Advertisement for orthosearch.org.uk
Results 1 - 50 of 271
Results per page:

Objectives. Local corticosteroid infiltration is a common practice of treatment for lateral epicondylitis. In recent studies no statistically significant or clinically relevant results in favour of corticosteroid injections were found. The injection of autologous blood has been reported to be effective for both intermediate and long-term outcomes. It is hypothesised that blood contains growth factors, which induce the healing cascade. Methods. A total of 60 patients were included in this prospective randomised study: 30 patients received 2 ml autologous blood drawn from contralateral upper limb vein + 1 ml 0.5% bupivacaine, and 30 patients received 2 ml local corticosteroid + 1 ml 0.5% bupivacaine at the lateral epicondyle. Outcome was measured using a pain score and Nirschl staging of lateral epicondylitis. Follow-up was continued for total of six months, with assessment at one week, four weeks, 12 weeks and six months. Results. The corticosteroid injection group showed a statistically significant decrease in pain compared with autologous blood injection group in both visual analogue scale (VAS) and Nirschl stage at one week (both p < 0.001) and at four weeks (p = 0.002 and p = 0.018, respectively). At the 12-week and six-month follow-up, autologous blood injection group showed statistically significant decrease in pain compared with corticosteroid injection group (12 weeks: VAS p = 0.013 and Nirschl stage p = 0.018; six months: VAS p = 0.006 and Nirschl p = 0.006). At the six-month final follow-up, a total of 14 patients (47%) in the corticosteroid injection group and 27 patients (90%) in autologous blood injection group were completely relieved of pain. Conclusions. Autologous blood injection is efficient compared with corticosteroid injection, with less side-effects and minimum recurrence rate


Bone & Joint Open
Vol. 5, Issue 9 | Pages 729 - 735
3 Sep 2024
Charalambous CP Hirst JT Kwaees T Lane S Taylor C Solanki N Maley A Taylor R Howell L Nyangoma S Martin FL Khan M Choudhry MN Shetty V Malik RA

Aims. Steroid injections are used for subacromial pain syndrome and can be administered via the anterolateral or posterior approach to the subacromial space. It is not currently known which approach is superior in terms of improving clinical symptoms and function. This is the protocol for a randomized controlled trial (RCT) to compare the clinical effectiveness of a steroid injection given via the anterolateral or the posterior approach to the subacromial space. Methods. The Subacromial Approach Injection Trial (SAInT) study is a single-centre, parallel, two-arm RCT. Participants will be allocated on a 1:1 basis to a subacromial steroid injection via either the anterolateral or the posterior approach to the subacromial space. Participants in both trial arms will then receive physiotherapy as standard of care for subacromial pain syndrome. The primary analysis will compare the change in Oxford Shoulder Score (OSS) at three months after injection. Secondary outcomes include the change in OSS at six and 12 months, as well as the Pain Numeric Rating Scale (0 = no pain, 10 = worst pain), Disabilities of Arm, Shoulder and Hand questionnaire (DASH), and 36-Item Short-Form Health Survey (SF-36) (RAND) at three months, six months, and one year after injection. Assessment of pain experienced during the injection will also be determined. A minimum of 86 patients will be recruited to obtain an 80% power to detect a minimally important difference of six points on the OSS change between the groups at three months after injection. Conclusion. The results of this trial will demonstrate if there is a difference in shoulder pain and function after a subacromial space steroid injection between the anterolateral versus posterior approach in patients with subacromial pain syndrome. This will help to guide treatment for patients with subacromial pain syndrome. Cite this article: Bone Jt Open 2024;5(9):729–735


Bone & Joint Open
Vol. 4, Issue 3 | Pages 205 - 209
16 Mar 2023
Jump CM Mati W Maley A Taylor R Gratrix K Blundell C Lane S Solanki N Khan M Choudhry M Shetty V Malik RA Charalambous CP

Aims. Frozen shoulder is a common, painful condition that results in impairment of function. Corticosteroid injections are commonly used for frozen shoulder and can be given as glenohumeral joint (GHJ) injection or suprascapular nerve block (SSNB). Both injection types have been shown to significantly improve shoulder pain and range of motion. It is not currently known which is superior in terms of relieving patients’ symptoms. This is the protocol for a randomized clinical trial to investigate the clinical effectiveness of corticosteroid injection given as either a GHJ injection or SSNB. Methods. The Therapeutic Injections For Frozen Shoulder (TIFFS) study is a single centre, parallel, two-arm, randomized clinical trial. Participants will be allocated on a 1:1 basis to either a GHJ corticosteroid injection or SSNB. Participants in both trial arms will then receive physiotherapy as normal for frozen shoulder. The primary analysis will compare the Oxford Shoulder Score (OSS) at three months after injection. Secondary outcomes include OSS at six and 12 months, range of shoulder movement at three months, and Numeric Pain Rating Scale, abbreviated Disabilities of Arm, Shoulder and Hand score, and EuroQol five-level five-dimension health index at three months, six months, and one year after injection. A minimum of 40 patients will be recruited to obtain 80% power to detect a minimally important difference of ten points on the OSS between the groups at three months after injection. The study is registered under ClinicalTrials.gov with the identifier NCT04965376. Conclusion. The results of this trial will demonstrate if there is a difference in shoulder pain and function after GHJ injection or SSNB in patients with frozen shoulder. This will help provide effective treatment to patients with frozen shoulder. Cite this article: Bone Jt Open 2023;4(3):205–209


Bone & Joint Open
Vol. 1, Issue 9 | Pages 605 - 611
28 Sep 2020
McKean D Chung SL Fairhead R Bannister O Magliano M Papanikitas J Wong N Hughes R

Aims. To describe the incidence of adverse clinical outcomes related to COVID-19 infection following corticosteroid injections (CSI) during the COVID-19 pandemic. To describe the incidence of positive SARS-CoV-2 reverse transcriptase polymerase chain reaction (RT-PCR) testing, positive SARS-COV2 IgG antibody testing or positive imaging findings following CSI at our institution during the COVID-19 pandemic. Methods. A retrospective observational study was undertaken of consecutive patients who had CSI in our local hospitals between 1 February and 30June 2020. Electronic patient medical records (EPR) and radiology information system (RIS) database were reviewed. SARS-CoV-2 RT-PCR testing, SARS-COV2 IgG antibody testing, radiological investigations, patient management, and clinical outcomes were recorded. Lung findings were categorized according to the British Society of Thoracic Imaging (BSTI) guidelines. Reference was made to the incidence of lab-confirmed COVID-19 cases in our region. Results. Overall, 1,656 lab-confirmed COVID-19 cases were identified in our upper tier local authority (UTLA), a rate of 306.6 per 100,000, as of 30June 2020. A total of 504 CSI injections were performed on 443 patients between 1 February and 30June 2020. A total of 11 RT-PCR tests were performed on nine patients (2% of those who had CSI), all of which were negative for SARS-CoV-2 RNA, and five patients (1.1%) received an SARS-CoV-2 IgG antibody test, of which 2 (0.5%) were positive consistent with prior COVID-19 infection, however both patients were asymptomatic. Seven patients (1.6%) had radiological investigations for respiratory symptoms. One patient with indeterminate ground glass change was identified. Conclusion. The incidence of positive COVID-19 infection following corticosteroid injections was very low in our cohort and no adverse clinical outcomes related to COVID-19 infection following CSI were identified. Our findings are consistent with CSI likely being low risk during the COVID-19 pandemic. The results of this small observational study are supportive of the current multi-society guidelines regarding the judicious use of CSI. Cite this article: Bone Joint Open 2020;1-9:605–611


Bone & Joint Open
Vol. 5, Issue 7 | Pages 534 - 542
1 Jul 2024
Woods A Howard A Peckham N Rombach I Saleh A Achten J Appelbe D Thamattore P Gwilym SE

Aims. The primary aim of this study was to assess the feasibility of recruiting and retaining patients to a patient-blinded randomized controlled trial comparing corticosteroid injection (CSI) to autologous protein solution (APS) injection for the treatment of subacromial shoulder pain in a community care setting. The study focused on recruitment rates and retention of participants throughout, and collected data on the interventions’ safety and efficacy. Methods. Participants were recruited from two community musculoskeletal treatment centres in the UK. Patients were eligible if aged 18 years or older, and had a clinical diagnosis of subacromial impingement syndrome which the treating clinician thought was suitable for treatment with a subacromial injection. Consenting patients were randomly allocated 1:1 to a patient-blinded subacromial injection of CSI (standard care) or APS. The primary outcome measures of this study relate to rates of recruitment, retention, and compliance with intervention and follow-up to determine feasibility. Secondary outcome measures relate to the safety and efficacy of the interventions. Results. A total of 53 patients were deemed eligible, and 50 patients (94%) recruited between April 2022 and October 2022. Overall, 49 patients (98%) complied with treatment. Outcome data were collected in 100% of participants at three months and 94% at six months. There were no significant adverse events. Both groups demonstrated improvement in patient-reported outcome measures over the six-month period. Conclusion. Our study shows that it is feasible to recruit to a patient-blinded randomized controlled trial comparing APS and CSI for subacromial pain in terms of clinical outcomes and health-resource use in the UK. Safety and efficacy data are presented. Cite this article: Bone Jt Open 2024;5(7):534–542


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 532 - 539
1 Jun 2024
Lei T Wang Y Li M Hua L

Aims. Intra-articular (IA) injection may be used when treating hip osteoarthritis (OA). Common injections include steroids, hyaluronic acid (HA), local anaesthetic, and platelet-rich plasma (PRP). Network meta-analysis allows for comparisons between two or more treatment groups and uses direct and indirect comparisons between interventions. This network meta-analysis aims to compare the efficacy of various IA injections used in the management of hip OA with a follow-up of up to six months. Methods. This systematic review and network meta-analysis used a Bayesian random-effects model to evaluate the direct and indirect comparisons among all treatment options. PubMed, Web of Science, Clinicaltrial.gov, EMBASE, MEDLINE, and the Cochrane Library were searched from inception to February 2023. Randomized controlled trials (RCTs) which evaluate the efficacy of HA, PRP, local anaesthetic, steroid, steroid+anaesthetic, HA+PRP, and physiological saline injection as a placebo, for patients with hip OA were included. Results. In this meta-analysis of 16 RCTs with a total of 1,735 participants, steroid injection was found to be significantly more effective than placebo injection on reported pain at three months, but no significant difference was observed at six months. Furthermore, steroid injection was considerably more effective than placebo injection for functional outcomes at three months, while the combination of HA+PRP injection was substantially more effective at six months. Conclusion. Evidence suggests that steroid injection is more effective than saline injection for the treatment of hip joint pain, and restoration of functional outcomes. Cite this article: Bone Joint J 2024;106-B(6):532–539


Bone & Joint Open
Vol. 1, Issue 11 | Pages 709 - 714
5 Nov 2020
Finsen V Kalstad AM Knobloch RG

