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Aims
Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been
shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains
uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS com-
bined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant
retention (DAIR) model of periprosthetic joint infection (PJI).

Methods
A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articu-
lar injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI
group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR,
except for Control, which underwent a sham procedure. General status, serum biochem-
ical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron
microscopy of the prostheses, microbiological analysis, macroscope, and histopathology
evaluation were performed 14 days after DAIR.

Results
The group with LIPUS and 0.35% PI exhibited decreased levels of serum biochemical
markers, improved weightbearing scores, reduced reactive bone changes, absence of viable
bacteria, and decreased inflammation compared to the Control group. Despite the greater
antibiofilm activity observed in the PI group compared to the LIPUS and saline group, none
of the monotherapies were successful in preventing reactive bone changes or eliminating
the infection.

Conclusion
In the rat model of PJI treated with DAIR, LIPUS combined with 0.35% PI demonstrated
stronger antibiofilm potential than monotherapy, without impairing any local soft-tissue.

Article focus
• Does low-intensity pulsed ultrasound

(LIPUS) or 0.35% povidone-iodine (PI)
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(PJI) in rats?

• Does LIPUS augment the efficacy of
0.35% PI to eliminate bacterial biofilm in
vivo?

• Does LIPUS combined with 0.35% PI
impair the soft-tissue?
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Key messages
• LIPUS combined with 0.35% PI alleviated acute PJI in rats

more effectively than monotherapy, and did not impair the
soft-tissue.

Strengths and limitations
• This study was the first to combine LIPUS with 0.35% PI in a

rat debridement, antibiotics, and implant retention model
of acute PJI, and to observe its safety in soft-tissue.

• A limitation is the absence of adjuvant oral antibiotics to
completely mimic clinical conditions.

Introduction
Periprosthetic joint infection (PJI) is a challenging complica-
tion affecting approximately 1% to 2% of patients undergo-
ing primary arthroplasty.1 By 2030, it is projected that the
numbers of annual procedures for total knee arthroplasty
and total hip arthroplasty in the USA will reach 935,000 and
635,000, respectively.2 The economic burden associated with
PJI is substantial, with estimated annual costs of approximately
$1.1 billion and $750 million for hip and knee infections,
respectively.3

Methicillin-resistant Staphylococcus aureus (MRSA)
infections have accounted for up to 19.2% of all PJIs, present-
ing substantial challenges for both surgeons and patients.4,5

When treating acute MRSA PJIs, orthopaedic surgeons prefer
debridement, antibiotics, and implant retention (DAIR) over
one-stage or two-stage approaches due to its less disrup-
tive nature and ability to preserve the prosthesis.6-9 However,
despite the use of rifampin-based combination therapy, which
was used for antibiofilm and has improved the success rate,
the failure rate of DAIR remains relatively high, ranging from
42% to 45%.10,11 These failures are often attributed to the
presence of residual biofilm during the DAIR procedure.12

To mitigate this risk, numerous antiseptics and antibiotics
solutions have been used as adjuncts to eradicate biofilm,13-20

of which povidone-iodine (PI) is a common antiseptic solution
for the treatment of PJI intraoperatively. Nevertheless, the
success rate of DAIR for acute PJI using PI remains unsatis-
factory, ranging from 69% to 74%.21-23 However, the specific
concentration of PI used in these studies was not mentioned,
although 0.35% PI is frequently employed during arthroplasty
procedures to prevent PJI.24 Therefore, it is crucial to explore
methods that can enhance the efficacy of 0.35% PI in biofilm
eradication.

