week. Bone adaptation was quantified through spatial changes in bone mineral density (BMD) and strain distribution was obtained from micro-CT-based finite element models.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 41 - 41
1 Dec 2021
Brachimi E Rodger C Brown M Jamal B
Full Access

Abstract

Objectives

Currently, the golden standard for the management of ankle fractures is open reduction and internal fixation (ORIF), a procedure which preserves joint anatomy and function. However, ORIF is associated with high risk of infection, especially in the elderly population, who tend to suffer from osteoporosis and vascular disease. Studies recommend hindfoot nailing (HFN) as a safe and efficient management alternative for this demographic. Unlike ORIF, HFN allows immediate weight-bearing, which has been linked to a lower rate of complications. This study aims to evaluate the outcomes of hindfoot nailing in ankle fractures using a case series of 43 patients.

Methods

This is a retrospective study with a sample size of 43 patients, that have a mean age of 77.3 years and several medical conditions. These patients experienced ankle fractures that were treated with HFN. Data collected included injury patterns, operative complications, rate of radiological union, comorbidities and changes in mobility and housing before and after surgery.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 74 - 74
1 Dec 2021
Chen H Khong J Huang J
Full Access

Abstract

Objectives

Direct ink writing (DIW) has gained considerable attention in production of personalized medical implants. Laponite nanoclay is added in polycaprolactone (PCL) to improve printability and bioactivity for bone implants. The 3D structure of DIW printed PCL/Laponite products was qualitatively evaluated using micro-CT.

Methods

PCL/LP composite ink was formulated by dissolving 50% m/v PCL in dichloromethane with Laponite loading of up to 30%. The rheological properties of the inks were determined using Discovery HR-2 rheometer. A custom-made direct ink writer was used to fabricate both porous scaffold with 0°/90° lay-down pattern, and solid dumbbell-shaped specimens (ASTM D638 Type IV) with two printing orientations, 0° and 90° to the loading direction in tensile testing. The 3D structure of specimens was assessed using a micro-CT. Independent t-tests were performed with significance level at p<0.05.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 64 - 64
1 Dec 2021
Hamilton R Holt C Hamilton D Jones R Shillabeer D Kuiper JH Sparkes V Mason D
Full Access

Abstract

Objectives

Current tools to measure pain are broadly subjective impressions of the impact of the nociceptive impulse felt by the patient. A direct measure of nociception may offer a more objective indicator. Specifically, movement-induced physiological responses to nociception may offer a useful way to monitor knee OA. In this proof-of-concept study, we evaluated whether integrated biomechanical and physiological sensor datasets could display linked and quantifiable information to a nociceptive stimulus.

Method

Following ethical approval, we applied a quantified thermal pain stimulus to a volunteer during stationary standing in a gait lab setting. An inertial measurement unit (IMU) and an electromyography (EMG) lower body marker set were tested and integrated with ground reaction force (GRF) data collection. Galvanic skin response electrodes and skin thermal sensors were manually timestamp linked to the integrated system.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 28 - 28
1 Dec 2021
Ahmed I Moiz H Carlos W Edwin C Staniszewska S Parsons N Price A Hutchinson C Metcalfe A
Full Access

Abstract

Objectives

Magnetic resonance imaging (MRI) is one of the most widely used investigations for knee pain as it provides detailed assessment of the bone and soft tissues. The aim of this study was to report the frequency of each diagnosis identified on MRI scans of the knee and explore the relationship between MRI results and onward treatment.

Methods

Consecutive MRI reports from a large NHS trust performed in 2017 were included in this study. The hospital electronic system was consulted to identify whether a patient underwent x-ray prior to the MRI, attended an outpatient appointment or underwent surgery.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 31 - 31
1 Dec 2021
Lu V Zhang J Thahir A Krkovic M
Full Access

Abstract

Objectives

Current literature on pilon fracture includes a range of different management strategies, however there is no universal treatment algorithm. We aim to determine clinical outcomes in patients with open and closed pilon fractures, managed using a treatment algorithm applied consistently over the span of this study.

Methods

135 patients over a 6-year period were included. Primary outcome was AOFAS score at 3, 6, 12-months post-injury. Secondary outcomes include time to partial weight-bear (PWB), full weight-bear (FWB), bone union time, follow-up time. AO/OTA classification was used (43A: n=23, 43B: n=30, 43C: n=82). Treatment algorithm consisted of fine wire fixator (FWF) for severely comminuted closed fractures (AO/OTA type 43C3), or open fractures with severe soft tissue injury (GA type 3). Otherwise, open reduction internal fixation (ORIF) was performed. When required, minimally invasive osteosynthesis was performed in combination with FWF to improve joint congruency.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 33 - 33
1 Dec 2021
Kakadiya G Chaudhary K
Full Access

Abstract

Objectives

to evaluate the efficacy and safety of topically applied tranexamic acid (TXA) in thoracolumbar spinal tuberculosis surgery, posterior approach.

Methods

Thoracolumbar spine tuberculosis patients who requiring debridement, pedicle screw fixation and fusion surgery were divided into two groups. In the TXA group (n=50), the wound surface was soaked with TXA (1 g in 100 mL saline solution) for 3 minutes after exposure, after decompression, and before wound closure, and in the control group (n=116) using only saline. Intraoperative blood loss, drain volume 48 hours after surgery, amount of blood transfusion, transfusion rate, the haemoglobin, haematocrit after the surgery, the difference between them before and after the surgery, incision infection and the incidence of deep vein thrombosis between the two groups


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 50 - 50
1 Dec 2021
Mehta S Mahajan U Sathyamoorthy P
Full Access

Abstract

Background

The influence of diagnosis on outcomes after reverse shoulder arthroplasty (RSA) is not completely understood. The purpose of this study was to compare clinical outcomes of different pathologies.