Aims. We aimed to establish the short- and long-term efficacy of corticosteroid injection for coccydynia, and to determine if betamethasone or triamcinolone has the best effect. Methods. During 2009 to 2016, we treated 277 patients with chronic coccydynia with either one 6 mg betamethasone or one 20 mg triamcinolone cortisone injection. A susequent injection was given to 62 (26%) of the patients. All were reviewed three to four months after injection, and 241 replied to a questionnaire a mean of 36 months (12 to 88) after the last injection. No pain at the early review was considered early success. When the patient had not been subsequently operated on, and indicated on the questionnaire that they were either well or much better, it was considered a long-term success. Results. At the three- to four-month review, 22 (9%) reported that they had no pain. The long-term success of one injection was 15% and rose to 29% after a second injection. Logistic regression tests showed that both early success (odds ratio (OR) 5.5, 95% confidence interval (CI) 2.1 to 14.4; p = 0.001) and late success (OR 3.7, 95% CI 1.7 to 8.3; p = 0.001) was greater with triamcinolone than with betamethasone. Late success was greater for patients with symptoms for less than 12 months (OR 3.0, 95% CI 1.4 to 6.7; p = 0.006). We saw no complications of the injections. Conclusion. We conclude that the effect of corticosteroid injection for coccygodynia is moderate, possibly because we used modest doses of the drugs. Even so, they seem worthwhile as they are easily and quickly performed, and complications are rare. If the choice is between injections of betamethasone or triamcinolone, the latter should be selected. Cite this article: Bone Joint Open 2020;1-11:709–714


Aims. There is conflicting evidence on the safety of intra-articular injections of hyaluronic acid (HA) or corticosteroids (CSs) before total knee arthroplasty (TKA). We performed a meta-analysis of the relationship between intra-articular injections and subsequent infection rates after TKA. Methods. We searched PubMed, EMBASE, and the Cochrane Library for cohort studies that assessed the effect of preoperative injection of drugs into the joint cavity on the infection rate after TKA. The outcomes analyzed included the total infection rate, as well as those for different preoperative injection time periods and different drugs. Results. Eight studies, including 73,880 in the injection group and 126,187 in the control group, met the inclusion criteria. The injection group had a significantly higher postoperative infection rate than the control group (risk ratio (RR) 1.16; 95% confidence interval (CI) 1.07 to 1.27; p < 0.001; I. 2. = 32%). For patients who received injections up to three months preoperatively, the postoperative infection risk was significantly higher than that in the control group (RR 1.26; 95% CI 1.18 to 1.35; p<0.001; I. 2. = 0%). There was no significant difference in the infection rates between the four-to-six-month injection and control groups (RR 1.12; 95% CI 0.93 to 1.35; p = 0.240; I. 2. = 75%) or between the seven-to-12-month injection and control groups (RR 1.02; 95% CI 0.94 to 1.12; p = 0.600; I. 2. = 0%). Conclusion. Current evidence suggests that intra-articular injections of CSs or HA before TKA increase the risk of postoperative infection. Injections administered more than three months before TKA do not significantly increase the risk of infection. Cite this article: Bone Joint Res 2022;11(3):171–179


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1297 - 1302
3 Oct 2020
Kurosaka K Tsukada S Ogawa H Nishino M Nakayama T Yoshiya S Hirasawa N

Aims. Although periarticular injection plays an important role in multimodal pain management following total hip arthroplasty (THA), there is no consensus on the optimal composition of the injection. In particular, it is not clear whether the addition of a corticosteroid improves the pain relief achieved nor whether it is associated with more complications than are observed without corticosteroid. The aim of this study was to quantify the safety and effectiveness of cortocosteroid use in periarticular injection during THA. Methods. We conducted a prospective, two-arm, parallel-group, randomized controlled trial involving patients scheduled for unilateral THA. A total of 187 patients were randomly assigned to receive periarticular injection containing either a corticosteroid (CS group) or without corticosteroid (no-CS group). Other perioperative interventions were identical for all patients. The primary outcome was postoperative pain at rest during the initial 24 hours after surgery. Pain score was recorded every three hours until 24 hours using a 100 mm visual analogue scale (VAS). The primary outcome was assessed based on the area under the curve (AUC). Results. The CS group had a significantly lower AUC postoperatively at 0 to 24 hours compared to the no-CS group (AUC of VAS score at rest 550 ± 362 vs 392 ± 320, respectively; mean difference 158 mm; 95% confidence interval (CI) 58 to 257; p = 0.0021). In point-by-point evaluation, the CS group had significantly lower VAS scores at 12, 15, 18, 21, 24, and 48 hours. There were no significant differences in complication rates, including surgical site infection, between the two groups. Conclusion. The addition of corticosteroid to periarticular injections reduces postoperative pain without increasing complication rate following THA. Cite this article: Bone Joint J 2020;102-B(10):1297–1302


Bone & Joint Research
Vol. 5, Issue 6 | Pages 218 - 224
1 Jun 2016
Cheng N Guo A Cui Y

Objectives. Recent studies have shown that systemic injection of rapamycin can prevent the development of osteoarthritis (OA)-like changes in human chondrocytes and reduce the severity of experimental OA. However, the systemic injection of rapamycin leads to many side effects. The purpose of this study was to determine the effects of intra-articular injection of Torin 1, which as a specific inhibitor of mTOR which can cause induction of autophagy, is similar to rapamycin, on articular cartilage degeneration in a rabbit osteoarthritis model and to investigate the mechanism of Torin 1’s effects on experimental OA. Methods. Collagenase (type II) was injected twice into both knees of three-month-old rabbits to induce OA, combined with two intra–articular injections of Torin 1 (400 nM). Degeneration of articular cartilage was evaluated by histology using the Mankin scoring system at eight weeks after injection. Chondrocyte degeneration and autophagosomes were observed by transmission electron microscopy. Matrix metallopeptidase-13 (MMP-13) and vascular endothelial growth factor (VEGF) expression were analysed by quantitative RT-PCR (qPCR).Beclin-1 and light chain 3 (LC3) expression were examined by Western blotting. Results. Intra-articular injection of Torin 1 significantly reduced degeneration of the articular cartilage after induction of OA. Autophagosomes andBeclin-1 and LC3 expression were increased in the chondrocytes from Torin 1-treated rabbits. Torin 1 treatment also reduced MMP-13 and VEGF expression at eight weeks after collagenase injection. Conclusion. Our results demonstrate that intra-articular injection of Torin 1 reduces degeneration of articular cartilage in collagenase-induced OA, at least partially by autophagy activation, suggesting a novel therapeutic approach for preventing cartilage degeneration and treating OA. Cite this article: N-T. Cheng, A. Guo, Y-P. Cui. Intra-articular injection of Torin 1 reduces degeneration of articular cartilage in a rabbit osteoarthritis model. Bone Joint Res 2016;5:218–224. DOI: 10.1302/2046-3758.56.BJR-2015-0001


Bone & Joint Research
Vol. 4, Issue 1 | Pages 1 - 5
1 Jan 2015
Vázquez-Portalatín N Breur GJ Panitch A Goergen CJ

Objective . Dunkin Hartley guinea pigs, a commonly used animal model of osteoarthritis, were used to determine if high frequency ultrasound can ensure intra-articular injections are accurately positioned in the knee joint. Methods. A high-resolution small animal ultrasound system with a 40 MHz transducer was used for image-guided injections. A total of 36 guinea pigs were anaesthetised with isoflurane and placed on a heated stage. Sterile needles were inserted directly into the knee joint medially, while the transducer was placed on the lateral surface, allowing the femur, tibia and fat pad to be visualised in the images. B-mode cine loops were acquired during 100 µl. We assessed our ability to visualise 1) important anatomical landmarks, 2) the needle and 3) anatomical changes due to the injection. . Results. From the ultrasound images, we were able to visualise clearly the movement of anatomical landmarks in 75% of the injections. The majority of these showed separation of the fat pad (67.1%), suggesting the injections were correctly delivered in the joint space. We also observed dorsal joint expansion (23%) and patellar tendon movement (10%) in a smaller subset of injections. Conclusion. The results demonstrate that this image-guided technique can be used to visualise the location of an intra-articular injection in the joints of guinea pigs. Future studies using an ultrasound-guided approach could help improve the injection accuracy in a variety of anatomical locations and animal models, in the hope of developing anti-arthritic therapies. Cite this article: Bone Joint Res 2015;4:1–5


The Bone & Joint Journal
Vol. 98-B, Issue 2 | Pages 194 - 200
1 Feb 2016
Tsukada S Wakui M Hoshino A

There is conflicting evidence about the benefit of using corticosteroid in periarticular injections for pain relief after total knee arthroplasty (TKA). We carried out a double-blinded, randomised controlled trial to assess the efficacy of using corticosteroid in a periarticular injection to control pain after TKA. . A total of 77 patients, 67 women and ten men, with a mean age of 74 years (47 to 88) who were about to undergo unilateral TKA were randomly assigned to have a periarticular injection with or without corticosteroid. The primary outcome was post-operative pain at rest during the first 24 hours after surgery, measured every two hours using a visual analogue pain scale score. The cumulative pain score was quantified using the area under the curve. . The corticosteroid group had a significantly lower cumulative pain score than the no-corticosteroid group during the first 24 hours after surgery (mean area under the curve 139, 0 to 560, and 264, 0 to 1460; p = 0.024). The rate of complications, including surgical site infection, was not significantly different between the two groups up to one year post-operatively. . The addition of corticosteroid to the periarticular injection significantly decreased early post-operative pain. Further studies are needed to confirm the safety of corticosteroid in periarticular injection. Take home message: The use of corticosteroid in periarticular injection offered better pain relief during the initial 24 hours after TKA. Cite this article: Bone Joint J 2016;98-B:194–200


Bone & Joint Research
Vol. 10, Issue 10 | Pages 650 - 658
1 Oct 2021
Sanghani-Kerai A Black C Cheng SO Collins L Schneider N Blunn G Watson F Fitzpatrick N

Aims. This study investigates the effects of intra-articular injection of adipose-derived mesenchymal stem cells (AdMSCs) and platelet-rich plasma (PRP) on lameness, pain, and quality of life in osteoarthritic canine patients. Methods. With informed owner consent, adipose tissue collected from adult dogs diagnosed with degenerative joint disease was enzymatically digested and cultured to passage 1. A small portion of cells (n = 4) surplus to clinical need were characterized using flow cytometry and tri-lineage differentiation. The impact and degree of osteoarthritis (OA) was assessed using the Liverpool Osteoarthritis in Dogs (LOAD) score, Modified Canine Osteoarthritis Staging Tool (mCOAST), kinetic gait analysis, and diagnostic imaging. Overall, 28 joints (25 dogs) were injected with autologous AdMSCs and PRP. The patients were followed up at two, four, eight, 12, and 24 weeks. Data were analyzed using two related-samples Wilcoxon signed-rank or Mann-Whitney U tests with statistical significance set at p < 0.05. Results. AdMSCs demonstrated stem cell-like characteristics. LOAD scores were significantly lower at week 4 compared with preinjection (p = 0.021). The mCOAST improved significantly after three months (p = 0.001) and six months (p = 0.001). Asymmmetry indices decreased from four weeks post-injection and remained significantly lower at six months (p = 0.025). Conclusion. These improvements in quality of life, reduction in pain on examination, and improved symmetry in dogs injected with AdMSCs and PRP support the effectiveness of this combined treatment for symptom modification in canine OA for six months. Cite this article: Bone Joint Res 2021;10(10):650–658


