Advertisement for orthosearch.org.uk
Results 1 - 50 of 122
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 558 - 565
1 Apr 2011
Xie X Wang X Zhang G Liu Z Yao D Hung L Hung VW Qin L

Corticosteroids are prescribed for the treatment of many medical conditions and their adverse effects on bone, including steroid-associated osteoporosis and osteonecrosis, are well documented. Core decompression is performed to treat osteonecrosis, but the results are variable. As steroids may affect bone turnover, this study was designed to investigate bone healing within a bone tunnel after core decompression in an experimental model of steroid-associated osteonecrosis. A total of five 28-week-old New Zealand rabbits were used to establish a model of steroid-induced osteonecrosis and another five rabbits served as controls. Two weeks after the induction of osteonecrosis, core decompression was performed by creating a bone tunnel 3 mm in diameter in both distal femora of each rabbit in both the experimental osteonecrosis and control groups. An in vivo micro-CT scanner was used to monitor healing within the bone tunnel at four, eight and 12 weeks postoperatively. At week 12, the animals were killed for histological and biomechanical analysis. In the osteonecrosis group all measurements of bone healing and maturation were lower compared with the control group. Impaired osteogenesis and remodelling within the bone tunnel was demonstrated in the steroid-induced osteonecrosis, accompanied by inferior mechanical properties of the bone. We have confirmed impaired bone healing in a model of bone defects in rabbits with pulsed administration of corticosteroids. This finding may be important in the development of strategies for treatment to improve the prognosis of fracture healing or the repair of bone defects in patients receiving steroid treatment


Bone & Joint Research
Vol. 5, Issue 6 | Pages 218 - 224
1 Jun 2016
Cheng N Guo A Cui Y

Objectives. Recent studies have shown that systemic injection of rapamycin can prevent the development of osteoarthritis (OA)-like changes in human chondrocytes and reduce the severity of experimental OA. However, the systemic injection of rapamycin leads to many side effects. The purpose of this study was to determine the effects of intra-articular injection of Torin 1, which as a specific inhibitor of mTOR which can cause induction of autophagy, is similar to rapamycin, on articular cartilage degeneration in a rabbit osteoarthritis model and to investigate the mechanism of Torin 1’s effects on experimental OA. Methods. Collagenase (type II) was injected twice into both knees of three-month-old rabbits to induce OA, combined with two intra–articular injections of Torin 1 (400 nM). Degeneration of articular cartilage was evaluated by histology using the Mankin scoring system at eight weeks after injection. Chondrocyte degeneration and autophagosomes were observed by transmission electron microscopy. Matrix metallopeptidase-13 (MMP-13) and vascular endothelial growth factor (VEGF) expression were analysed by quantitative RT-PCR (qPCR).Beclin-1 and light chain 3 (LC3) expression were examined by Western blotting. Results. Intra-articular injection of Torin 1 significantly reduced degeneration of the articular cartilage after induction of OA. Autophagosomes andBeclin-1 and LC3 expression were increased in the chondrocytes from Torin 1-treated rabbits. Torin 1 treatment also reduced MMP-13 and VEGF expression at eight weeks after collagenase injection. Conclusion. Our results demonstrate that intra-articular injection of Torin 1 reduces degeneration of articular cartilage in collagenase-induced OA, at least partially by autophagy activation, suggesting a novel therapeutic approach for preventing cartilage degeneration and treating OA. Cite this article: N-T. Cheng, A. Guo, Y-P. Cui. Intra-articular injection of Torin 1 reduces degeneration of articular cartilage in a rabbit osteoarthritis model. Bone Joint Res 2016;5:218–224. DOI: 10.1302/2046-3758.56.BJR-2015-0001


Bone & Joint Research
Vol. 1, Issue 9 | Pages 218 - 224
1 Sep 2012
Tabuchi K Soejima T Kanazawa T Noguchi K Nagata K