Methods

A total of 78 RSAs were performed for the following diagnoses: (1) rotator cuff tear arthropathy(RCA), (2) massive cuff tear(MCT) with osteoarthritis(OA), (3) MCT without OA, (4) arthritis, (5) acute proximal humerus fracture. Mean follow up 36 months (upto 5 years) Range of motion, Oxford Shoulder Score were obtained preoperatively and postoperatively.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 51 - 51
1 Dec 2021
Gilbert S Boye J Mason D
Full Access

Abstract

Objectives

Osteocytes function as critical regulators of bone homeostasis by sensing mechanical signals. Stimulation of the mechanosensitive ion channel, Piezo1 promotes bone anabolism and deletion of Piezo1 in osteoblasts and osteocytes decreases bone mass and bone strength in mice. This study determined whether loading of osteocytes in vitro results in upregulation of the Piezo1 pathway.

Methods

Human MSC cells (Y201), embedded in type I collagen gels and differentiated to osteocytes in osteogenic media for 7-days, were subjected to pathophysiological load (5000 µstrain, 10Hz, 5 mins; n=6) with unloaded cells as controls (n=4). RNA was extracted 1-hr post load and Piezo1 activation assessed by RNAseq analysis (NovaSeq S1 flow cell 2 × 100bp PE reads). To mimic mechanical load and activate Piezo1, Y201s were differentiated to osteocytes in 3D gels for 13 days and treated, with Yoda1 (5µM, 2 hours, n=4); vehicle treated cells served as controls (n=4). Extracted RNA was subjected to RT-qPCR and data analysed by Minitab.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 52 - 52
1 Dec 2021
Wang J Hall T Musbahi O Jones G van Arkel R
Full Access

Abstract

Objectives

Knee alignment affects both the development and surgical treatment of knee osteoarthritis. Automating femorotibial angle (FTA) and hip-knee-ankle angle (HKA) measurement from radiographs could improve reliability and save time. Further, if the gold-standard HKA from full-limb radiographs could be accurately predicted from knee-only radiographs then the need for more expensive equipment and radiation exposure could be reduced. The aim of this research is to assess if deep learning methods can predict FTA and HKA angle from posteroanterior (PA) knee radiographs.

Methods

Convolutional neural networks with densely connected final layers were trained to analyse PA knee radiographs from the Osteoarthritis Initiative (OAI) database with corresponding angle measurements. The FTA dataset with 6149 radiographs and HKA dataset with 2351 radiographs were split into training, validation and test datasets in a 70:15:15 ratio. Separate models were learnt for the prediction of FTA and HKA, which were trained using mean squared error as a loss function. Heat maps were used to identify the anatomical features within each image that most contributed to the predicted angles.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 61 - 61
1 Dec 2021
Naghavi SA Hua J Moazen M Taylor S Liu C
Full Access

Abstract

Objectives

Currently, total hip replacement surgery is an effective treatment for osteoarthritis, where the damaged hip joint is replaced with an artificial joint. Stress shielding is a mechanical phenomenon that refers to the reduction of bone density as a result of altered stresses acting on the host bone. Due to solid metallic nature and high stiffness of the current orthopaedic prostheses, surrounding bones undergo too much bone resorption secondary to stress shielding. With the use of 3D printing technology such as selective laser melting (SLM), it is now possible to produce porous graded microstructure hip stems to mimics the surrounding bone tissue properties.

Method

In this study we have compared the physical and mechanical properties of two triply periodic minimal surface (TPMS) lattice structure namely gyroid and diamond TPMS. Based on initial investigations, it was decided to design, and 3D print the gyroid and diamond scaffolds having pore size of 800 and 1100 um respectively. Scaffold of each type of structure were manufactured and were tested mechanically in compression (n=8), tension (n=5) and bending (n=1).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 2 - 2
1 Dec 2021
Sanderson W Foster R Edwards J Wilcox R Herbert A
Full Access

Abstract

Objectives

The patella tendon (PT) is commonly used as a graft material for anterior cruciate ligament reconstruction (ACLR). The function of the graft is to restore the mechanical behaviour of the knee joint. Therefore, it is essential that a robust methodology be developed for the mechanical testing of the PT, as well as for the tissue engineered grafts derived from this tissue. Our objectives were to (1) survey the literature, in order to define the state-of-the-art in mechanical testing of the PT, highlighting the most commonly used testing protocols, and (2) conduct validation studies using porcine PT to compare the mechanical measurements obtained using different methodological approaches.

Methods

A PubMed search was performed using a boolean search term to identify publications consisting of PT tensile testing, and limited to records published in the past ten years (2010–2020). This returned a total of 143 publications. A meta-analysis was undertaken to quantify the frequency of commonly used protocol variations (pre-conditioning regime, strain rates, maximum strain, etc.). Validation studies were performed on porcine PT (n=4) using Instron tensile testing apparatus to examine the effect of preconditioning on low-strain (toe-region) mechanical properties.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 3 - 3
1 Dec 2021
Giddins G Giddins H
Full Access

Abstract

Objectives

Falling studies have been conducted in controlled environments but not in field studies for ethical reasons; this limits the validity and applicability of previous studies. We performed field studies on existing YouTube © videos of skateboarders falling. The aims were to measure the wrist angle at impact on videos of real unprotected falls and to study the dynamics of the upper limbs when falling.