Bone & Joint Research
Vol. 7, Issue 3 | Pages 252 - 262
1 Mar 2018
Nishida K Matsushita T Takayama K Tanaka T Miyaji N Ibaraki K Araki D Kanzaki N Matsumoto T Kuroda R

Objectives. This study aimed to examine the effects of SRT1720, a potent SIRT1 activator, on osteoarthritis (OA) progression using an experimental OA model. Methods. Osteoarthritis was surgically induced by destabilization of the medial meniscus in eight-week-old C57BL/6 male mice. SRT1720 was administered intraperitoneally twice a week after surgery. Osteoarthritis progression was evaluated histologically using the Osteoarthritis Research Society International (OARSI) score at four, eight, 12 and 16 weeks. The expression of SIRT1, matrix metalloproteinase 13 (MMP-13), a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), cleaved caspase-3, PARP p85, and acetylated nuclear factor (NF)-κB p65 in cartilage was examined by immunohistochemistry. Synovitis was also evaluated histologically. Primary mouse epiphyseal chondrocytes were treated with SRT1720 in the presence or absence of interleukin 1 beta (IL-1β), and gene expression changes were examined by real-time polymerase chain reaction (PCR). Results. The OARSI score was significantly lower in mice treated with SRT1720 than in control mice at eight and 12 weeks associated with the decreased size of osteophytes at four and eight weeks. The delayed OA progression in the mice treated with SRT1720 was also associated with increased SIRT1-positive chondrocytes and decreased MMP-13-, ADAMTS-5-, cleaved caspase-3-, PARP p85-, and acetylated NF-κB p65-positive chondrocytes and decreased synovitis at four and eight weeks. SRT1720 treatment partially rescued the decreases in collagen type II alpha 1 (COL2A1) and aggrecan caused by IL-1β, while also reducing the induction of MMP-13 by IL-1β in vitro. Conclusion. The intraperitoneal injection of SRT1720 attenuated experimental OA progression in mice, indicating that SRT1720 could be a new therapeutic approach for OA. Cite this article: K. Nishida, T. Matsushita, K. Takayama, T. Tanaka, N. Miyaji, K. Ibaraki, D. Araki, N. Kanzaki, T. Matsumoto, R. Kuroda. Intraperitoneal injection of the SIRT1 activator SRT1720 attenuates the progression of experimental osteoarthritis in mice. Bone Joint Res 2018;7:252–262. DOI: 10.1302/2046-3758.73.BJR-2017-0227.R1


Aims. This study aimed to investigate whether human umbilical cord mesenchymal stem cells (UC-MSCs) can prevent articular cartilage degradation and explore the underlying mechanisms in a rat osteoarthritis (OA) model induced by monosodium iodoacetate (MIA). Methods. Human UC-MSCs were characterized by their phenotype and multilineage differentiation potential. Two weeks after MIA induction in rats, human UC-MSCs were intra-articularly injected once a week for three weeks. The therapeutic effect of human UC-MSCs was evaluated by haematoxylin and eosin, toluidine blue, Safranin-O/Fast green staining, and Mankin scores. Markers of joint cartilage injury and pro- and anti-inflammatory markers were detected by immunohistochemistry. Results. Histopathological analysis showed that intra-articular injection of human UC-MSCs significantly inhibited the progression of OA, as demonstrated by reduced cartilage degradation, increased Safranin-O staining, and lower Mankin scores. Immunohistochemistry showed that human UC-MSC treatment down-regulated the expression of matrix metalloproteinase-13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), and enhanced the expression of type II collagen and ki67 in the articular cartilage. Furthermore, human UC-MSCs significantly decreased the expression of interleukin (IL)-1β and tumour necrosis factor-α (TNF-α), while increasing TNF-α-induced protein 6 and IL-1 receptor antagonist. Conclusion. Our results demonstrated that human UC-MSCs ameliorate MIA-induced OA by preventing cartilage degradation, restoring the proliferation of chondrocytes, and inhibiting the inflammatory response, which implies that human UC-MSCs may be a promising strategy for the treatment of OA. Cite this article: Bone Joint Res 2021;10(3):226–236


Bone & Joint Research
Vol. 3, Issue 2 | Pages 38 - 47
1 Feb 2014
Hogendoorn S Duijnisveld BJ van Duinen SG Stoel BC van Dijk JG Fibbe WE Nelissen RGHH

Objectives. Traumatic brachial plexus injury causes severe functional impairment of the arm. Elbow flexion is often affected. Nerve surgery or tendon transfers provide the only means to obtain improved elbow flexion. Unfortunately, the functionality of the arm often remains insufficient. Stem cell therapy could potentially improve muscle strength and avoid muscle-tendon transfer. This pilot study assesses the safety and regenerative potential of autologous bone marrow-derived mononuclear cell injection in partially denervated biceps. Methods. Nine brachial plexus patients with insufficient elbow flexion (i.e., partial denervation) received intramuscular escalating doses of autologous bone marrow-derived mononuclear cells, combined with tendon transfers. Effect parameters included biceps biopsies, motor unit analysis on needle electromyography and computerised muscle tomography, before and after cell therapy. Results. No adverse effects in vital signs, bone marrow aspiration sites, injection sites, or surgical wound were seen. After cell therapy there was a 52% decrease in muscle fibrosis (p = 0.01), an 80% increase in myofibre diameter (p = 0.007), a 50% increase in satellite cells (p = 0.045) and an 83% increase in capillary-to-myofibre ratio (p < 0.001) was shown. CT analysis demonstrated a 48% decrease in mean muscle density (p = 0.009). Motor unit analysis showed a mean increase of 36% in motor unit amplitude (p = 0.045), 22% increase in duration (p = 0.005) and 29% increase in number of phases (p = 0.002). Conclusions. Mononuclear cell injection in partly denervated muscle of brachial plexus patients is safe. The results suggest enhanced muscle reinnervation and regeneration. Cite this article: Bone Joint Res 2014;3:38–47


Bone & Joint Research
Vol. 13, Issue 4 | Pages 137 - 148
1 Apr 2024
Lu Y Ho T Huang C Yeh S Chen S Tsao Y

Aims. Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Methods. Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers. Results. The 29-mer promoted expansion and chondrogenic differentiation of BM-MSCs cultured in different defined media. MIA injection caused chondrocyte death throughout the AC, with cartilage degeneration thereafter. The 29-mer/HA treatment induced extensive chondrocyte regeneration in the damaged AC and suppressed MIA-induced synovitis, accompanied by the recovery of cartilage matrix. Pharmacological inhibitors of PEDF receptor (PEDFR) and signal transducer and activator of transcription 3 (STAT3) signalling substantially blocked the chondrogenic promoting activity of 29-mer on the cultured BM-MSCs and injured AC. Conclusion. The 29-mer/HA formulation effectively induces chondrocyte regeneration and formation of cartilage matrix in the damaged AC. Cite this article: Bone Joint Res 2024;13(4):137–148


Bone & Joint Open
Vol. 3, Issue 11 | Pages 898 - 906
15 Nov 2022
Dakin H Rombach I Dritsaki M Gray A Ball C Lamb SE Nanchahal J

Aims. To estimate the potential cost-effectiveness of adalimumab compared with standard care alone for the treatment of early-stage Dupuytren’s disease (DD) and the value of further research from an NHS perspective. Methods. We used data from the Repurposing anti-TNF for Dupuytren’s disease (RIDD) randomized controlled trial of intranodular adalimumab injections in patients with early-stage progressive DD. RIDD found that intranodular adalimumab injections reduced nodule hardness and size in patients with early-stage DD, indicating the potential to control disease progression. A within-trial cost-utility analysis compared four adalimumab injections with no further treatment against standard care alone, taking a 12-month time horizon and using prospective data on EuroQol five-dimension five-level questionnaire (EQ-5D-5L) and resource use from the RIDD trial. We also developed a patient-level simulation model similar to a Markov model to extrapolate trial outcomes over a lifetime using data from the RIDD trial and a literature review. This also evaluated repeated courses of adalimumab each time the nodule reactivated (every three years) in patients who initially responded. Results. The within-trial economic evaluation found that adalimumab plus standard care cost £503,410 per quality-adjusted life year (QALY) gained versus standard care alone over a 12-month time horizon. The model-based extrapolation suggested that, over a lifetime, repeated courses of adalimumab could cost £14,593 (95% confidence interval £7,534 to £42,698) per QALY gained versus standard care alone. If the NHS was willing to pay £20,000/QALY gained, there is a 77% probability that adalimumab with retreatment is the best value for money. Conclusion. Repeated courses of adalimumab are likely to be a cost-effective treatment for progressive early-stage DD. The value of perfect parameter information that would eliminate all uncertainty around the parameters estimated in RIDD and the duration of quiescence was estimated to be £105 per patient or £272 million for all 2,584,411 prevalent cases in the UK. Cite this article: Bone Jt Open 2022;3(11):898–906


Bone & Joint Open
Vol. 5, Issue 3 | Pages 162 - 173
4 Mar 2024
Di Mascio L Hamborg T Mihaylova B Kassam J Shah B Stuart B Griffin XL