Objectives. The purpose of this study was to evaluate chronological changes in the collagen-type composition at tendon–bone interface during tendon–bone healing and to clarify the continuity between Sharpey-like fibres and inner fibres of the tendon. Methods. Male white rabbits were used to create an extra-articular bone–tendon graft model by grafting the extensor digitorum longus into a bone tunnel. Three rabbits were killed at two, four, eight, 12 and 26 weeks post-operatively. Elastica van Gieson staining was used to colour 5 µm coronal sections, which were examined under optical and polarised light microscopy. Immunostaining for type I, II and III collagen was also performed. Results. Sharpey-like fibres comprised of type III collagen in the early phase were gradually replaced by type I collagen from 12 weeks onwards, until continuity between the Sharpey-like fibres and inner fibres of the tendon was achieved by 26 weeks. Conclusions. Even in rabbits, which heal faster than humans, an observation period of at least 12 to 26 weeks is required, because the collagen-type composition of the Sharpey-like fibre bone–tendon connection may have insufficient pullout strength during this period. These results suggest that caution is necessary when permitting post-operative activity in humans who have undergone intra-bone tunnel grafts


Bone & Joint Research
Vol. 6, Issue 3 | Pages 162 - 171
1 Mar 2017
Walker JA Ewald TJ Lewallen E Van Wijnen A Hanssen AD Morrey BF Morrey ME Abdel MP Sanchez-Sotelo J

Objectives. Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated in vivo animal model of knee arthrofibrosis. Materials and Methods. A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis. Results. Animals that underwent arthrotomy had equivalent joint contractures regardless of scaffold implantation (-13.9° versus -10.9°, equivalence limit 15°). Animals that underwent surgery to induce contracture did not demonstrate equivalent joint contractures with (41.8°) or without (53.9°) collagen scaffold implantation. Chondral damage occurred in similar rates with (11 of 48) and without (nine of 48) scaffold implantation. No significant difference in synovitis was noted between groups. Absorption of the collagen scaffold occurred within eight weeks in all animals. Conclusion. Our data suggest that intra-articular implantation of a collagen sponge does not induce synovitis or cartilage damage. Implantation in a native joint does not seem to induce contracture. Implantation of the collagen sponge in a rabbit knee model of contracture may decrease the severity of the contracture. Cite this article: J. A. Walker, T. J. Ewald, E. Lewallen, A. Van Wijnen, A. D. Hanssen, B. F. Morrey, M. E. Morrey, M. P. Abdel, J. Sanchez-Sotelo. Intra-articular implantation of collagen scaffold carriers is safe in both native and arthrofibrotic rabbit knee joints. Bone Joint Res 2016;6:162–171. DOI: 10.1302/2046-3758.63.BJR-2016-0193


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 5 | Pages 921 - 925
1 Sep 1999
Aizawa T Kokubun S Kawamata T Tanaka Y Roach HI

Growth plates taken from five- to 20-week-old Japanese white rabbits were immunostained for c-Myc protein. This was localised both in the proliferating zone and upper hypertrophic zone at five weeks, whereas after ten weeks it was found mostly in the lower hypertrophic zone. The proliferating chondrocytes tended to show nuclear staining and the hypertrophic cells cytoplasmic staining, although the terminal hypertrophic chondrocytes sometimes expressed the protein in their nuclei. In the younger rabbits, c-Myc co-localised with proliferating cell nuclear antigen, whereas in the hypertrophic zone of older rabbits, it was present in some chondrocytes the nuclei of which also contained DNA breaks. Our study suggests that, in the rabbit growth plate, c-Myc is associated with different cellular processes, depending on the age and the developmental stage of the chondrocytes


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 721 - 729
1 May 2005
Yanai T Ishii T Chang F Ochiai N

We produced large full-thickness articular cartilage defects in 33 rabbits in order to evaluate the effect of joint distraction and autologous culture-expanded bone-marrow-derived mesenchymal cell transplantation (ACBMT) at 12 weeks. After fixing the knee on a hinged external fixator, we resected the entire surface of the tibial plateau. We studied three groups: 1) with and without joint distraction; 2) with joint distraction and collagen gel, and 3) with joint distraction and ACBMT and collagen gel. The histological scores were significantly higher in the groups with ACBMT collagen gel (p < 0.05). The area of regenerated soft tissue was smaller in the group allowed to bear weight (p < 0.05). These findings suggest that the repair of large defects of cartilage can be enhanced by joint distraction, collagen gel and ACBMT


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 320 - 325
1 Feb 2010
Wang G Yang H Li M Lu S Chen X Cai X

In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study. The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute


Bone & Joint Research
Vol. 3, Issue 11 | Pages 310 - 316
1 Nov 2014
Tomaszewski R Bohosiewicz J Gap A Bursig H Wysocka A