Methods

Youtube © videos of skateboarders falling were studied assessing the direction of the fall, the positions of both upper limbs and especially the wrists on impact. This study would not be ethical by other means.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 4 - 4
1 Dec 2021
Giddins G
Full Access

Abstract

Objectives

The aim of this study was to test the hypothesis that there are two different mallet injuries; specifically, tendinous ones are primarily low energy avulsion injuries whilst bony ones are primarily high-energy hyper-extension injuries.

Methods

We reviewed in detail the demographics, mechanisms of injury, concomitant injuries and the radiological findings of patients presenting with bony and tendinous mallet deformities. The sizes of the bony fragments and angulation of the mallet deformities were measured on the initial radiographs using an established technique.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 17 - 17
1 Dec 2021
Shuttleworth M Vickers O Isaac G Culmer P Williams S Kay R
Full Access

Abstract

Objectives

Dual mobility (DM) hip implants whereby the polyethylene liner is “free-floating” are being used increasingly clinically. The motion of the liner is not well understood and this may provide insight into failure mechanisms; however, there are no published methods on tracking liner motion while testing under clinically relevant conditions. The aim was to develop and evaluate a bespoke inertial tracking system for DM implants that could operate submerged in lubricant without line-of-sight and provide 3D orientation information.

Methods

Trackers (n=5) adhered to DM liners were evaluated using a robotic arm and a six-degree of freedom anatomical hip simulator. Before each set of testing the onboard sensor suites were calibrated to account for steady-state and non-linearity errors. The trackers were subjected to ranges of motion from ±5° to ±25° and cycle frequencies from 0.35Hz to 1.25Hz and the outputs used to find the absolute error at the peak angle for each principle axis. In total each tracker was evaluated for ten unique motion profiles with each sequence lasting 60 cycles.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 18 - 18
1 Dec 2021
Brown M Wilcox R Isaac G Anderson J Board T Williams S
Full Access

Abstract

OBJECTIVES

Dual mobility (DM) total hip replacements (THRs) were introduced to reduce the risk of hip dislocation in at-risk patients. DM THRs have shown good overall survivorship and low rates of dislocation, however, the mechanisms which describe how these bearings function in-vivo are not fully understood. This is partly due to a lack of suitable characterisation methodologies which are appropriate for the novel geometry and function of DM polyethylene liners, whereby both surfaces are subject to articulation. This study aimed to develop a novel semi-quantitative geometric characterisation methodology to assess the wear/deformation of DM liners.

METHODS

Three-dimensional coordinate data of the internal and external surfaces of 14 in-vitro tested DM liners was collected using a Legex 322 coordinate measuring machine. Data was input into a custom Matlab script, whereby the unworn reference geometry was determined using a sphere fitting algorithm. The analysis method determined the geometric variance of each point from the reference surface and produced surface deviation heatmaps to visualise areas of wear/deformation. Repeatability of the method was also assessed.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 22 - 22
1 Dec 2021
Norbertczak H Fermor H Edwards J Rooney P Ingham E Herbert A
Full Access

Abstract

Introduction

Bone grafts are utilised in a range of surgical procedures, from joint replacements to treatment of bone loss resulting from cancer. Decellularised allograft bone is a regenerative, biocompatible and immunologically safe potential source of transplant bone.

Objectives

To compare the structural and biomechanical parameters of decellularised and unprocessed (cellular) trabecular bone from the human femoral head (FH) and tibial plateau (TP).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 23 - 23
1 Dec 2021
Boyd A Rodzen K Morton M Acheson J McIlhagger A Morgan R Tormey D Dave F Sherlock R Meenan B
Full Access

Abstract

INTRODUCTION

Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer which has found increasing application in orthopaedic implant devices and has a lot of promise for ‘made-to-measure’ implants produced through additive manufacturing [1]. However, a key limitation of PEEK is that it is bioinert and there is a requirement to functionalise its surface to make the material osteoconductive to ensure a more rapid, improved and stable fixation, in vivo. One approach to solving this issue is to modify PEEK with bioactive materials, such as hydroxyapatite (HA).

OBJECTIVE

To 3D PEEK/HA composite materials using a Fused Filament Fabrication (FFF) approach to enhance the properties of the PEEK matrix.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 6 - 6
1 Nov 2021
Lu V Zhang J Thahir A Lim JA Krkovic M
Full Access

Introduction and Objective

Despite the low incidence of pilon fractures among lower limb injuries, their high-impact nature presents difficulties in surgical management and recovery. Current literature includes a wide range of different management strategies, however there is no universal treatment algorithm. We aim to determine clinical outcomes in patients with open and closed pilon fractures, managed using a treatment algorithm that was applied consistently over the span of this study.