Aims. Is it feasible to conduct a definitive multicentre trial in community settings of corticosteroid injections (CSI) and hydrodilation (HD) compared to CSI for patients with frozen shoulder? An adequately powered definitive randomized controlled trial (RCT) delivered in primary care will inform clinicians and the public whether hydrodilation is a clinically and cost-effective intervention. In this study, prior to a full RCT, we propose a feasibility trial to evaluate recruitment and retention by patient and clinician willingness of randomization; rates of withdrawal, crossover and attrition; and feasibility of outcome data collection from routine primary and secondary care data. Methods. In the UK, the National Institute for Health and Care Excellence (NICE) advises that prompt early management of frozen shoulder is initiated in primary care settings with analgesia, physiotherapy, and joint injections; most people can be managed without an operation. Currently, there is variation in the type of joint injection: 1) CSI, thought to reduce the inflammation of the capsule reducing pain; and 2) HD, where a small volume of fluid is injected into the shoulder joint along with the steroid, aiming to stretch the capsule of the shoulder to improve pain, but also allowing greater movement. The creation of musculoskeletal hubs nationwide provides infrastructure for the early and effective management of frozen shoulder. This potentially reduces costs to individuals and the wider NHS perhaps negating the need for a secondary care referral. Results. We will conduct a multicentre RCT comparing CSI and HD in combination with CSI alone. Patients aged 18 years and over with a clinical diagnosis of frozen shoulder will be randomized and blinded to receive either CSI and HD in combination, or CSI alone. Feasibility outcomes include the rate of randomization as a proportion of eligible patients and the ability to use routinely collected data for outcome evaluation. This study has involved patients and the public in the trial design, dissemination methods, and how to include groups who are underserved by research. Conclusion. We will disseminate findings among musculoskeletal clinicians via the British Orthopaedic Association, the Chartered Society of Physiotherapy, the Royal College of Radiologists, and the Royal College of General Practitioners. To ensure wide reach we will communicate findings through our established network of charities and organizations, in addition to preparing dissemination findings in Bangla and Urdu (commonly spoken languages in northeast London). If a full trial is shown to be feasible, we will seek additional National Institute for Health and Care Research funding for a definitive RCT. This definitive study will inform NICE guidelines for the management of frozen shoulder. Cite this article: Bone Jt Open 2024;5(3):162–173


Bone & Joint Research
Vol. 12, Issue 1 | Pages 33 - 45
16 Jan 2023
Li B Ding T Chen H Li C Chen B Xu X Huang P Hu F Guo L

Aims. Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of circStrn3 was significantly reduced in chondrocytes of osteoarthritis (OA) patients and OA mice. Therefore, the aim of this paper was to explore the role and mechanism of circStrn3 in osteoarthritis. Methods. Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of circStrn3 in human and mouse OA cartilage tissues and chondrocytes. Chondrocytes were then stimulated to secrete exosomal miR-9-5p by cyclic tensile strain. Intra-articular injection of exosomal miR-9-5p into the model induced by destabilized medial meniscus (DMM) surgery was conducted to alleviate OA progression. Results. Tensile strain could decrease the expression of circStrn3 in chondrocytes. CircStrn3 expression was significantly decreased in human and mouse OA cartilage tissues and chondrocytes. CircStrn3 could inhibit matrix metabolism of chondrocytes through competitively ‘sponging’ miRNA-9-5p targeting Kruppel-like factor 5 (KLF5), indicating that the decrease in circStrn3 might be a protective factor in mechanical instability-induced OA. The tensile strain stimulated chondrocytes to secrete exosomal miR-9-5p. Exosomes with high miR-9-5p expression from chondrocytes could inhibit osteoblast differentiation by targeting KLF5. Intra-articular injection of exosomal miR-9-5p alleviated the progression of OA induced by destabilized medial meniscus surgery in mice. Conclusion. Taken together, these results demonstrate that reduction of circStrn3 causes an increase in miR-9-5p, which acts as a protective factor in mechanical instability-induced OA, and provides a novel mechanism of communication among joint components and a potential application for the treatment of OA. Cite this article: Bone Joint Res 2023;12(1):33–45


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1256 - 1265
1 Nov 2022
Keene DJ Alsousou J Harrison P O’Connor HM Wagland S Dutton SJ Hulley P Lamb SE Willett K

Aims. To determine whether platelet-rich plasma (PRP) injection improves outcomes two years after acute Achilles tendon rupture. Methods. A randomized multicentre two-arm parallel-group, participant- and assessor-blinded superiority trial was undertaken. Recruitment commenced on 28 July 2015 and two-year follow-up was completed in 21 October 2019. Participants were 230 adults aged 18 years and over, with acute Achilles tendon rupture managed with non-surgical treatment from 19 UK hospitals. Exclusions were insertion or musculotendinous junction injuries, major leg injury or deformity, diabetes, platelet or haematological disorder, medication with systemic corticosteroids, anticoagulation therapy treatment, and other contraindicating conditions. Participants were randomized via a central online system 1:1 to PRP or placebo injection. The main outcome measure was Achilles Tendon Rupture Score (ATRS) at two years via postal questionnaire. Other outcomes were pain, recovery goal attainment, and quality of life. Analysis was by intention-to-treat. Results. A total of 230 participants were randomized, 114 to PRP and 116 to placebo. Two-year questionnaires were sent to 216 participants who completed a six-month questionnaire. Overall, 182/216 participants (84%) completed the two-year questionnaire. Participants were aged a mean of 46 years (SD 13.0) and 25% were female (57/230). The majority of participants received the allocated intervention (219/229, 96%). Mean ATRS scores at two years were 82.2 (SD 18.3) in the PRP group (n = 85) and 83.8 (SD 16.0) in the placebo group (n = 92). There was no evidence of a difference in the ATRS at two years (adjusted mean difference -0.752, 95% confidence interval -5.523 to 4.020; p = 0.757) or in other secondary outcomes, and there were no re-ruptures between 24 weeks and two years. Conclusion. PRP injection did not improve patient-reported function or quality of life two years after acute Achilles tendon rupture compared with placebo. The evidence from this study indicates that PRP offers no patient benefit in the longer term for patients with acute Achilles tendon rupture. Cite this article: Bone Joint J 2022;104-B(11):1256–1265


Bone & Joint Research
Vol. 11, Issue 12 | Pages 881 - 889
1 Dec 2022
Gómez-Barrena E Padilla-Eguiluz N López-Marfil M Ruiz de la Reina R

Aims. Successful cell therapy in hip osteonecrosis (ON) may help to avoid ON progression or total hip arthroplasty (THA), but the achieved bone regeneration is unclear. The aim of this study was to evaluate amount and location of bone regeneration obtained after surgical injection of expanded autologous mesenchymal stromal cells from the bone marrow (BM-hMSCs). Methods. A total of 20 patients with small and medium-size symptomatic stage II femoral head ON treated with 140 million BM-hMSCs through percutaneous forage in the EudraCT 2012-002010-39 clinical trial were retrospectively evaluated through preoperative and postoperative (three and 12 months) MRI. Then, 3D reconstruction of the original lesion and the observed postoperative residual damage after bone regeneration were analyzed and compared per group based on treatment efficacy. Results. The mean preoperative lesion volume was 18.7% (SD 10.2%) of the femoral head. This reduced to 11.6% (SD 7.5%) after three months (p = 0.015) and 3.7% (SD 3%) after one year (p < 0.001). Bone regeneration in healed cases represented a mean 81.2% (SD 13.8%) of the initial lesion volume at one year. Non-healed cases (n = 1 stage progression; n = 3 THAs) still showed bone regeneration but this did not effectively decrease the ON volume. A lesion size under mean 10% (SD 6%) of the femoral head at three months predicted no ON stage progression at one year. Regeneration in the lateral femoral head (C2 under Japanese Investigation Committee (JCI) classification) and in the central and posterior regions of the head was predominant in cases without ON progression. Conclusion. Bone regeneration was observed in osteonecrotic femoral heads three months after expanded autologous BM-hMSC injection, and the volume and location of regeneration indicated the success of the therapy. Cite this article: Bone Joint Res 2022;11(12):881–889


Bone & Joint Research
Vol. 11, Issue 1 | Pages 32 - 39
27 Jan 2022
Trousdale WH Limberg AK Reina N Salib CG Thaler R Dudakovic A Berry DJ Morrey ME Sanchez-Sotelo J van Wijnen A Abdel MP

Aims. Outcomes of current operative treatments for arthrofibrosis after total knee arthroplasty (TKA) are not consistently positive or predictable. Pharmacological in vivo studies have focused mostly on prevention of arthrofibrosis. This study used a rabbit model to evaluate intra-articular (IA) effects of celecoxib in treating contracted knees alone, or in combination with capsular release. Methods. A total of 24 rabbits underwent contracture-forming surgery with knee immobilization followed by remobilization surgery at eight weeks. At remobilization, one cohort underwent capsular release (n = 12), while the other cohort did not (n = 12). Both groups were divided into two subcohorts (n = 6 each) – one receiving IA injections of celecoxib, and the other receiving injections of vehicle solution (injections every day for two weeks after remobilization). Passive extension angle (PEA) was assessed in live rabbits at 10, 16, and 24 weeks, and disarticulated limbs were analyzed for capsular stiffness at 24 weeks. Results. IA celecoxib resulted in greater mean PEA at ten weeks (69.6° (SD 4.6) vs 45.2° (SD 9.6), p = 0.004), 16 weeks (109.8° (SD 24.2) vs 60.9° (SD10.9), p = 0.004), and 24 weeks (101.0° (SD 8.0) vs 66.3° (SD 5.8), p = 0.004). Capsular stiffness was significantly reduced with IA celecoxib (2.72 Newton per cm (N·cm)/° (SD 1.04), p = 0.008), capsular release (2.41 N·cm/° (SD 0.80), p = 0.008), and capsular release combined with IA celecoxib (3.56 N·cm/° (SD 0.99), p = 0.018) relative to IA vehicle (6.09 N·cm/° (SD 1.64)). Conclusion. IA injections of a celecoxib led to significant improvements in passive extension angles, with reduced capsular stiffness, when administered to rabbit knees with established experimental contracture. Celecoxib was superior to surgical release, and the combination of celecoxib and a surgical release did not provide any additional value. Cite this article: Bone Joint Res 2022;11(1):32–39


Aims. Treatment outcomes for methicillin-resistant Staphylococcus aureus (MRSA) periprosthetic joint infection (PJI) using systemic vancomycin and antibacterial cement spacers during two-stage revision arthroplasty remain unsatisfactory. This study explored the efficacy and safety of intra-articular vancomycin injections for PJI control after debridement and cement spacer implantation in a rat model. Methods. Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation. Results. Rats receiving intra-articular vancomycin showed the best outcomes among the four treatment groups, with negative bacterial cultures, increased weight gain, increased capacity for weightbearing activities, increased residual bone volume preservation, and reduced inflammatory reactions in the joint tissues, indicating MRSA eradication in the knee. The vancomycin-spacer and/or systemic vancomycin failed to eliminate the MRSA infections following a two-week antibiotic course. Serum vancomycin levels did not reach nephrotoxic levels in any group. Mild renal histopathological changes, without changes in serum creatinine levels, were observed in the intraperitoneal vancomycin group compared with the intra-articular vancomycin group, but no changes in hepatic structure or serum alanine aminotransferase or aspartate aminotransferase levels were observed. No local complications were observed, such as sinus tract or non-healing surgical incisions. Conclusion. Intra-articular vancomycin injection was effective and safe for PJI control following debridement and spacer implantation in a rat model during two-stage revision arthroplasties, with better outcomes than systemic vancomycin administration. Cite this article: Bone Joint Res 2022;11(6):371–385


Bone & Joint Open
Vol. 3, Issue 4 | Pages 321 - 331
8 Apr 2022
Dean BJF Srikesavan C Horton R Toye F