The use of ultrasound to augment the antibacterial
activity of antibiotics was initially introduced in 1994 by Pitt et
al,25 who demonstrated that low-intensity pulsed ultrasound
(LIPUS) enhances antibiofilm activity of antibiotics in vivo.26,27

Furthermore, ultrasound has been found to augment the
antibiofilm activity of disinfectants such as ozone in vitro.28,29

The biological impact of ultrasound on microorgan-
isms is attributed to its acoustical cavitation,26 which effec-
tively eliminates extracellular polysaccharides and proteins
present in microbial biofilms. Additionally, ultrasound can
modify the structure of proteins that constitute the extracellu-
lar polymeric substances (EPS), which initially act as barriers
against chemical disinfectants.30 Based on previous studies,26–

29 we believe that the combination of LIPUS and 0.35% PI
can effectively eliminate biofilms. However, no studies have

been reported on this specific topic. Therefore, the aim of
this study was to investigate the antibiofilm potential and
safety of LIPUS combined with 0.35% PI in a rat DAIR model
of PJI. Various parameters, including general status, serum
biochemical markers, weightbearing analysis, radiographs,
micro-CT analysis, scanning electron microscopy (SEM) of the
prostheses, microbiological analysis, macroscope evaluation,
and histopathology assessment, were examined. We hypothe-
sized that LIPUS can enhance the efficacy of 0.35% PI in
biofilm eradication without impairing local soft-tissue in these
models.

Methods
Animals and ethical approval
A total of 56 Sprague-Dawley rats of specific pathogen-free
(SPF) grade (male, aged 11 weeks, mean weight 259 g
(standard deviation (SD) 6)) were procured from the Ani-
mal Center of Xinjiang Medical University (Ürümqi, China).
The rats were individually tagged and housed in ventilated
cages, with five animals per cage, under controlled condi-
tions of 22°C ± 2°C temperature (humidity: 55% ± 5%) and
a 12-hour dark/light cycle. The rats were provided with ad
libitum access to a standard rodent diet and water. The study
protocol received approval from the Animal Center of Xinjiang
Medical University, and was conducted in accordance with the
guidelines of the Institutional Animal Care and Use Committee
(IACUC). An ARRIVE checklist is included in the Supplementary
Material to show that the ARRIVE guidelines were adhered to
in this study.

Bacteria
Individual strains (MRSA; ATCC BAA-1556) were grown in
tryptic soy broth (TSB; Solarbio, China). The log-phase bacterial
suspension was centrifuged (the supernatant was discarded),
and was then resuspended with PBS to achieve a concen-
tration of approximately 1.5 × 107 colony-forming units
(CFUs)/ml.

In vivo rat model of acute PJI
As occurred in our previous experiments, all the rats survived.31

A total of 56 rats were randomly divided into four groups: 1)
Control group (sham, n = 14); 2) PI group (0.35% PI, n = 14);
3) LIPUS and saline group (LIPUS combined with saline, n =
14); and 4) LIPUS and PI group (LIPUS combined with 0.35%
PI, n = 14). LIPUS with a frequency of 25 KHz and intensity of
300 mW/cm2 (duty cycle of 70%) was applied.32 Based on a
study investigating DAIR for acute knee PJI in mice,33 general
anaesthesia was induced by intraperitoneal administration of
ketamine (60 mg/kg) and xylazine (6 mg/kg). The surgeon
(TW, CY) was blinded to group allocations. Subsequently,
the left legs of all the rats were shaved and disinfected.
A medial parapatellar approach was employed, followed by
patellar dislocation to expose the distal part of the femur. In
four groups, the femur medullary canal was drilled using a
1.2 mm Kirschner wire, and a medical-grade screw (1.5 mm
diameter, 14 mm length; Baishe, China) made of titanium alloy
(Ti-6AI-4V) was implanted into the canal. Following suturing
of the capsule, 30 μl of 1.5 × 107 CFUs/ml suspension of ATCC
BAA-1556 was injected into the articular cavity (Supplemen-
tary Figure a). Post-surgery pain was managed using bupre-
norphine at a dosage of 0.1 mg/kg for three days.
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Surgical procedure for DAIR
On day 5, all rats were anaesthetized by intraperitoneal
administration of ketamine (60 mg/kg) and xylazine (6 mg/kg).
Blinding was not possible as the PI could not be concealed
from the surgeon. The left knee was shaved and disinfec-
ted. After sterile draping of the surgical site, a 2 cm skin
incision was made along the old incision. After the articular
cavity was exposed, infected and inflammatory synovium and
soft-tissues were removed. Then, according to their dedicated
groups, the knee was immersed in 80 ml PI or saline loaded
into a sterile funnel (diameter 90 mm) for three minutes, or
combined with a LIPUS probe located in the middle of the
funnel for three minutes (Supplementary Figure b). Thereafter,
the joint was washed with saline prior to the capsule clo-
sure. Subsequently, they received intraperitoneal injections of
vancomycin (88 mg/kg, 1 ml, every 12 hours, equivalent to 1 g
intravenous (IV) every 12 hours in a patient weighing 70 kg) for
two weeks, but the Control group received just 1 ml of saline.34