Materials and Methods

This retrospective study was conducted at a single institution, including 141 pilon fractures in 135 patients, from August 2014 to January 2021. AO/OTA classification was used to classify fractures. Among closed fractures, 12 had type 43A, 18 had type 43B, 61 had type 43C. Among open fractures, 11 had type 43A, 12 had type 43B, 27 had type 43C. Open fractures were further classified with Gustilo-Anderson (GA); type 1: n=8, type 2: n=10, type 3A: n=12, type 3B: n=20. Our treatment algorithm consisted of fine wire fixator (FWF) for severely comminuted closed fractures (AO/OTA type 43C3), or open fractures with severe soft tissue injury (GA type 3). Otherwise, open reduction internal fixation (ORIF) was performed. When required, minimally invasive osteosynthesis (MIO) was performed in combination with FWF to improve joint congruency. All open fractures, and closed fractures with severe soft tissue injury (skin contusion, fracture blister, severe oedema) were initially treated with temporary ankle-spanning external fixation. For all open fracture patients, surgical debridement, soft tissue cover with a free or pedicled flap were performed. For GA types 1 and 2, this was done with ORIF in the same operating session. Those with severe soft tissue injury (GA type 3) were treated with FWF four to six weeks after soft tissue management was completed. Primary outcome was AOFAS Ankle-Hindfoot score at 3, 6 and 12-months post-treatment. Secondary outcomes include time to partial weight-bear (PWB) and full weight-bear (FWB), bone union time. All complications were recorded.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 149 - 149
1 Nov 2021
Smeriglio P Indelli PF Bhutani N
Full Access

Introduction and Objective

Osteoarthristis (OA) has been associated with many genes and yet the genetic basis for this disease has never formally been established. Recent realization that epigenetic changes could be the underlying pathological mechanisms has helped to explain many complex multifactorial diseases with no clear genetic cause. We therefore asked whether epigenetics could also play a role in OA. We have previously shown that the DNA epigenetic modification, specifically the hydroxymethylation on cytosine (5hmC), undergoes a fivefold increase on OA-associated genes which are activated at OA onset. In this study, we further uncovered a set of 5hmC-mediated gene targets and their mechanistic link to OA progression.

Materials and Methods

We surgically induced OA on 4 to 6 months old Tet1−/− mice (Tet1tm1.1Jae, the Jackson laboratory) and wild-type littermates by performing destabilization of the medial meniscus (DMM) surgery. Joints were collected for histological assessment through blinded grading with the OARSI scoring system. Human articular chondrocytes were harvested from OA cartilage samples obtained during total knee arthroplasty or from grossly normal cartilage pieces obtained during notchplasty or debridement from patients undergoing anterior cruciate ligament (ACL) reconstruction with no history of OA symptoms, under approved Human subjects Institutional Review Board protocols. Bioinformatic analyses of RNA-sequencing and CCGG sequencing (reduced representation 5hmC profiling) were performed to identify TET1 target genes associated with OA progression. Several measurements were used to assess the effect of TET1 ablation on the phenotype of mouse cartilage tissue and human chondrocytes including, histological evaluation, and quantitative bone assessment by micro-CT imaging and multiplex cytokine analyses in the serum of mice in vivo (mouse 39-plex assay) and in the supernatant of human chondrocyte cultures (human 62-plex assay).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 50 - 50
1 Nov 2021
Rytoft L Frost MW Rahbek O Shen M Duch K Kold S
Full Access

Introduction and Objective

Home-based monitoring of fracture healing has the potential of reducing routine follow-up and improve personalized fracture care. Implantable sensors measuring electrical impedance might detect changes in the electrical current as the fracture heals. The aim was to investigate whether electrical impedance correlated with radiographic fracture healing.

Materials and Methods

Eighteen rabbits were subjected to a tibial osteotomy that was stabilized with an external fixator. Two electrodes were positioned, one electrode placed within the medullary cavity and the other on the lateral cortex, both three millimeters from the osteotomy site. Transverse electrical impedance was measured daily across the fracture site at a frequency range of 5 Hz to 1 MHz using an Analog Discovery 2 Oscilloscope with Impedance Analyzer. Biweekly x-rays were taken and analyzed blinded using a modified anterior-posterior (AP) radiographic union score of the tibia (RUST). Each animal served as its own control by performing repeated measurements from time zero until the end of follow-up.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 152 - 152
1 Nov 2021
Selim A Seoudi N Algeady I Barakat AS
Full Access

Introduction and Objective

Hip fractures represent one of the most challenging injuries in orthopaedic practice due to the associated morbidity, mortality and the financial burden they impose on the health care systems. By many still considered as the gold standard in the management of intertrochanteric fractures, the Dynamic Hip Screw utilizes controlled collapse during weight bearing to stabilize the fracture. Despite being a highly successful device, mechanical failure rate is not uncommon. The most accepted intraoperative indicator for lag screw failure is the tip apex distance (TAD), yet lateral femoral wall thickness (LWT) is another evolving parameter for detecting the potential for lateral wall fracture with subsequent medialization and implant failure. The aim of this study is to determine the mean and cut off levels for LWT that warrant lateral wall fracture and the implications of that on implant failure, revision rates and implant choice.

Materials and Methods

This prospective cohort study included 42 patients with a mean age of 70.43y with intertrochanteric hip fractures treated with DHS fixation by the same consultant surgeon from April 2019 to December 2019. The study sample was calculated based on a confidence level of 90% and margin of error of 5%. Fracture types included in the study are 31A1 and 31A2 based on the AO/OTA classification system. LWT was assessed in all patients preoperatively using Surgimap (Nemaris, NY, USA) software. Patients were divided into two groups according to the post-operative integrity of the lateral femoral wall, where group (A) sustained a lateral femoral wall fracture intraoperatively or within 12 months after the index procedure, while in group (B) the lateral femoral wall remained intact. All patients were regularly followed up radiologically and clinically per the Harris Hip Score (HHS) for a period of 12 months.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 153 - 153
1 Nov 2021
Laubscher C Jordaan J Burger M Conradie M Conradie M
Full Access

Introduction and Objective

Geriatric patients with a fragility fracture of the hip (FFH) are especially prone to sarcopenia with poor functional outcomes and quality of life. We assessed the prevalence of sarcopenia in older South African patients with FFH. Risk factors for sarcopenia were also investigated