Aims. Osteoarthritis (OA) affecting the thumb carpometacarpal joint (CMCJ) is a common painful condition. In this study, we aimed to explore clinicians’ approach to management with a particular focus on the role of specific interventions that will inform the design of future clinical trials. Methods. We interviewed a purposive sample of 24 clinicians, consisting of 12 surgeons and 12 therapists (four occupational therapists and eight physiotherapists) who managed patients with CMCJ OA. This is a qualitative study using semi-structured, online interviews. Interviews were audio-recorded, transcribed verbatim, and analyzed using thematic analysis. Results. A total of 14 themes were developed, six of which were developed relating to the clinical management of CMCJ OA: 1) A flexible ‘ladder’ approach starting with conservative treatment first; 2) The malleable role of steroid injection; 3) Surgery as an invasive and risky last resort; 4) A shared and collaborative approach; 5) Treating the whole person; and 6) Severity of life impact influences treatment. The remaining eight themes were developed relating to clinical trial barriers and facilitators: 1) We need to embrace uncertainty; 2) You are not losing out by taking part; 3) It is difficult to be neutral about certain treatments; 4) Difficult to recruit to ‘no treatment’ ; 5) Difficult to recruit to a trial comparing no surgery to surgery; 6) Patients are keen to participate in research; 7) Burden on staff and participants; and 8) A enthusiasm for a variety of potential trial arms. Conclusion. Our findings contribute to a better understanding of how clinicians manage thumb CMCJ OA in their practice settings. Our study also provides useful insights informing the design of randomized clinical trials involving steroid injections and surgery in people with thumb CMCJ OA. Cite this article: Bone Jt Open 2022;3(4):321–331


Bone & Joint Research
Vol. 10, Issue 10 | Pages 659 - 667
1 Oct 2021
Osagie-Clouard L Meeson R Sanghani-Kerai A Bostrom M Briggs T Blunn G

Aims. A growing number of fractures progress to delayed or nonunion, causing significant morbidity and socioeconomic impact. Localized delivery of stem cells and subcutaneous parathyroid hormone (PTH) has been shown individually to accelerate bony regeneration. This study aimed to combine the therapies with the aim of upregulating fracture healing. Methods. A 1.5 mm femoral osteotomy (delayed union model) was created in 48 female juvenile Wistar rats, aged six to nine months, and stabilized using an external fixator. At day 0, animals were treated with intrafracture injections of 1 × 10. 6. cells/kg bone marrow mesenchymal stem cells (MSCs) suspended in fibrin, daily subcutaneous injections of high (100 μg/kg) or low (25 μg/kg) dose PTH 1-34, or a combination of PTH and MSCs. A group with an empty gap served as a control. Five weeks post-surgery, the femur was excised for radiological, histomorphometric, micro-CT, and mechanical analysis. Results. Combination therapy treatment led to increased callus formation compared to controls. In the high-dose combination group there was significantly greater mineralized tissue volume and trabecular parameters compared to controls (p = 0.039). This translated to significantly improved stiffness (and ultimate load to failure (p = 0.049). The high-dose combination therapy group had the most significant improvement in mean modified Radiographic Union Score for Tibia fractures (RUST) compared to controls (13.8 (SD 1.3) vs 5.8 (SD 0.5)). All groups demonstrated significant increases in the radiological scores – RUST and Allen score – histologically compared to controls. Conclusion. We demonstrate the beneficial effect of localized MSC injections on fracture healing combined with low- or high-dose teriparatide, with efficacy dependent on PTH dose. Cite this article: Bone Joint Res 2021;10(10):659–667


Bone & Joint Research
Vol. 13, Issue 8 | Pages 383 - 391
2 Aug 2024
Mannala GK Rupp M Walter N Youf R Bärtl S Riool M Alt V

Aims. Bacteriophages infect, replicate inside bacteria, and are released from the host through lysis. Here, we evaluate the effects of repetitive doses of the Staphylococcus aureus phage 191219 and gentamicin against haematogenous and early-stage biofilm implant-related infections in Galleria mellonella. Methods. For the haematogenous infection, G. mellonella larvae were implanted with a Kirschner wire (K-wire), infected with S. aureus, and subsequently phages and/or gentamicin were administered. For the early-stage biofilm implant infection, the K-wires were pre-incubated with S. aureus suspension before implantation. After 24 hours, the larvae received phages and/or gentamicin. In both models, the larvae also received daily doses of phages and/or gentamicin for up to five days. The effect was determined by survival analysis for five days and quantitative culture of bacteria after two days of repetitive doses. Results. In the haematogenous infection, a single combined dose of phages and gentamicin, and repetitive injections with gentamicin or in combination with phages, resulted in significantly improved survival rates. In the early-stage biofilm infection, only repetitive combined administration of phages and gentamicin led to a significantly increased survival. Additionally, a significant reduction in number of bacteria was observed in the larvae after receiving repetitive doses of phages and/or gentamicin in both infection models. Conclusion. Based on our results, a single dose of the combination of phages and gentamicin is sufficient to prevent a haematogenous S. aureus implant-related infection, whereas gentamicin needs to be administered daily for the same effect. To treat early-stage S. aureus implant-related infection, repetitive doses of the combination of phages and gentamicin are required. Cite this article: Bone Joint Res 2024;13(8):383–391


Bone & Joint Open
Vol. 2, Issue 2 | Pages 125 - 133
1 Feb 2021
Bavan L Wijendra A Kothari A

Aims. Aneurysmal bone cysts (ABCs) are locally aggressive lesions typically found in the long bones of children and adolescents. A variety of management strategies have been reported to be effective in the treatment of these lesions. The purpose of this review was to assess the effectiveness of current strategies for the management of primary ABCs of the long bones. Methods. A systematic review of the published literature was performed to identify all articles relating to the management of primary ABCs. Studies required a minimum 12-month follow-up and case series reporting on under ten participants were not included. Results. A total of 28 articles meeting the eligibility criteria were included in this review, and all but one were retrospective in design. Due to heterogeneity in study design, treatment, and outcome reporting, data synthesis and group comparison was not possible. The most common treatment option reported on was surgical curettage with or without a form of adjuvant therapy, followed by injection-based therapies. Of the 594 patients treated with curettage across 17 studies, 86 (14.4%) failed to heal or experienced a recurrence. Similar outcomes were reported for 57 (14.70%) of the 387 patients treated with injection therapy across 12 studies. Only one study directly compared curettage with injection therapy (polidocanol), randomizing 94 patients into both treatment groups. This study was at risk of bias and provided low-quality evidence of a lack of difference between the two interventions, reporting success rates of 93.3% and 84.8% for injection and surgical treatment groups, respectively. Conclusion. While both surgery and sclerotherapy are widely implemented for treatment of ABCs, there is currently no good quality evidence to support the use of one option over the other. There is a need for prospective multicentre randomized controlled trials (RCTs) on interventions for the treatment of ABCs. Cite this article: Bone Jt Open 2021;2(2):125–133


Bone & Joint Open
Vol. 3, Issue 9 | Pages 701 - 709
2 Sep 2022
Thompson H Brealey S Cook E Hadi S Khan SHM Rangan A

Aims. To achieve expert clinical consensus in the delivery of hydrodilatation for the treatment of primary frozen shoulder to inform clinical practice and the design of an intervention for evaluation. Methods. We conducted a two-stage, electronic questionnaire-based, modified Delphi survey of shoulder experts in the UK NHS. Round one required positive, negative, or neutral ratings about hydrodilatation. In round two, each participant was reminded of their round one responses and the modal (or ‘group’) response from all participants. This allowed participants to modify their responses in round two. We proposed respectively mandating or encouraging elements of hydrodilatation with 100% and 90% positive consensus, and respectively disallowing or discouraging with 90% and 80% negative consensus. Other elements would be optional. Results. Between 4 August 2020 and 4 August 2021, shoulder experts from 47 hospitals in the UK completed the study. There were 106 participants (consultant upper limb orthopaedic surgeons, n = 50; consultant radiologists, n = 52; consultant physiotherapist, n = 1; extended scope physiotherapists, n = 3) who completed round one, of whom 97 (92%) completed round two. No elements of hydrodilatation were “mandated” (100% positive rating). Elements that were “encouraged” (≥ 80% positive rating) were the use of image guidance, local anaesthetic, normal saline, and steroids to deliver the injection. Injecting according to patient tolerance, physiotherapy, and home exercises were also “encouraged”. No elements were “discouraged” (≥ 80% negative rating) although using hypertonic saline was rated as being “disallowed” (≥ 90% negative rating). Conclusion. In the absence of rigorous evidence, our Delphi study allowed us to achieve expert consensus about positive, negative, and neutral ratings of hydrodilatation in the management of frozen shoulder in a hospital setting. This should inform clinical practice and the design of an intervention for evaluation. Cite this article: Bone Jt Open 2022;3(9):701–709


Bone & Joint Research
Vol. 13, Issue 3 | Pages 110 - 123
7 Mar 2024
Xu J Ruan Z Guo Z Hou L Wang G Zheng Z Zhang X Liu H Sun K Guo F

Aims. Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear. Methods. In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression. Results. The results showed that inhibition of Sat1 expression can reduce inflammation, ferroptosis changes, reactive oxygen species (ROS) level, and lipid-ROS accumulation induced by IL-1β and Erastin. Knockdown of Sat1 promotes nuclear factor-E2-related factor 2 (Nrf2) signalling. Additionally, knockdown Alox15 can alleviate the inflammation-related protein expression induced by IL-1β and ferroptosis-related protein expression induced by Erastin. Furthermore, knockdown Nrf2 can reverse these protein expression alterations. Finally, intra-articular injection of diminazene aceturate (DA), an inhibitor of Sat1, enhanced type II collagen (collagen II) and increased Sat1 and Alox15 expression. Conclusion. Our results demonstrate that inhibition of Sat1 could alleviate chondrocyte ferroptosis and inflammation by downregulating Alox15 activating the Nrf2 system, and delaying the progression of OA. These findings suggest that Sat1 provides a new approach for studying and treating OA. Cite this article: Bone Joint Res 2024;13(3):110–123


Bone & Joint Open
Vol. 1, Issue 5 | Pages 115 - 120
12 May 2020
Kalstad AM Knobloch RG Finsen V