Objectives. The aim of this experimental study on New Zealand’s white rabbits was to investigate the transplantation of autogenous growth plate cells in order to treat the injured growth plate. They were assessed in terms of measurements of radiological tibial varus and histological characteristics. . Methods. An experimental model of plate growth medial partial resection of the tibia in 14 New Zealand white rabbits was created. During this surgical procedure the plate growth cells were collected and cultured. While the second surgery was being performed, the autologous cultured growth plate cells were grafted at the right tibia, whereas the left tibia was used as a control group. . Results. Histological examinations showed that the grafted right tibia presented the regular shape of the plate growth with hypertrophic maturation, chondrocyte columniation and endochondral calcification. Radiological study shows that the mean tibial deformity at the left angle was 20.29° (6.25 to 33) and 7.21° (5 to 10) in the right angle. . Conclusion. This study has demonstrated that grafting of autogenous cultured growth plate cells into a defect of the medial aspect of the proximal tibial physis can prevent bone bridge formation, growth arrest and the development of varus deformity. Cite this article: Bone Joint Res 2014;3:310–16


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 7 | Pages 1077 - 1082
1 Sep 2000
Shimazaki A Inui K Azuma Y Nishimura N Yamano Y

We investigated the effects of low-intensity pulsed ultrasound on distraction osteogenesis in a rabbit model. Callotasis of the right tibia was performed in 70 male Japanese white rabbits using mini-external fixators. In the first part of the study in 64 animals using normal distraction (waiting period seven days; distraction rate 0.5 mm/12 hours; distraction period ten days), we evaluated the distraction site by radiography, measurement of the bone mineral density (BMD), mechanical testing, and histology. In the second part in six rabbits using fast distraction (waiting period 0 days; distraction rate 1.5 mm/12 hours; distraction period seven days) the site was evaluated radiologically. Half of the animals (35) had received ultrasound to their right leg (30mW/cm. 2. ) for 20 minutes daily after ceasing distraction (ultrasound group), while rigid fixation only was maintained in the other half (control group). With normal distraction, the hard callus area, as shown by radiography, the BMD, and the findings on mechanical testing, were significantly greater in those receiving ultrasound than in the control group. Histological analysis showed no tissue damage attributable to exposure to ultrasound. With fast distraction, immature bone regeneration was observed radiologically in the control group, while bone maturation was achieved in the ultrasound group. We conclude that ultrasound can accelerate bone maturation in distraction osteogenesis in rabbits, even in states of poor callotasis


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1122 - 1129
1 Aug 2007
Watanabe K Tsuchiya H Sakurakichi K Tomita K

The feasibility of bone transport with bone substitute and the factors which are essential for a successful bone transport are unknown. We studied six groups of 12 Japanese white rabbits. Groups A to D received cylindrical autologous bone segments and groups E and F hydroxyapatite prostheses. The periosteum was preserved in group A so that its segments had a blood supply, cells, proteins and scaffold. Group B had no blood supply. Group C had proteins and scaffold and group D had only scaffold. Group E received hydroxyapatite loaded with recombinant human bone morphogenetic protein-2 and group F had hydroxyapatite alone. Distraction osteogenesis occurred in groups A to C and E which had osteo-conductive transport segments loaded with osteo-inductive proteins. We conclude that scaffold and proteins are essential for successful bone transport, and that bone substitute can be used to regenerate bone


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 2 | Pages 289 - 294
1 Mar 2001
Im G Kim D Shin J Hyun C Cho W

In 16 mature New Zealand white rabbits mesenchymal stem cells were aspirated from the bone marrow, cultured in monolayer and implanted on to a full-thickness osteochondral defect artificially made on the patellar groove of the same rabbit. A further 13 rabbits served as a control group. The rabbits were killed after 14 weeks. Healing of the defect was investigated histologically using haematoxylin and eosin and Safranin-O staining and with immunohistochemical staining for type-II collagen. We also used a reverse transcription-polymerase chain reaction (RT-PCR) to detect mRNA of type-I and type-II collagen. The semiquantitative histological scores were significantly higher in the experimental group than in the control group (p < 0.05). In the experimental group immunohistochemical staining on newly formed cartilage was more intense for type-II collagen in the matrix and RT-PCR from regenerated cartilage detected mRNA for type-II collagen in mature chondrocytes. These findings suggest that repair of cartilage defects can be enhanced by the implantation of cultured mesenchymal stem cells