Materials and Methods

From August 1 to November 30, 2018, all older patients with FFH were invited to participate. Sarcopenia was diagnosed based on the revised criteria of the European Working Group on Sarcopenia in Older People (EWGSOP2). Handgrip strength (HGS) and muscle strength were assessed. Muscle quantity was determined by dual-energy X-ray absorptiometry. Demographic information was collected, and 25-hydroxyvitamin D (25[OH]D) status was determined.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 54 - 54
1 Nov 2021
Lichtenstein A Ovadia J Albagli A Krespi R Rotman D Lichter O Efrima B
Full Access

Introduction and Objective

The coronavirus (Covid-19) pandemic, first identified in China in December 2019, halted daily living with mandatory lockdowns imposed in Israel in March 2020. This halt induced a sedentary lifestyle for most citizens as well as a decreased physical activity time. These are both common risk factors for the development of low back pain (LBP) which is considered a major global medical and economical challenge effecting almost 1 in 3 people and a leading cause of Emergency Department (ED) visits. It is hypothesized that prevalence of minor LBP episodes during the first total lockdown should have increased compared to previous times. However, due to “Covid-19 fear” we expect a decrease in ED visits. We also speculate that rate of visits due to serious spinal illness (causing either immediate hospitalization or spinal surgery within 30-days of presentation) did not change.

Materials and Methods

Retrospective study based on patients visiting the ED in Tel Aviv Sourasky Medical Center During the first pandemic stage in 2020 compared to parallel periods in 2018 and 2019 due to LBP.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 156 - 156
1 Nov 2021
Uthraraj NS Prakash M
Full Access

Introduction and Objective

The Cartilage Oligomeric Matrix Protein (COMP) is a glycoprotein that is elevated in patients with osteoarthritis. The elevation increases linearly with the radiological grade of osteoarthritis. The objective of this study was to study the levels of COMP in knee osteoarthritis in the Indian population and to correlate (establish ranges) with the specific radiological grade of osteoarthritis (Kellgreen and Lawrence grading). Since the radiological classification is subjective, the COMP levels would serve as a more objective way of classifying osteoarthritic joints.

Materials and Methods

We analysed the COMP levels by the Enzyme Linked Immunosorbent Assay (ELISA) method in 100 patients presenting to the outpatient clinic of our hospital, after obtaining due approvals. The radiographs of these patients were classified according to the Kellgreen-Lawrence grading by a senior orthopaedic surgeon.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 56 - 56
1 Nov 2021
Awadallah M Gurusamy K Easey S Parker M
Full Access

Introduction and Objective

The effectiveness of anti-embolic graduated compression stockings (GCSs) has recently been questioned. The aim of this study is to systematically review all the relevant randomised controlled trials published to date.

Materials and Methods

We systematically reviewed all the randomised controlled trials comparing anti-embolism stockings with no stockings. We searched the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE and CINAHL, Cochrane Musculoskeletal Injuries Group specialized register and the reference lists of articles as well as hand search results. Trials were independently assessed and data for the main outcome measures; deep vein thrombosis (DVT), pulmonary embolism and skin ulceration, were extracted by two reviewers.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 20 - 20
1 Nov 2021
Gueorguiev B
Full Access

Nonunions occur in situations with interrupted fracture healing process and indicate conditions where the fracture has no potential to heal without further intervention. Per definition, no healing is detected nine months post operation and there is no visible progress of healing over the last three months. The classification of nonunions as hypertrophic, oligotrophic, atrophic and pseudoarthosis, as well as aseptic or septic, identifies mechanical and biological requirements for fracture healing that have not been met. The overall treatment strategy comprises identification and elimination of the problems. However, current clinical methods to determine the state of healing are based on highly subjective radiographic evaluation or clinical examination.

A data collection telemetric system for objective continuous measurement of the load carried by a bridging smart implant was developed to assess the mechanical stability and monitor bone healing in complicated fracture situations. The first results from a clinical trial show that the system is capable to offer early warning of nonunions or poor fracture healing.

Nonunions are often multifactorial in nature and not just related to a biomechanical problem. Their successful treatment requires consideration of both biological and mechanical aspects. Disturbed vascularity and stability are the most important factors. Infection could be another complicating factor resulting in unpredictable long-time treatment. New technologies for monitoring of fracture healing in addition to radiographic evaluation and clinical examination seem to be promising for early detection of nonunions.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 119 - 119
1 Nov 2021
Facchini A Troiano E Saviori M Meglio MD Ghezzi R Mondanelli N Giannotti S
Full Access

Introduction and Objective

The aim of this study was to evaluate whether CT-based pre-operative planning, integrated with intra-operative navigation could improve glenoid baseplate fixation and positioning by increasing screw length, reducing number of screws required to obtain fixation and increasing the use of augmented baseplate to gain the desired positioning. Reverse total shoulder arthroplasty (RSA) successfully restores shoulder function in different conditions. Glenoid baseplate fixation and positioning seem to be the most important factors influencing RSA survival. When scapular anatomy is distorted (primitive or secondary), optimal baseplate positioning and secure screw purchase can be challenging.