Aims. To determine if the results of treatment of adolescents with coccydynia are similar to those found in adults. Adult patients with coccydynia may benefit from injection therapy or operative treatment. There is little data evaluating treatment results in adolescents. We have treated adolescent patients similarly to adults and compared the outcomes. Methods. Overall, 32 adolescents with coccydynia were treated at our institution during a seven-year period; 28 responded to final follow-up questionnaires after a minimum of one year, 14 had been treated with only injection therapy, and 14 had been operated with coccygectomy. We collected data with regards to pain while sitting, leaning forward, rising from a sitting position, during defecation, while walking or jogging, and while travelling in trains, planes, or automobiles. Pain at follow-up was registered on a numeric pain scale. Each adolescent was then matched to adult patients, and results compared in a case control fashion. The treatment was considered successful if respondents were either completely well or much better at final follow-up after one to seven years. Results. Out of the 28 treated adolescents, 14 were regarded as successfully treated. Seven were somewhat better, and the remaining seven were unchanged. In the adult control group the corresponding number was 15 successfully treated, eight patients were somewhat better, and five were unchanged. Six of the 14 successfully treated adolescents had been operated. There were no significant differences between the groups in the various registered domains, or on numeric pain scale. Conclusion. Treatment results in adolescent patients seem similar to those in adults. The long-term success rate of injection therapy is low. In case of injection treatment failure, operation may be considered, also in adolescents


Bone & Joint Research
Vol. 11, Issue 7 | Pages 453 - 464
20 Jul 2022
Wang H Shi Y He F Ye T Yu S Miao H Liu Q Zhang M

Aims. Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). Growth differentiation factor 11 (GDF11) is crucial in inhibiting the differentiation of bone marrow mesenchymal stem cells into adipocytes. However, whether GDF11 participates in the abnormal adipogenesis of chondrocytes in OA cartilage is still unclear. Methods. Six-week-old female mice were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical staining (IHC), and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. Primary condylar chondrocytes of rats were stimulated with fluid flow shear stress (FFSS) and collected for oil red staining, immunofluorescence staining, qRT-PCR, and immunoprecipitation analysis. Results. Abnormal adipogenesis, characterized by increased expression of CCAAT/enhancer-binding protein α (CEBPα), fatty acid binding protein 4 (FABP4), Perilipin1, Adiponectin (AdipoQ), and peroxisome proliferator-activated receptor γ (PPARγ), was enhanced in the degenerative cartilage of TMJ OA in UAC mice, accompanied by decreased expression of GDF11. After FFSS stimulation, there were fat droplets in the cytoplasm of cultured cells with increased expression of PPARγ, CEBPα, FABP4, Perilipin1, and AdipoQ and decreased expression of GDF11. Exogenous GDF11 inhibited increased lipid droplets and expression of AdipoQ, CEBPα, and FABP4 induced by FFSS stimulation. GDF11 did not affect the change in PPARγ expression under FFSS, but promoted its post-translational modification by small ubiquitin-related modifier (SUMOylation). Local injection of GDF11 alleviated TMJ OA-related cartilage degeneration and abnormal adipogenesis in UAC mice. Conclusion. Abnormal adipogenesis of chondrocytes and decreased GDF11 expression were observed in degenerative cartilage of TMJ OA. GDF11 supplementation effectively inhibits the adipogenesis of chondrocytes and thus alleviates TMJ condylar cartilage degeneration. GDF11 may inhibit the abnormal adipogenesis of chondrocytes by affecting the SUMOylation of PPARγ. Cite this article: Bone Joint Res 2022;11(7):453–464


Bone & Joint Research
Vol. 11, Issue 8 | Pages 594 - 607
17 Aug 2022
Zhou Y Li J Xu F Ji E Wang C Pan Z

Aims. Osteoarthritis (OA) is a common degenerative joint disease characterized by chronic inflammatory articular cartilage degradation. Long noncoding RNAs (lncRNAs) have been previously indicated to play an important role in inflammation-related diseases. Herein, the current study set out to explore the involvement of lncRNA H19 in OA. Methods. Firstly, OA mouse models and interleukin (IL)-1β-induced mouse chondrocytes were established. Expression patterns of IL-38 were determined in the synovial fluid and cartilage tissues from OA patients. Furthermore, the targeting relationship between lncRNA H19, tumour protein p53 (TP53), and IL-38 was determined by means of dual-luciferase reporter gene, chromatin immunoprecipitation, and RNA immunoprecipitation assays. Subsequent to gain- and loss-of-function assays, the levels of cartilage damage and proinflammatory factors were further detected using safranin O-fast green staining and enzyme-linked immunosorbent assay (ELISA) in vivo, respectively, while chondrocyte apoptosis was measured using Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) in vitro. Results. IL-38 was highly expressed in lentivirus vector-mediated OA mice. Meanwhile, injection of exogenous IL-38 to OA mice alleviated the cartilage damage, and reduced the levels of proinflammatory factors and chondrocyte apoptosis. TP53 was responsible for lncRNA H19-mediated upregulation of IL-38. Furthermore, it was found that the anti-inflammatory effects of IL-38 were achieved by its binding with the IL-36 receptor (IL-36R). Overexpression of H19 reduced the expression of inflammatory factors and chondrocyte apoptosis, which was abrogated by knockdown of IL-38 or TP53. Conclusion. Collectively, our findings evidenced that upregulation of lncRNA H19 attenuates inflammation and ameliorates cartilage damage and chondrocyte apoptosis in OA by upregulating TP53, IL-38, and by activating IL-36R. Cite this article: Bone Joint Res 2022;11(8):594–607


Bone & Joint Open
Vol. 2, Issue 9 | Pages 773 - 784
1 Sep 2021
Rex SS Kottam L McDaid C Brealey S Dias J Hewitt CE Keding A Lamb SE Wright K Rangan A

Aims. This systematic review places a recently completed multicentre randomized controlled trial (RCT), UK FROST, in the context of existing randomized evidence for the management of primary frozen shoulder. UK FROST compared the effectiveness of pre-specified physiotherapy techniques with a steroid injection (PTSI), manipulation under anaesthesia (MUA) with a steroid injection, and arthroscopic capsular release (ACR). This review updates a 2012 review focusing on the effectiveness of MUA, ACR, hydrodilatation, and PTSI. Methods. MEDLINE, Embase, PEDro, Science Citation Index, Clinicaltrials.gov, CENTRAL, and the World Health Organization (WHO) International Clinical Trials Registry were searched up to December 2018. Reference lists of included studies were screened. No language restrictions applied. Eligible studies were RCTs comparing the effectiveness of MUA, ACR, PTSI, and hydrodilatation against each other, or supportive care or no treatment, for the management of primary frozen shoulder. Results. Nine RCTs were included. The primary outcome of patient-reported shoulder function at long-term follow-up (> 6 months and ≤ 12 months) was reported for five treatment comparisons across four studies. Standardized mean differences (SMD) were: ACR versus MUA: 0.21 (95% confidence interval (CI) 0.00 to 0.42), ACR versus supportive care: -0.13 (95% CI -1.10 to 0.83), and ACR versus PTSI: 0.33 (95% CI 0.07 to 0.59) and 0.25 (95% CI -0.34 to 0.85), all favouring ACR; MUA versus supportive care: 0 (95% CI -0.44 to 0.44) not favouring either; and MUA versus PTSI: 0.12 (95% CI -0.14 to 0.37) favouring MUA. None of these differences met the threshold of clinical significance agreed for the UK FROST and most confidence intervals included zero. Conclusion. The findings from a recent multicentre RCT provided the strongest evidence that, when compared with each other, neither PTSI, MUA, nor ACR are clinically superior. Evidence from smaller RCTs did not change this conclusion. The effectiveness of hydrodilatation based on four RCTs was inconclusive and there remains an evidence gap. Cite this article: Bone Jt Open 2021;2(9):773–784


Bone & Joint Research
Vol. 12, Issue 4 | Pages 259 - 273
6 Apr 2023
Lu R Wang Y Qu Y Wang S Peng C You H Zhu W Chen A

Aims. Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant (gynura bicolor), has demonstrated anti-inflammatory properties in various diseases. We aimed to explore the chondroprotective effect of DHCA on OA and its potential mechanism. Methods. In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage. Results. DHCA prevented iNOS and IL-6 from being upregulated by IL-1β. Moreover, the IL-1β-induced upregulation of MMPs could be inhibited by DHCA. Additionally, the administration of DHCA counteracted IL-1β-induced downregulation of aggrecan, collagen II, and SOX9. DHCA protected articular cartilage by blocking the NF-κB and MAPK pathways. Furthermore, DHCA mitigated the destruction of articular cartilage in vivo. Conclusion. We present evidence that DHCA alleviates inflammation and cartilage degradation in OA chondrocytes via suppressing the NF-κB and MAPK pathways, indicating that DHCA may be a potential agent for OA treatment. Cite this article: Bone Joint Res 2023;12(4):259–273


Bone & Joint Research
Vol. 12, Issue 8 | Pages 455 - 466
1 Aug 2023
Zhou H Chen C Hu H Jiang B Yin Y Zhang K Shen M Wu S Wang Z

Aims. Rotator cuff muscle atrophy and fatty infiltration affect the clinical outcomes of rotator cuff tear patients. However, there is no effective treatment for fatty infiltration at this time. High-intensity interval training (HIIT) helps to activate beige adipose tissue. The goal of this study was to test the role of HIIT in improving muscle quality in a rotator cuff tear model via the β3 adrenergic receptor (β3AR). Methods. Three-month-old C57BL/6 J mice underwent a unilateral rotator cuff injury procedure. Mice were forced to run on a treadmill with the HIIT programme during the first to sixth weeks or seventh to 12th weeks after tendon tear surgery. To study the role of β3AR, SR59230A, a selective β3AR antagonist, was administered to mice ten minutes before each exercise through intraperitoneal injection. Supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat were harvested at the end of the 12th week after tendon tear and analyzed biomechanically, histologically, and biochemically. Results. Histological analysis of supraspinatus muscle showed that HIIT improved muscle atrophy, fatty infiltration, and contractile force compared to the no exercise group. In the HIIT groups, supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat showed increased expression of tyrosine hydroxylase and uncoupling protein 1, and upregulated the β3AR thermogenesis pathway. However, the effect of HIIT was not present in mice injected with SR59230A, suggesting that HIIT affected muscles via β3AR. Conclusion. HIIT improved supraspinatus muscle quality and function after rotator cuff tears by activating systemic sympathetic nerve fibre near adipocytes and β3AR. Cite this article: Bone Joint Res 2023;12(8):455–466


Bone & Joint Research
Vol. 10, Issue 8 | Pages 514 - 525
2 Aug 2021
Chen C Kang L Chang L Cheng T Lin S Wu S Lin Y Chuang S Lee T Chang J Ho M