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 977 - 983
1 Jul 2007
Lee JH Prakash KVB Pengatteeri YH Park SE Koh HS Han CW

We attempted to repair full-thickness defects in the articular cartilage of the trochlear groove of the femur in 30 rabbit knee joints using allogenic cultured chondrocytes embedded in a collagen gel. The repaired tissues were examined at 2, 4, 8, 12 and 24 weeks after operation using histological and histochemical methods. The articular defect filling index measurement was derived from safranin-O stained sections. Apoptotic cellular fractions were derived from analysis of apoptosis in situ using TUNEL staining, and was confirmed using caspase-3 staining along with quantification of the total cellularity. The mean articular defect filling index decreased with time. After 24 weeks it was 0.7 (. sd. 0.10), which was significantly lower than the measurements obtained earlier (p < 0.01). The highest mean percentage of apoptotic cells were observed at 12 weeks, although the total cellularity decreased with time. Because apoptotic cell death may play a role in delamination after chondrocyte transplantation, anti-apoptotic gene therapy may protect transplanted chondrocytes from apoptosis


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 682 - 687
1 May 2006
Kanazawa T Soejima T Murakami H Inoue T Katouda M Nagata K

We studied bone-tendon healing using immunohistochemical methods in a rabbit model. Reconstruction of the anterior cruciate ligament was undertaken using semitendinosus tendon in 20 rabbits. Immunohistochemical evaluations were performed at one, two, four and eight weeks after the operation. The expression of CD31, RAM-11, VEGF, b-FGF, S-100 protein and collagen I, II and III in the bone-tendon interface was very similar to that in the endochondral ossification. Some of the type-III collagen in the outer layer of the graft, which was deposited at a very early phase after the operation, was believed to have matured into Sharpey-like fibres. However, remodelling of the tendon grafted into the bone tunnel was significantly delayed when compared with this ossification process. To promote healing, we believe that it is necessary to accelerate remodelling of the tendon, simultaneously with the augmentation of the ossification


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 693 - 700
1 May 2007
Ishii I Mizuta H Sei A Hirose J Kudo S Hiraki Y

We have investigated in vitro the release kinetics and bioactivity of fibroblast growth factor-2 (FGF-2) released from a carrier of fibrin sealant. In order to evaluate the effects of the FGF-2 delivery mechanism on the repair of articular cartilage, full-thickness cylindrical defects, 5 mm in diameter and 4 mm in depth, which were too large to undergo spontaneous repair, were created in the femoral trochlea of rabbit knees. These defects were then filled with the sealant. Approximately 50% of the FGF-2 was released from the sealant within 24 hours while its original bioactivity was maintained. The implantation of the fibrin sealant incorporating FGF-2 successfully induced healing of the surface with hyaline cartilage and concomitant repair of the subchondral bone at eight weeks after the creation of the defect. Our findings suggest that this delivery method for FGF-2 may be useful for promoting regenerative repair of full-thickness defects of articular cartilage in humans


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 142 - 147
1 Jan 2003
Hasegawa M Doi Y Uchida A

Bone apatite contains carbonate and is therefore not pure hydroxyapatite. We have successfully developed sintered carbonate apatite (CA) with a concentration of carbonate of 6 weight% and have evaluated its osteoconductive and bioresorption characteristics. Cylindrical porous sintered CA and sintered hydroxyapatite (HA) measuring 4 × 4 mm with a porosity of 20% were implanted into surgically-created bone defects in the knees of rabbits. The animals were killed after 1, 3, 6 and 12 months. The defects were evaluated by microfocus CT and histology. Bone growth into and around both materials increased. Newly-formed bone was placed in direct contact with both. Osteoclast-like cells resorbed only CA, and were coupled with osteoblasts. The porosity of sintered CA increased, indicating bioresorption, whereas that of sintered HA did not increase. Our findings indicate that sintered CA may be useful as a bioresorbable bone substitute


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 125 - 129
1 Jan 1999
Tsubota S Tsuchiya H Shinokawa Y Tomita K Minato H