On day 19, all rats were euthanized with overdose of ketamine
and xylazine. Then, the tissue was harvested in compliance
with the approved protocol of the IACUC (Figure 1).

General status and serum biochemical markers
The body temperature and weight of the rats (n = 6 per
group) were measured before surgery and on days 1, 3, 5,
9, 13, and 19. The serum amyloid A (SAA), interleukin (IL)-6,
tumour necrosis factor-alpha (TNF-α), and IL-1β were used as
serum biochemical markers of acute infection in rats (n = 6 per
group), as previously described,31,35 and were measured with
an enzyme-linked immunosorbent assay kit (Cusabio, China).

Weightbearing analysis
The weightbearing analysis of the rats (n = 6 per group) was
assessed using ink blot analysis, and was graded for each rat
as full (3 points), partial (2 points), toe-touch (1 point), or no
weightbearing (0 points).36 The front paws of the rats were
covered with yellow ink, and the hind paws were covered with
green ink.

Radiograph evaluation and micro-CT analysis of the knee
Anteroposterior and lateral radiograph images were obtained
for the left limbs of the animals (n = 6 per group) on day
19 (Kangpai Medical Technology, China). A high-resolution
micro-CT of the femur (n = 5 per group) was conducted
using a SkyScan 1172 scanner (Bruker, Germany). The distal
5 mm of the stem and 3 mm from the implant surface were
selected as the regions of interest. 3D structural parameters,
including bone mineral density (BMD) (g cm-3), bone volume
fraction (BV/TV) (%), and trabecular thickness (Tb.Th) (mm),
were analyzed to evaluate reactive bone changes. The results
of radiographs and micro-CT were assessed by a single,
experienced observer (YW) blinded to the treatment group.

Microbiological analysis
After euthanasia, tissues, bone, and prostheses (n = 6 per
group) were collected with sterile instruments. The tissues and
bone were cut into small pieces, weighed, placed in sterile
saline solution (ratio of tissues or bone to saline solution was
1:4, w/v), and homogenized using a sterile tissue grinder; the
retrieved prosthesis was placed in 2 ml sterile saline solution,
sonicated for five minutes, and vortexed for 30 seconds to

Fig. 1
Flowchart illustrating the treatment scheme for the animals in this experiment. After all the rats developed acute periprosthetic joint infection (PJI),
the four treatment groups subjected to debridement, antibiotics, and implant retention (DAIR) were as follows: Control group (sham); PI group (0.35%
povidone-iodine); LIPUS and saline group (low-intensity pulsed ultrasound combined with saline); and LIPUS and PI group (low-intensity pulsed
ultrasound combined with 0.35% povidone-iodine). IL, interleukin; MRSA, methicillin-resistant Staphylococcus aureus; SAA, serum amyloid A; SEM,
scanning electron microscopy; TNF-α, tumour necrosis factor-alpha.
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dislodge any attached bacteria.37 The suspensions from the
homogenized tissues, bone, and sonicated prostheses were
serially diluted, and 100 µl of each dilution was plated on TSB
agar plates, which were incubated overnight at 37°C.