Materials and Methods

Twenty patients who underwent navigated RSA (oct 2018 and feb 2019) were compared retrospectively with twenty patients operated on with a conventional technique. All the procedures were performed by the same surgeon, using the same implant in cases of eccentric osteoarthritis or complete cuff tear. Exclusion criteria were: other diagnosis as proximal humeral fractures, post-traumatic OA previously treated operatively with hardware retention, revision shoulder arthroplasty.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 21 - 21
1 Nov 2021
Kaya CS Yucesoy CA
Full Access

Introduction and Objective

Clinically, it is considered that spastic muscles of patients with cerebral palsy (CP) are shortened, and produce higher force in shorter muscle lengths. Yet, direct quantification of spastic muscles’ forces is rare. Remarkably, previous intraoperative tests in which muscle forces are measured directly as a function of joint angle showed for spastic gracilis (GRA) that its passive forces are low, and only a small percentage of its maximum active force is measured in flexed knee positions. However, the relationship of force characteristics of spastic GRA with its muscle-tendon unit length (lMTU) is unknown. Combining intraoperative experiments with participants’ musculoskeletal models developed based on their gait analyses, we aimed to test if spastic GRA muscle (1) operates at short lMTU compared to that of typically developing (TD) children, and exerts higher (2) passive and (3) active forces at shorter lengths, within gait-relevant lMTU range.

Materials and Methods

Ten limbs of seven children with CP (GMFCS-II) were tested. Pre-surgery, gait analyses were conducted. Intraoperatively, isometric spastic GRA distal forces were measured in ten hip-knee joint angle combinations, in two conditions: (i) passive state and (ii) maximal activation of the GRA exclusively. In OpenSim, gait_2392 model was used for each limb to calculate lMTU's per each hip and knee angle combination and the gait-relevant lMTU range, and to analyze gait relevant spastic muscle force - lMTU data. lMTU values were normalized for the participants’ thigh lengths. Two-way ANOVA was used to compare the patients’ lMTU to those of the seven age-matched TD children to test the first hypothesis. In order to test the second and the third hypotheses, Spearman's rank correlation coefficient (ρ) was calculated to seek a correlation between the muscle's operational length (represented by mean lMTU within gait cycle) and muscular force characteristics (the percent force at shortest lMTU of peak force, either in passive or in active conditions) within gait-relevant lMTU range.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 120 - 120
1 Nov 2021
Gregori P Singh A Harper T Franceschi F Blaber O Horneff JG
Full Access

Introduction and Objective

Total shoulder replacement is a common elective procedure offered to patients with end stage arthritis. While most patients experience significant pain relief and improved function within months of surgery, some remain unsatisfied because of residual pain or dissatisfaction with their functional status. Among these patients, when laboratory workup eliminates infection as a possibility, corticosteroid injection (CSI) into the joint space, or on the periprosthetic anatomic structures, is a common procedure used for symptom management. However, the efficacy and safety of this procedure has not been previously reported in shoulder literature.

Materials and Methods

A retrospective chart review identified primary TSA patients who subsequently received a CSI into a replaced shoulder from 2011 – 2018 by multiple surgeons. Patients receiving an injection underwent clinical exam, laboratory analysis to rule out infection, and radiographic evaluation prior to CSI. Demographic variables were recorded, and a patient satisfaction survey assessed the efficacy of the injection.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 22 - 22
1 Nov 2021
Belvedere C Leardini A Gill R Ruggeri M Fabbro GD Grassi A Durante S Zaffagnini S
Full Access

Introduction and Objective

Medial Knee Osteoarthritis (MKO) is associated with abnormal knee varism, this resulting in altered locomotion and abnormal loading at tibio-femoral condylar contacts. To prevent end-stage MKO, medial compartment decompression is selectively considered and, when required, executed via High Tibial Osteotomy (HTO). This is expected to restore normal knee alignment, load distribution and locomotion. In biomechanics, HTO efficacy may be investigated by a thorough analysis of the ground reaction forces (GRF), whose orientation with respect to patient-specific knee morphology should reflect knee misalignment. Although multi-instrumental assessments are feasible, a customized combination of medical imaging and gait analysis (GA), including GRF data, rarely is considered. The aim of this study was to report an original methodology merging Computed-Tomography (CT) with GA and GFR data in order to depict a realistic patient-specific representation of the knee loading status during motion before and after HTO.

Materials and Methods

25 MKO-affected patients were selected for HTO. All patients received pre-operative clinical scoring, and radiological/instrumental assessments; so far, these were also executed post-operatively at 6-month follow-up on 7 of these patients. State-of-the-art GA was performed during walking and more demanding motor tasks, like squatting, stair-climbing/descending, and chair-rising/sitting. An 8-camera motion capture system, combined with wireless electromyography, and force platforms for GRF tracking, was used together with an own established protocol. This marker-set was enlarged with 4 additional skin-based non-collinear markers, attached around the tibial-plateau rim. While still wearing these markers, all analyzed patients received full lower-limb X-ray in standing posture a CT scan of the knee in weight-bearing Subsequently, relevant DICOMs were segmented to reconstruct the morphological models of the proximal tibia and the additional reference markers, for a robust anatomical reference frame to be defined on the tibia. These marker trajectories during motion were then registered to the corresponding from CT-based 3D reconstruction. Relevant registration matrices then were used to report GRF data on the reconstructed tibial model. Intersection paths of GRF vectors with respect to the tibial-plateau plane were calculated, together with their centroids.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 23 - 23
1 Nov 2021
Duquesne K Audenaert E
Full Access

Introduction and Objective

The human body is designed to walk in an efficient way. As energy can be stored in elastic structures, it is no surprise that the strongest elastic structure of the human body, the iliofemoral ligament (IFL), is located in the lower limb. Numerous popular surgical hip interventions, however, affect the structural integrity of the hip capsule and there is a growing evidence that surgical repair of the capsule improves the surgical outcome. Though, the exact contribution of the iliofemoral ligament in energy efficient hip function remains unelucidated. Therefore, the objective of this study was to evaluate the influence of the IFL on energy efficient ambulation.