Aims. Osteoarthritis (OA) is prevalent among the elderly and incurable. Intra-articular parathyroid hormone (PTH) ameliorated OA in papain-induced and anterior cruciate ligament transection-induced OA models; therefore, we hypothesized that PTH improved OA in a preclinical age-related OA model. Methods. Guinea pigs aged between six and seven months of age were randomized into control or treatment groups. Three- or four-month-old guinea pigs served as the young control group. The knees were administered 40 μl intra-articular injections of 10 nM PTH or vehicle once a week for three months. Their endurance as determined from time on the treadmill was evaluated before kill. Their tibial plateaus were analyzed using microcalculated tomography (μCT) and histological studies. Results. PTH increased the endurance on the treadmill test, preserved glycosaminoglycans, and reduced Osteoarthritis Research Society International score and chondrocyte apoptosis rate. No difference was observed in the subchondral plate bone density or metaphyseal trabecular bone volume and bone morphogenetic 2 protein staining. Conclusion. Subchondral bone is crucial in the initiation and progression of OA. Although previous studies have shown that subcutaneous PTH alleviates knee OA by improving subchondral and metaphyseal bone mass, we demonstrated that intra-articular PTH injections improved spontaneous OA by directly affecting the cartilage rather than the subchondral or metaphyseal bone in a preclinical age-related OA model. Cite this article: Bone Joint Res 2021;10(8):514–525


Bone & Joint Open
Vol. 3, Issue 4 | Pages 340 - 347
22 Apr 2022
Winkler T Costa ML Ofir R Parolini O Geissler S Volk H Eder C

Aims. The aim of the HIPGEN consortium is to develop the first cell therapy product for hip fracture patients using PLacental-eXpanded (PLX-PAD) stromal cells. Methods. HIPGEN is a multicentre, multinational, randomized, double-blind, placebo-controlled trial. A total of 240 patients aged 60 to 90 years with low-energy femoral neck fractures (FNF) will be allocated to two arms and receive an intramuscular injection of either 150 × 10. 6. PLX-PAD cells or placebo into the medial gluteal muscle after direct lateral implantation of total or hemi hip arthroplasty. Patients will be followed for two years. The primary endpoint is the Short Physical Performance Battery (SPPB) at week 26. Secondary and exploratory endpoints include morphological parameters (lean body mass), functional parameters (abduction and handgrip strength, symmetry in gait, weightbearing), all-cause mortality rate and patient-reported outcome measures (Lower Limb Measure, EuroQol five-dimension questionnaire). Immunological biomarker and in vitro studies will be performed to analyze the PLX-PAD mechanism of action. A sample size of 240 subjects was calculated providing 88% power for the detection of a 1 SPPB point treatment effect for a two-sided test with an α level of 5%. Conclusion. The HIPGEN study assesses the efficacy, safety, and tolerability of intramuscular PLX-PAD administration for the treatment of muscle injury following arthroplasty for hip fracture. It is the first phase III study to investigate the effect of an allogeneic cell therapy on improved mobilization after hip fracture, an aspect which is in sore need of addressing for the improvement in standard of care treatment for patients with FNF. Cite this article: Bone Jt Open 2022;3(4):340–347


Bone & Joint Research
Vol. 10, Issue 6 | Pages 354 - 362
1 Jun 2021
Luo Y Zhao X Yang Z Yeersheng R Kang P

Aims. The purpose of this study was to examine the efficacy and safety of carbazochrome sodium sulfonate (CSS) combined with tranexamic acid (TXA) on blood loss and inflammatory responses after primary total hip arthroplasty (THA), and to investigate the influence of different administration methods of CSS on perioperative blood loss during THA. Methods. This study is a randomized controlled trial involving 200 patients undergoing primary unilateral THA. A total of 200 patients treated with intravenous TXA were randomly assigned to group A (combined intravenous and topical CSS), group B (topical CSS), group C (intravenous CSS), or group D (placebo). Results. Mean total blood loss (TBL) in groups A (605.0 ml (SD 235.9)), B (790.9 ml (SD 280.7)), and C (844.8 ml (SD 248.1)) were lower than in group D (1,064.9 ml (SD 318.3), p < 0.001). We also found that compared with group D, biomarker level of inflammation, transfusion rate, pain score, and hip range of motion at discharge in groups A, B, and C were significantly improved. There were no differences among the four groups in terms of intraoperative blood loss (IBL), intramuscular venous thrombosis (IMVT), and length of hospital stay (LOS). Conclusion. The combined application of CSS and TXA is more effective than TXA alone in reducing perioperative blood loss and transfusion rates, inflammatory response, and postoperative hip pain, results in better early hip flexion following THA, and did not increase the associated venous thromboembolism (VTE) events. Intravenous combined with topical injection of CSS was superior to intravenous or topical injection of CSS alone in reducing perioperative blood loss. Cite this article: Bone Joint Res 2021;10(6):354–362


Bone & Joint Research
Vol. 13, Issue 7 | Pages 332 - 341
5 Jul 2024
Wang T Yang C Li G Wang Y Ji B Chen Y Zhou H Cao L

Aims. Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI). Methods. A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR. Results. The group with LIPUS and 0.35% PI exhibited decreased levels of serum biochemical markers, improved weightbearing scores, reduced reactive bone changes, absence of viable bacteria, and decreased inflammation compared to the Control group. Despite the greater antibiofilm activity observed in the PI group compared to the LIPUS and saline group, none of the monotherapies were successful in preventing reactive bone changes or eliminating the infection. Conclusion. In the rat model of PJI treated with DAIR, LIPUS combined with 0.35% PI demonstrated stronger antibiofilm potential than monotherapy, without impairing any local soft-tissue. Cite this article: Bone Joint Res 2024;13(7):332–341


Bone & Joint Research
Vol. 11, Issue 6 | Pages 398 - 408
22 Jun 2022
Xu T Zeng Y Yang X Liu G Lv T Yang H Jiang F Chen Y

Aims. We aimed to evaluate the utility of . 68. Ga-citrate positron emission tomography (PET)/CT in the differentiation of periprosthetic joint infection (PJI) and aseptic loosening (AL), and compare it with . 99m. Tc-methylene bisphosphonates (. 99m. Tc-MDP) bone scan. Methods. We studied 39 patients with suspected PJI or AL. These patients underwent . 68. Ga-citrate PET/CT, . 99m. Tc-MDP three-phase bone scan and single-photon emission CT (SPECT)/CT. PET/CT was performed at ten minutes and 60 minutes after injection, respectively. Images were evaluated by three nuclear medicine doctors based on: 1) visual analysis of the three methods based on tracer uptake model, and PET images attenuation-corrected with CT and those not attenuation-corrected with CT were analyzed, respectively; and 2) semi-quantitative analysis of PET/CT: maximum standardized uptake value (SUVmax) of lesions, SUVmax of the lesion/SUVmean of the normal bone, and SUVmax of the lesion/SUVmean of the normal muscle. The final diagnosis was based on the clinical and intraoperative findings, and histopathological and microbiological examinations. Results. Overall, 23 and 16 patients were diagnosed with PJI and AL, respectively. The sensitivity and specificity of three-phase bone scan and SPECT/CT were 100% and 62.5%, 82.6%, and 100%, respectively. Attenuation correction (AC) at 60 minutes and non-AC at 60 minutes of PET/CT had the same highest sensitivity and specificity (91.3% and 100%), and AC at 60 minutes combined with SPECT/CT could improve the diagnostic efficiency (sensitivity = 95.7%). Diagnostic efficacy of the SUVmax was low (area under the curve (AUC) of ten minutes and 60 minutes was 0.814 and 0.806, respectively), and SUVmax of the lesion/SUVmean of the normal bone at 60 minutes was the best semi-quantitative parameter (AUC = 0.969). Conclusion. 68. Ga-citrate showed the potential to differentiate PJI from AL, and visual analysis based on uptake pattern of tracer was reliable. The visual analysis method of AC at 60 minutes, combined with . 99m. Tc-MDP SPECT/CT, could improve the sensitivity from 91.3% to 95.7%. In addition, a major limitation of our study was that it had a limited sample size, and more detailed studies with a larger sample size are warranted. Cite this article: Bone Joint Res 2022;11(6):398–408


Aims. Methicillin-resistant Staphylococcus aureus (MRSA) can cause wound infections via a ‘Trojan Horse’ mechanism, in which neutrophils engulf intestinal MRSA and travel to the wound, releasing MRSA after apoptosis. The possible role of intestinal MRSA in prosthetic joint infection (PJI) is unknown. Methods. Rats underwent intestinal colonization with green fluorescent protein (GFP)-tagged MRSA by gavage and an intra-articular wire was then surgically implanted. After ten days, the presence of PJI was determined by bacterial cultures of the distal femur, joint capsule, and implant. We excluded several other possibilities for PJI development. Intraoperative contamination was excluded by culturing the specimen obtained from surgical site. Extracellular bacteraemia-associated PJI was excluded by comparing with the infection rate after intravenous injection of MRSA or MRSA-carrying neutrophils. To further support this theory, we tested the efficacy of prophylactic membrane-permeable and non-membrane-permeable antibiotics in this model. Results. After undergoing knee surgery eight or 72 hours after colonization, five out of 20 rats (25.0%) and two out of 20 rats (10.0%) developed PJI, respectively. Strikingly, 11 out of 20 rats (55.0%) developed PJI after intravenous injection of MRSA-carrying neutrophils that were isolated from rats with intestinal MRSA colonization. None of the rats receiving intravenous injections of MRSA developed PJI. These results suggest that intestinal MRSA carried by neutrophils could cause PJI in our rat model. Ten out of 20 (50.0%) rats treated with non-membrane-permeable gentamicin developed PJI, whereas only one out of 20 (5.0%) rats treated with membrane-permeable linezolid developed PJI. Conclusion. Neutrophils as carriers of intestinal MRSA may play an important role in PJI development. Cite this article:Bone Joint Res. 2020;9(4):152–161


Bone & Joint Research
Vol. 11, Issue 2 | Pages 73 - 81
22 Feb 2022
Gao T Lin J Wei H Bao B Zhu H Zheng X

Aims. Trained immunity confers non-specific protection against various types of infectious diseases, including bone and joint infection. Platelets are active participants in the immune response to pathogens and foreign substances, but their role in trained immunity remains elusive. Methods. We first trained the innate immune system of C57BL/6 mice via intravenous injection of two toll-like receptor agonists (zymosan and lipopolysaccharide). Two, four, and eight weeks later, we isolated platelets from immunity-trained and control mice, and then assessed whether immunity training altered platelet releasate. To better understand the role of immunity-trained platelets in bone and joint infection development, we transfused platelets from immunity-trained mice into naïve mice, and then challenged the recipient mice with Staphylococcus aureus or Escherichia coli. Results. After immunity training, the levels of pro-inflammatory cytokines (tumour necrosis factor alpha (TNF-α), interleukin (IL)-17A) and chemokines (CCL5, CXCL4, CXCL5, CXCL7, CXCL12) increased significantly in platelet releasate, while the levels of anti-inflammatory cytokines (IL-4, IL-13) decreased. Other platelet-secreted factors (e.g. platelet-derived growth factor (PDGF)-AA, PDGF-AB, PDGF-BB, cathepsin D, serotonin, and histamine) were statistically indistinguishable between the two groups. Transfusion of platelets from trained mice into naïve mice reduced infection risk and bacterial burden after local or systemic challenge with either S. aureus or E. coli. Conclusion. Immunity training altered platelet releasate by increasing the levels of inflammatory cytokines/chemokines and decreasing the levels of anti-inflammatory cytokines. Transfusion of platelets from immunity-trained mice conferred protection against bone and joint infection, suggesting that alteration of platelet releasate might be an important mechanism underlying trained immunity and may have clinical implications. Cite this article: Bone Joint Res 2022;11(2):73–81