Scanning electron microscopy
The prostheses (n = 3 per group) were fixed in 2.5% glu-
taraldehyde at 4°C for 24 hours and osmium acid for two
hours, dehydrated in alcohol gradient, dried with a critical
point dryer, coated with a conductive coating using a sputter
coater, and observed using a JSM-6390 LV scanning electron
microscope (JEOL, Japan).

Macroscope and histopathology evaluation
Local soft-tissue and cartilage damage was evaluated on
the basis of the criteria of the modified  Rissing scale score
(n = 14 per group).38  Bone histopathology staining (n = 6
per group) with haematoxylin and eosin (H&E) was used to
evaluate the tissue morphology of any inflammation.  The
histological score of the tissues referred to the modified
Petty’s scale.39-41  Histopathology was assessed and scored
by a single, experienced observer (YW) blinded to the
treatment group.

Statistical analysis
According to prior rat PJI studies,42,43 an appropriate sample
size (n = 14 per group) was chosen. Data were analyzed
using GraphPad Prism 9 (GraphPad Software, USA), and are
presented as means and standard errors of the means. Normal
distribution of data was tested with Shapiro-Wilk test. The
independent-samples t-test or Mann-Whitney U test was used
for comparing two groups. One-way analysis of variance
(ANOVA) with Tukey’s multiple comparison test, or Kruskal-
Wallis test with Dunn’s multiple comparison test, was used for
more than two groups, but Mann-Whitney U test was used for
the comparison of colony counts between different groups.
Statistical significance was set at p < 0.05.

Results
General status, serum biochemical markers, and
weightbearing analysis
No significant differences were observed in body tempera-
ture or weight among the four groups (Figures 2a and 2b).
The Control group demonstrated higher serum levels of SAA,
IL-6, IL-1β, and TNF-α compared to the LIPUS and PI group
(Figures 2c to 2f), however LIPUS and PI exhibited a significant
reduction in the levels of IL-6 and IL-1β compared with the
LIPUS and saline group (Figures 2d and 2f; p = 0.008, one-
way ANOVA; p = 0.015, Kruskal-Wallis test, respectively). The
weightbearing scores in the LIPUS and PI group were higher
than those of the Control group and LIPUS and saline group
(Figures 3a and 3b).

Radiological evaluation
Radiographs showed that the prostheses were still in position
within the distal femoral metaphysis. All except the LIPUS and
PI groups were accompanied by signs of osteolysis around the
prosthesis, of which the Control group was the most serious,
while milder osteolysis was observed in rats from the PI group,
and LIPUS and saline groups. No osteolysis was observed in
the LIPUS and PI group (Figures 4a and 4b). Additionally,
3D micro-CT scans indicated severe bone destruction in the
Control group, whereas only mild bone destruction was seen
in the PI and LIPUS and saline groups. There was no bone
destruction observed in the LIPUS and PI group (Figure 5a).
Moreover, the LIPUS and PI group exhibited higher values in
BMD, BV/TV, and Tb.Th compared to the Control, PI, or LIPUS
and saline groups (Figures 5b to 5d).

Evaluation of microbial counts
A substantial presence of MRSA bacteria was observed on the
implants in the Control, PI, and LIPUS and saline groups by
SEM in stark contrast to the LIPUS and PI group; these bacteria
were found to be surrounded by erythrocytes. Conversely, no
bacterial colonies were detected in the LIPUS and PI group

Fig. 2
General status (temperature and body weight) and serum inflammatory markers. a) Changes in body temperature before surgery (day 0) and on days
1, 3, 5, 9, 13, and 19 (n = 6 per group). b) Changes in body weight before surgery (day 0) and on days 1, 3, 5, 9, 13, and 19 (n = 6 per group). c) to f )
The level of: c) serum amyloid A (SAA); d) interleukin (IL)-6; e) tumour necrosis factor-alpha (TNF-α); and f ) IL-1β (n = 6 per group). The four treatment
groups were as follows: Control group (sham); PI group (0.35% povidone-iodine); LIPUS and saline group (low-intensity pulsed ultrasound combined
with saline); and LIPUS and PI group (low-intensity pulsed ultrasound combined with 0.35% povidone-iodine). Data are presented as means and
standard errors of the means. *p < 0.05, **p < 0.01; one-way analysis of variance with Tukey’s multiple comparison test or Kruskal-Wallis test with
Dunn’s multiple comparison test.
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(Figure 6a). The CFU counts of each sample in the LIPUS and PI
group were lower than those of the Control, PI, and LIPUS and
saline groups (Figures 6b to 6e).