Materials and Methods

In order to assess the potential passive contribution of the IFL to energy efficient ambulation, we simulated walking using the large public dataset (n=50) from Schreiber in a the AnyBody musculoskeletal modeling environment with and without the inclusion of the IFL. The work required from the psoas, iliacus, sartorius, quadriceps and gluteal muscles was evaluated in both situations. Considering the large uncertainty on ligament properties a parameter study was included.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 124 - 124
1 Nov 2021
Mariscal G Camarena JN Galvañ T Barrios C Fernández P
Full Access

Introduction and Objective

The treatment of severe deformities often requiring aggressive techniques such as vertebral resection and osteotomies with high comorbidity. To mitigate this risk, several methods have been used to achieve a partial reduction of stiff curves. The objective of this study was to evaluate and quantify the effectiveness of the Perioperative Halo-Gravity Traction (HGT) in the Treatment of Severe Spinal Deformity in Children.

Materials and Methods

A historical cohort of consecutive childs with severe spinal deformity who underwent to a perioperative HGT as a part of the treatment protocol. Minimum follow-up of 2 years. Demographic, clinical and radiological data, including time duration of perioperative HGT and Cobb angle in the coronal and sagittal plane. The radiological variables were measured before the placement of the halo, after placement of the halo, at the end of the period of traction, after surgery and in the final follow-up.


Introduction and Objective

Posterior and transforaminal lumbar interbody fusion (PLIF, TLIF) represent the most popular techniques in performing an interbody fusion amongst spine surgeons. Pseudarthrosis, cage migration, subsidence or infection can occur, with subsequent failed surgery, persistent pain and patient’ bad quality of life. The goal of revision fusion surgery is to correct any previous technical errors avoiding surgical complications. The most safe and effective way is to choose a naive approach to the disc. Therefore, the anterior approach represents a suitable technique as a salvage operation. The aim of this study is to underline the technical advantages of the anterior retroperitoneal approach as a salvage procedure in failed PLIF/TLIF analyzing a series of 32 consecutive patients.

Materials and Methods

We performed a retrospective analysis of patients’ data in patients who underwent ALIF as a salvage procedure after failed PLIF/TLIF between April 2014 to December 2019. We recorded all peri-operative data. In all patients the index level was exposed with a minimally invasive anterior retroperitoneal approach.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 27 - 27
1 Nov 2021
Williamson A Bateman LE Maitre CL Kelly D Aberdein N
Full Access

Introduction and Objective

Global prevalence of obesity has risen almost three-fold between 1975 and 2016. Alongside the more well-known health implications of obesity such as cardiovascular disease, cancer and type II diabetes, is the effect of male obesity on testosterone depletion and hypogonadism. Hypogonadism is a well-known contributor to the acceleration of bone loss during aging, and obesity is the single biggest risk factor for testosterone deficiency in men. Understanding the micro and macro structural changes to bone in response to testosterone depletion in combination with a high fat ‘Western’ diet, will advance our understanding of the relationship between obesity and bone metabolism. This study investigated the impact of surgically induced testosterone depletion and subsequent testosterone treatment upon bone remodelling in mice fed a high fat diet.

Materials and Methods

Male ApoE−/− mice were split into 3 groups at 7 weeks of age and fed a high fat diet: Sham surgery with placebo treatment, orchiectomy surgery with placebo treatment, and orchiectomy surgery with testosterone treatment. Surgeries were performed at 8 weeks of age, followed by fortnightly testosterone treatment via injection. Mice were sacrificed at 25 weeks of age. Tibiae were collected and scanned ex-vivo at 4.3μm on a SkyScan 1272 Micro-CT scanner (Bruker). Left tibiae were used for assessment of trabecular and cortical Volumes of Interest (VOIs) 0.2mm and 1.0mm respectively from the growth-plate bridge break. Tibiae were subsequently paraffin embedded and sectioned at 4μm prior to immunohistochemical evaluation of alkaline phosphatase.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 131 - 131
1 Nov 2021
Im G
Full Access

Osteoarthritis (OA) is the most common type of arthritis and causes a significant deterioration in patients’ quality of life. The high prevalence of OA as well as the current lack of disease-modifying drugs led to a rise in regenerative medicine efforts. The hope is that this will provide a treatment modality with the ability to alter the course of OA via structural modifications of damaged articular cartilage (AC). Regenerative therapy in OA starts with the concept that administered cells may engraft to a lesion site and differentiate into chondrocytes. However, recent studies show that cells, particularly when injected in suspension, rapidly undergo apoptosis after exerting a transient paracrine effect. If the injected stem cells do not lead to structural improvements of a diseased joint, the high cost of cell therapy for OA cannot be justified, particularly when compared with other injection therapeutics such as corticosteroids and hyaluronic acid. Long-term survival of implanted cells that offer prolonged paracrine effects or possible engraftment is essential for a successful cell therapy that will offer durable structural improvements. In this talk, the history and current status of regenerative therapy in OA are summarized along with the conceptual strategy and future directionsfor a successful regenerative therapy that can provide structural modifications in OA.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 33 - 33
1 Nov 2021
Hartland A Teoh K Rashid M
Full Access

Introduction and Objective

Tranexamic acid (TXA) is used across surgical specialties to reduce perioperative bleeding. It has been shown to be effective in trauma, spinal surgery, and lower limb arthroplasty. The aim of this study is to investigate the clinical effectiveness of TXA in all types of shoulder surgery on bleeding and non-bleeding related outcomes.