Bone & Joint Research
Vol. 11, Issue 7 | Pages 465 - 476
13 Jul 2022
Li MCM Chow SK Wong RMY Chen B Cheng JCY Qin L Cheung W

Aims. There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV. Methods. A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining. Results. Healing capacities in DMP1 KD groups were impaired. Results showed that DMP1 KD significantly abolished vibration-enhanced fracture healing at week 6. DMP1 KD significantly altered the expression of osteocyte-specific markers. The lower mineralization rate in DMP1 KD groups indicated that DMP1 knockdown was associated with poor fracture healing process. Conclusion. The blockage of DMP1 would impair healing outcomes and negate LMHFV-induced enhancement on fracture healing. These findings reveal the importance of DMP1 in response to the mechanical signal during osteoporotic fracture healing. Cite this article: Bone Joint Res 2022;11(7):465–476


Bone & Joint Research
Vol. 9, Issue 9 | Pages 613 - 622
1 Sep 2020
Perucca Orfei C Lovati AB Lugano G Viganò M Bottagisio M D’Arrigo D Sansone V Setti S de Girolamo L

Aims. In the context of tendon degenerative disorders, the need for innovative conservative treatments that can improve the intrinsic healing potential of tendon tissue is progressively increasing. In this study, the role of pulsed electromagnetic fields (PEMFs) in improving the tendon healing process was evaluated in a rat model of collagenase-induced Achilles tendinopathy. Methods. A total of 68 Sprague Dawley rats received a single injection of type I collagenase in Achilles tendons to induce the tendinopathy and then were daily exposed to PEMFs (1.5 mT and 75 Hz) for up to 14 days - starting 1, 7, or 15 days after the injection - to identify the best treatment option with respect to the phase of the disease. Then, 7 and 14 days of PEMF exposure were compared to identify the most effective protocol. Results. The daily exposure to PEMFs generally provided an improvement in the fibre organization, a decrease in cell density, vascularity, and fat deposition, and a restoration of the physiological cell morphology compared to untreated tendons. These improvements were more evident when the tendons were exposed to PEMFs during the mid-acute phase of the pathology (7 days after induction) rather than during the early (1 day after induction) or the late acute phase (15 days after induction). Moreover, the exposure to PEMFs for 14 days during the mid-acute phase was more effective than for 7 days. Conclusion. PEMFs exerted a positive role in the tendon healing process, thus representing a promising conservative treatment for tendinopathy, although further investigations regarding the clinical evaluation are needed. Cite this article: Bone Joint Res 2020;9(9):613–622


Bone & Joint Open
Vol. 2, Issue 10 | Pages 865 - 870
20 Oct 2021
Wignadasan W Mohamed A Kayani B Magan A Plastow R Haddad FS

Aims. The COVID-19 pandemic drastically affected elective orthopaedic services globally as routine orthopaedic activity was largely halted to combat this global threat. Our institution (University College London Hospital, UK) previously showed that during the first peak, a large proportion of patients were hesitant to be listed for their elective lower limb procedure. The aim of this study is to assess if there is a patient perception change towards having elective surgery now that we have passed the peak of the second wave of the pandemic. Methods. This is a prospective study of 100 patients who were on the waiting list of a single surgeon for an elective hip or knee procedure. Baseline characteristics including age, American Society of Anesthesiologists (ASA) grade, COVID-19 risk, procedure type, and admission type were recorded. The primary outcome was patient consent to continue with their scheduled surgical procedure. Subgroup analysis was also conducted to define if any specific patient factors influenced decision to continue with surgery. Results. Overall, 88 patients (88%) were happy to continue with their scheduled procedure at the earliest opportunity. Patients with an ASA grade I were most likely to agree to surgery, followed by patients with ASA grades II, then those with grade III (93.3%, 88.7%, and 78.6% willingness, respectively). Patients waitlisted for an injection were least likely to consent to surgery, with just 73.7% agreeing. In all, there was a large increase in the proportion of patient willingness to continue with surgery compared to our initial study during the first wave of the pandemic. Conclusion. As COVID-19 lockdown restrictions are lifted after the second peak of the pandemic, we are seeing greater willingness to continue with scheduled orthopaedic surgery, reinforcing a change in patient perception towards having elective surgery. However, we must continue with strict COVID-19 precautions in order to minimize viral transmission as we increase our elective orthopaedic services going forward. Cite this article: Bone Jt Open 2021;2(10):865–870


Bone & Joint Open
Vol. 2, Issue 8 | Pages 685 - 695
2 Aug 2021
Corbacho B Brealey S Keding A Richardson G Torgerson D Hewitt C McDaid C Rangan A

Aims. A pragmatic multicentre randomized controlled trial, UK FROzen Shoulder Trial (UK FROST), was conducted in the UK NHS comparing the cost-effectiveness of commonly used treatments for adults with primary frozen shoulder in secondary care. Methods. A cost utility analysis from the NHS perspective was performed. Differences between manipulation under anaesthesia (MUA), arthroscopic capsular release (ACR), and early structured physiotherapy plus steroid injection (ESP) in costs (2018 GBP price base) and quality adjusted life years (QALYs) at one year were used to estimate the cost-effectiveness of the treatments using regression methods. Results. ACR was £1,734 more costly than ESP ((95% confidence intervals (CIs) £1,529 to £1,938)) and £1,457 more costly than MUA (95% CI £1,283 to £1,632). MUA was £276 (95% CI £66 to £487) more expensive than ESP. Overall, ACR had worse QALYs compared with MUA (-0.0293; 95% CI -0.0616 to 0.0030) and MUA had better QALYs compared with ESP (0.0396; 95% CI -0.0008 to 0.0800). At a £20,000 per QALY willingness-to-pay threshold, MUA had the highest probability of being cost-effective (0.8632) then ESP (0.1366) and ACR (0.0002). The results were robust to sensitivity analyses. Conclusion. While ESP was less costly, MUA was the most cost-effective option. ACR was not cost-effective. Cite this article: Bone Jt Open 2021;2(8):685–695


Bone & Joint Research
Vol. 7, Issue 8 | Pages 511 - 516
1 Aug 2018
Beverly M Mellon S Kennedy JA Murray DW

Objectives. We studied subchondral intraosseous pressure (IOP) in an animal model during loading, and with vascular occlusion. We explored bone compartmentalization by saline injection. Materials and Methods. Needles were placed in the femoral condyle and proximal tibia of five anaesthetized rabbits and connected to pressure recorders. The limb was loaded with and without proximal vascular occlusion. An additional subject had simultaneous triple recordings at the femoral head, femoral condyle and proximal tibia. In a further subject, saline injections at three sites were carried out in turn. Results. Loading alone caused a rise in subchondral IOP from 11.7 mmHg (. sd. 7.1) to 17.9 mmHg (. sd. 8.1; p < 0.0002). During arterial occlusion, IOP fell to 5.3 mmHg (. sd. 4.1), then with loading there was a small rise to 7.6 mmHg (. sd. 4.5; p < 0.002). During venous occlusion, IOP rose to 20.2 mmHg (. sd. 5.8), and with loading there was a further rise to 26.3 mmHg (. sd. 6.3; p < 0.003). The effects were present at three different sites along the limb simultaneously. Saline injections showed pressure transmitted throughout the length of the femur but not across the knee joint. Conclusion. This is the first study to report changes in IOP in vivo during loading and with combinations of vascular occlusion and loading. Intraosseous pressure is not a constant. It is reduced during proximal arterial occlusion and increased with proximal venous occlusion. Whatever the perfusion state, in vivo load is transferred partly by hydraulic pressure. We propose that joints act as hydraulic pressure barriers. An understanding of subchondral physiology may be important in understanding osteoarthritis and other bone diseases. Cite this article: M. Beverly, S. Mellon, J. A. Kennedy, D. W. Murray. Intraosseous pressure during loading and with vascular occlusion in an animal model. Bone Joint Res 2018;7:511–516. DOI: 10.1302/2046-3758.78.BJR-2017-0343.R2


Bone & Joint Research
Vol. 10, Issue 7 | Pages 411 - 424
14 Jul 2021
Zhao D Ren B Wang H Zhang X Yu M Cheng L Sang Y Cao S Thieringer FM Zhang D Wan Y Liu C

Aims. The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration. Methods. IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively. Results. DT plus 30 ng/ml of IL4 (DT + 30 IL4) from day 3 to day 7 significantly (p < 0.01) enhanced macrophage type 2 polarization and BMMSC osteogenesis compared with the other groups. Local injection of IL4 enhanced new bone formation surrounding the DT. Conclusion. DT + 30 IL4 may switch macrophage polarization at the appropriate timepoints to promote bone regeneration. Cite this article: Bone Joint Res 2021;10(7):411–424


Bone & Joint Research
Vol. 10, Issue 3 | Pages 156 - 165
1 Mar 2021
Yagi H Kihara S Mittwede PN Maher PL Rothenberg AC Falcione ADCM Chen A Urish KL Tuan RS Alexander PG

Aims. Periprosthetic joint infections (PJIs) and osteomyelitis are clinical challenges that are difficult to eradicate. Well-characterized large animal models necessary for testing and validating new treatment strategies for these conditions are lacking. The purpose of this study was to develop a rabbit model of chronic PJI in the distal femur. Methods. Fresh suspensions of Staphylococcus aureus (ATCC 25923) were prepared in phosphate-buffered saline (PBS) (1 × 10. 9. colony-forming units (CFUs)/ml). Periprosthetic osteomyelitis in female New Zealand white rabbits was induced by intraosseous injection of planktonic bacterial suspension into a predrilled bone tunnel prior to implant screw placement, examined at five and 28 days (n = 5/group) after surgery, and compared to a control aseptic screw group. Radiographs were obtained weekly, and blood was collected to measure ESR, CRP, and white blood cell (WBC) counts. Bone samples and implanted screws were harvested on day 28, and processed for histological analysis and viability assay of bacteria, respectively. Results. Intraosseous periprosthetic introduction of planktonic bacteria induced an acute rise in ESR and CRP that subsided by day 14, and resulted in radiologically evident periprosthetic osteolysis by day 28 accompanied by elevated WBC counts and histological evidence of bacteria in the bone tunnels after screw removal. The aseptic screw group induced no increase in ESR, and no lysis developed around the implants. Bacterial viability was confirmed by implant sonication fluid culture. Conclusion. Intraosseous periprosthetic introduction of planktonic bacteria reliably induces survivable chronic PJI in rabbits. Cite this article: Bone Joint Res 2021;10(3):156–165