Evaluation of knee macroscope and inflammation
Macroscopic examination of the surgical knee revealed joint
swelling, purulent formation, and cartilage destruction in the
Control group and LIPUS and saline group. In contrast, the
PI group exhibited mild changes, while the LIPUS and PI
group showed complete healing without any signs of joint

swelling, purulent formation, or cartilage destruction (Figure
7a). Additionally, on day 19, the Rissing scale scores in the
LIPUS and PI group were lower compared to the Control, PI,
and LIPUS and saline groups (Figure 7c). The bone tissues of
the Control, PI, and LIPUS and saline groups exhibited purulent
inflammation. However, this inflammation was significantly
reduced in the LIPUS and PI group, which showed minimal
inflammatory cell infiltration (Figure 7b). The LIPUS and PI
group had lower Petty’s scale scores compared to the Control,
PI, and LIPUS and saline groups (Figure 7d).

Fig. 3
Evaluation of weightbearing analysis. a) Representative images of ink blotting trails of different groups. RH, right hind (green); LH, left hind (green); RF,
right front (yellow); LF, left front (yellow). b) Grade of weightbearing score among the different groups (n = 6 per group). The four treatment groups
were as follows: Control group (sham); PI group (0.35% povidone-iodine); LIPUS and saline group (low-intensity pulsed ultrasound combined with
saline); and LIPUS and PI group (low-intensity pulsed ultrasound combined with 0.35% povidone-iodine). Data are presented as means and standard
errors of the means. *p < 0.05, **p < 0.01; one-way analysis of variance.

Fig. 4
Radiograph evaluation of the knee joint and prosthesis on day 19. a) Anteroposterior radiograph and b) lateral radiograph. Red arrows indicate
osteolysis (n = 6 per group). The four treatment groups were as follows: Control group (sham); PI group (0.35% povidone-iodine); LIPUS and saline
group (low-intensity pulsed ultrasound combined with saline); and LIPUS and PI group (low-intensity pulsed ultrasound combined with 0.35%
povidone-iodine).
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Discussion
Although the efficacy of combining LIPUS with disinfectants
to eliminate biofilm has been demonstrated in vitro,28,29

its effectiveness in vivo remains unclear. In this study, we

investigated the use of LIPUS combined with 0.35% PI and
demonstrated its ability to alleviate acute PJI compared to
LIPUS or 0.35% PI alone. Furthermore, its combination did not
impair local soft-tissue. This study is the first to assess the

Fig. 5
Micro-CT evaluation of the knee joint in different groups on day 19. a) Micro-CT scan of 3D and bone reconstruction of the femur with retained
implants. Red arrows indicate osteolysis. b) to d) Quantitative micro-CT analysis of distal femur of: b) bone mineral density (BMD); c) bone volume
fraction (BV/TV); and d) trabecular thickness (Tb.Th) (n = 5 per group). The four treatment groups were as follows: Control group (sham); PI group
(0.35% povidone-iodine); LIPUS and saline group (low-intensity pulsed ultrasound combined with saline); and LIPUS and PI group (low-intensity
pulsed ultrasound combined with 0.35% povidone-iodine). Data are presented as means and standard errors of the means. *p < 0.05, **p < 0.01;
one-way analysis of variance with Tukey’s multiple comparison test or Kruskal-Wallis test with Dunn’s multiple comparison test. ns, non-significant.