Materials and Methods

This study was registered prospectively on the PROSPERO database (ref: CRD42020185482). A systematic review and meta-analysis of randomised controlled trials (RCTs) investigating intra-operative use of TXA versus placebo in any type of surgery to the shoulder girdle. Electronic databases searched included MEDLINE, EMBASE, PsychINFO, and the Cochrane Library. Risk of bias within studies was assessed using the Cochrane risk of bias v2.0 tool and Jadad score. Certainty of findings were reported using the GRADE approach. The primary outcome was total blood loss. Secondary outcomes included patient reported outcome measures, adverse events, and rate of blood transfusion.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 133 - 133
1 Nov 2021
Mullen M Bahney CS Huard J Ehrhart N
Full Access

Introduction and Objective

Exosomal miRNA have been shown to regulate many myogenic and osteogenic pathways involved in injury repair and healing. It is also known that rehabilitation and exercise can improve muscle mass and bone growth. The mechanisms by which this occurs in vivo are well studied, but the impact exosomes and their associated miRNA cargo have is unclear. With this knowledge and question in mind, we hypothesized that C2C12 myoblasts subjected to in vitro mechanical stimulus (“exercise”) would exhibit improved exosome production and differentially expressed miRNA cargo when compared to their static (“unexercised”) counterparts.

Materials and Methods

C2C12 myoblasts were cultured using the FlexCell FX-5000TT bioreactor. Two exercise regimens were programmed: 1) low intensity regimen (LIR) (0–15% strain at 0.5 Hz for 24 hours) 2) high intensity interval regimen (HIIR) (12–22% strain at 1 Hz for 10 minutes followed by 50 minutes of rest repeated for 24 hours). Unexercised (static) cells were cultured in parallel. Exosomes were isolated using the Invitrogen Total Exosome Isolation Reagent. The Pierce BCA Protein Assay, System Bioscience's ExoELISA-ULTRA CD81 Kit and, SBI's ExoFlow-ONE EV labeling kit were used to confirm and quantify exosome number and protein concentration. The SBI Exo-NGS service was used to perform miRNA sequencing on isolated exosomes.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 36 - 36
1 Nov 2021
Balzani LAD Albo E Tirone B Torre G Stelitano G Capperucci C Denaro V
Full Access

Introduction and Objective

Carpal tunnel syndrome (CTS) is a very common compressive neuropathy involving the median nerve. The typical symptoms are paraesthesia, dysesthesia and loss of strength; in severe case, this compression deteriorates the sensorimotor control of the hand and interferes with the adjustment of the forces at the level of the fingers, thus affecting the components that are the basis of dexterity and control of fine movements. For these reasons, the CTS has repercussions on various activities of daily life, including writing skills. Word processing via PC and mobile device (touch-typing) require a fine control of the hand-wrist movement and of the opposition of the thumb, while in handwriting, gripping and gripping movements are carried out in a protracted manner. In modern society, present skills play a role of fundamental importance from an educational, professional and social point of view.

The aim of the study is to describe the effects of carpal tunnel release (CTR) on handwriting and digital writing performance.

Materials and Methods

We recruited patients suffering from carpal tunnel syndrome (CTS) who were candidates for CTR surgery and collected clinical and demographic data, including age, occupation, duration of symptoms and electromyography outcomes. The first trial session was carried out before surgery and the subsequent ones at 1, 2, 3, 4, 8 and 12 weeks after the CTR. These trials involved copying a 500-character paragraph by handwriting, personal computer (PC) and mobile device, for which a dedicate Google Colab web page was computed. We used as parameters the speed, expressed in words per minute (wpm), and the accuracy of copying, which was measured in number of errors (en). Moreover in each session the patient filled in the QuickDASH (Disabilities of the Arm, Shoulder, and Hand) questionnaire. We used the one-way anova to evaluate the change in the three performances and in the QuickDASH score in follow-up sessions. We used the two-way anova to detect a possible interactions between speed improvement and groups of variables, namely gender, writing frequency, schooling, diabetes, dysthyroidism and metabolic syndrome.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 140 - 140
1 Nov 2021
Reifenrath J Kempfert M Kampmann A Angrisani N Glasmacher B Menzel H Welke B Willbold E
Full Access

Introduction and Objective

In the elderly population, chronic rotator cuff tears are often associated with high re-rupture rates after surgical tendon refixation. Implant materials, especially in combination with additives are supposed to positively influence healing outcome. Furthermore, adequate mechanical properties are crucial. In order to realize degradable implants with high specific surface area, polycaprolactone (PCL) was chosen as basic material and processed by electrospinning to achieve a high surface area for growth factor implementation and subsequent cell attachment.

Materials and Methods

PCL (Mn approx. 80,000 g/mol) was used to generate fibre mats by electrospinning (relative collector velocity 8 m/s; flow rate of 4 ml/h). Mechanical analysis was performed according to EN ISO 527–2:2012 with test specimen 1BA (5 mm in diameter). Maximum force at failure (Fmax) as well as stiffness were evaluated. For preclinical in vivo testing, a coating with CS-g-PCL was performed to increase cellular adhesion and biological integration. Native and TGF-ß3 loaded mats were examined in a chronic rat tendon defect model with dissection of the M. infraspinatus, four week latency and following refixation at the humerus with different PCL-fibre mats (approval Nr. 33.12–42502–04–15/2015). After 8 weeks, rats were finalized and tendon-bone insertions were analyzed biomechanically and via histological methods.