Fig. 6
Microbiological evaluation in each treatment group on day 19. a) The bacteria on the surface of the implant in different groups were observed
by scanning electron microscopy (SEM), with high magnification (30× and 5,000×). The red arrows indicate bacteria and yellow stars indicate
erythrocytes (n = 3 per group). b) to e) Analysis of bacteria culture counts from: b) knee joint bone; c) soft-tissues; d) implants; and e) total
knee (n = 6 per group). The four treatment groups were as follows: Control group (sham); PI group (0.35% povidone-iodine); LIPUS and saline
group (low-intensity pulsed ultrasound combined with saline); and LIPUS and PI group (low-intensity pulsed ultrasound combined with 0.35%
povidone-iodine). Data are presented as means and standard errors of the means. **p < 0.01 (compared with Control group), ##p < 0.01 (compared
with PI group), ΔΔp < 0.01 (compared with LIPUS and saline group); Mann-Whitney U test.
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antibiofilm efficacy of LIPUS combined with 0.35% PI therapy
using a rat DAIR model of PJI. Based on our results, further
investigation is warranted to determine the clinical applicabil-
ity of this method for effectively eliminating biofilm.

Chronic PJIs are known to cause osteolysis due to
bone metabolism disorders. Radiological analysis revealed
substantial radiolucency and reactive bone changes around
infected implants.43 Similarly, we observed similar phenom-
ena and substantial reactive bone changes in the control
group using radiographs and micro-CT. In line with this result,
previous studies have also demonstrated substantial bone
destruction around infected implants caused by bacteria.34,44,45

Interestingly, the LIPUS and 0.35% PI combination group
exhibited no radiolucency and minimal reactive bone changes,
surpassing the efficacy of monotherapy. This finding sug-

gests that the combination therapy may effectively eliminate
bacteria and prevent osteolysis.

Biofilm is a major contributor to infection recurrence,
as it provides protection to enclosed organisms against
conventional antimicrobial agents and the host immune
system.46 Therefore, managing biofilm is crucial in control-
ling PJI. PI has been recommended for controlling PJI in
the context of the DAIR procedure, as stated by the Inter-
national Consensus Meeting on PJI.6 In a previous in vitro
study, a one-minute exposure to 0.35% PI reduced MRSA
biofilm by 88.24% after 72 hours of incubation.47 Furthermore,
Premkumar et al48 found that 10% PI showed the highest
efficacy against biofilm-based bacteria in vitro, surpassing
0.3% PI and other commercial antiseptics after a three-minute
exposure, regardless of the toxicity of high concentrations
of PI. Conversely, a study in vivo showed that 0.35% PI as

Fig. 7
Macroscopic examination and histopathological assessment of the bone surrounding the prosthesis. a) Macroscopic examination of the extra-
articular capsule and intra-articular bone and the prosthesis on day 19. b) Histopathological haematoxylin and eosin (H&E) staining of the femur bone
in each group on day 19. c) Rissing scale scores used for assessment of soft-tissue and bone damage on day 19 (n = 14 per group). d) Mean femur
bone histopathological scores based on the criteria of modified Petty’s scale on day 19 in each treatment group (n = 6 per group). The four treatment
groups were as follows: Control group (sham); PI group (0.35% povidone-iodine); LIPUS and saline group (low-intensity pulsed ultrasound combined
with saline); and LIPUS and PI group (low-intensity pulsed ultrasound combined with 0.35% povidone-iodine). Data are presented as means and
standard errors of the means. **p < 0.01 (compared with Control group), #p < 0.05, ##p < 0.01 (compared with PI group), ΔΔp < 0.01 (compared with
LIPUS and saline group); one-way analysis of variance.
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prophylaxis for exposure for three minutes did not change the
rate of infection.49 Similarly, PI monotherapy in our study did
not effectively control PJI from the result of SEM and bacterial
count, possibly due to the complex and compact structure
of biofilm, limiting the penetration of PI to internal bacte-
ria.50 However, although LIPUS can eliminate EPS of biofilms
by acoustic cavitation as we described previously, the LIPUS
and saline group was less effective in antibiofilm than the PI
group. Pitt and Ross51 confirmed that the 2 W/cm2 ultrasound
simultaneously increases the rate of transport of oxygen and
nutrients to bacteria, and increases the rate of transport of
waste products away from bacteria, thereby enhancing biofilm
growth while preserving microbial viability. Pitt and Ross51

also showed in vivo that 100 mW/cm2 LIPUS alone did not
reduce bacterial viability in Escherichia coli biofilm, whereas
300 mW/cm2 LIPUS combined with gentamicin substantially
reduced bacterial viability.27,32 This is in line with our results.
Of note, when LIPUS was combined with 0.35% PI, biofilm
elimination was observed on the implants, likely because
LIPUS disrupted the biofilm, facilitating the penetration of
PI to kill internal bacteria. These results align with recent
studies, indicating that ultrasound can enhance the efficacy
of disinfectants against biofilm in vitro.29,52 Previous studies
have also found a synergistic effect of LIPUS and antibiotics
on bacterial biofilm in vivo due to LIPUS, increasing penetra-
tion of the antibiotics.53,54 Notably, the antibiofilm efficacy
observed through SEM and bacterial count correlated with the
absence of radiolucency and minimal reactive bone changes
in radiological evaluation.

While the efficacy of biofilm elimination is important,
the safety of LIPUS and PI should also be considered. Rediske
et al32 reported that continuous ultrasound with an intensity
of 300 mW/cm2 damages soft tissue in vivo, but LIPUS with
the same intensity does not cause any detrimental impact on
the surrounding tissue. Additionally, LIPUS with an intensity of
300 mW/cm2 does not affect cell viability in vitro.55 However,
for PI, the potential toxicity of high concentrations should
not be ignored, as evidenced by the study by Newton Ede et
al,56 wherein they demonstrated that osteoblasts exposed to
0.35% PI for three minutes experienced reduced bone nodule
mineralization. Further, a large clinical series has demonstra-
ted the safety and cost-effectiveness of 0.35% PI in reducing
PJI for primary arthroplasty.57 However, we built a PJI model
to observe local tissue damage due to inflammation, and
observed that the incision of the LIPUS and PI group com-
pletely healed without sinuses or abscesses. Therefore, we
believe that LIPUS combined with 0.35% PI is safe to use in
procedures, without impairing local soft-tissue.

This study has several limitations. First, we used a
single-strain in vivo model, which inherently limits its clinical
applicability. Second, while previous in vivo studies have
demonstrated the presence of immature biofilm on implants
as early as day 3 using SEM,58,59 we believe that allowing the
infection to progress for five days in this DAIR model results
in an excessive infection that exceeds the severity observed
clinically within five days. Third, our study solely employed
systemic vancomycin without the inclusion of other adjunctive
oral antibiotics, such as rifampicin, which could yield a more
favourable outcome in the current experiment. Fourth, only
male rats were included in our experiments, as the male sex
is one of the risk factors associated with the development of

PJI.60,61 Lastly, this was a preliminary animal study, and the
period of debridement in rats was shorter than at clinical
stage, and rats may not fully recapitulate human PJI. The
results need to be verified through a large number of clinical
studies to popularize and apply this clinically.

In conclusion, our study has demonstrated the robust
antibiofilm potential of combining LIPUS with 0.35% PI in
treating acute PJI in a rat model. Furthermore, we observed no
adverse effects of LIPUS and 0.35% PI on local soft-tissues. This
method holds promise for assisting in the future treatment of
acute PJI.

Supplementary material
Figures illustrating the establishment of the periprosthetic joint
infection rat model and the debridement, antibiotics, and implant
retention procedure process of the low-intensity pulsed ultrasound
device combined with 0.35% povidone-iodine. An ARRIVE checklist
is also included to show that the ARRIVE guidelines were adhered to
in this study.
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