We carried out limb lengthening in rabbits and then transplanted osteoblast-like cells derived from the tibial periosteum to the centres of distracted callus immediately after distraction had been terminated. Two weeks later the transaxial area ratio at the centre of the distracted callus and the bone mineral density (BMD) were significantly higher in the transplanted group, by 21% and 42%, respectively, than in the non-injected group or the group injected with physiological saline (p < 0.05). Callus BMD as a percentage of density in uninvolved bone was also significantly higher in the transplanted group (p < 0.05) than in the other two groups, by 27% and 20% in the second and fourth weeks, respectively (p < 0.05). Mechanically, the callus in the transplanted group tended to be stronger as shown by the three-point bending test although the difference in fracture strength was not statistically significant. Our results show that transplantation of osteoblast-like cells promotes maturity of the distracted callus as observed at the second and fourth weeks after lengthening. The method appears promising as a means of shortening the consolidation period of callus distraction and decreasing complications during limb lengthening with an external fixator


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 3 | Pages 450 - 456
1 Apr 2000
Azangwe G Mathias KJ Marshall D

In a study combining tissue mechanics and fracture morphology for the first time, we examined the ruptured surfaces of anterior cruciate ligaments of rabbits and related their appearance to the initial loading conditions. Sixteen specimens were stretched to failure at rates of displacement of 10 and 500 mm/min. We used video images to study the changes which occurred during the fracture process and SEM to examine the appearance of the ruptured surfaces. The surfaces of ligaments tested at 10 mm/min had more pulled-out collagen fibres and the fibres had more pronounced waviness compared with those tested at 500 mm/min. We have shown that the macroscopic appearance of ruptured ligaments can be related to their microscopic appearance and that it is possible to deduce whether failure was by gradual tearing of the fibres or catastrophic failure


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 3 | Pages 546 - 552
1 May 1998
Rompe JD Kirkpatrick CJ Küllmer K Schwitalle M Krischek O

We aimed to determine whether extracorporeal shock waves of varying intensity would damage the intact tendo Achillis and paratenon in a rabbit model. We used 42 female New Zealand white rabbits randomly divided into four groups as follows: group a received 1000 shock-wave impulses of an energy flux density of 0.08 mJ/mm. 2. , group b 1000 impulses of 0.28 mJ/mm. 2. , group c 1000 impulses of 0.60 mJ/mm. 2. , and group d was a control group. Sonographic and histological evaluation showed no changes in group a, and transient swelling of the tendon with a minor inflammatory reaction in group b. Group c had formation of paratendinous fluid with a significant increase in the anteroposterior diameter of the tendon. In this group there were marked histological changes with increased eosin staining, fibrinoid necrosis, fibrosis in the paratenon and infiltration of inflammatory cells. We conclude that there are dose-dependent changes in the tendon and paratenon after extracorporeal shock-wave therapy and that energy flux densities of over 0.28 mJ/mm. 2. should not be used clinically in the treatment of tendon disorders


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 880 - 887
1 Sep 1998
Aizawa T Roach HI Kokubun S Tanaka Y

Chondrocytes of the growth plate are generally assumed to undergo apoptosis, but the mechanisms which induce this cell death are not known. The Fas receptor is a mediator of the apoptotic signal in some systems. We studied its expression in situ in growth plates of rabbits aged from five to 20 weeks. In addition, we investigated the immunolocalisation in the growth plates of the bone proteins, osteonectin and osteocalcin, and the changes in their expression with age. The Fas-positive chondrocytes were found mostly in the hypertrophic zone, as were the osteonectin-positive and osteocalcin-positive cells. The percentage of Fas-positive cells increased with age whereas little change was found in the number of osteonectin-positive and osteocalcin-positive chondrocytes. Many of the Fas-positive chondrocytes were also TUNEL-positive. This strongly suggests that apoptosis in the growth plate is mediated through the Fas system. Double immunostaining for osteocalcin and Fas showed that not all hypertrophic chondrocytes were of the same cell type. Some chondrocytes stained for osteocalcin only, others for Fas only, while some were positive for both


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 5 | Pages 760 - 766
1 Jul 2001
Suzuki H Takahashi K Yamagata M Shimizu S Moriya H Yamazaki M

We have examined the process of fusion of the intertransverse processes and bone graft in the rabbit by in situ hybridisation and evaluated the spatial and temporal expression of genes encoding pro-α1 (I) collagen (COL1A1), pro-α1 (II) collagen (COL2A1) and pro-α1 (X) collagen (COL10A1). Beginning at two weeks after operation, osteogenesis and chondrogenesis occurred around the transverse process and the grafted bone at the central portion of the area of the fusion mass. Osteoblasts and osteocytes at the newly-formed woven bone expressed COL1A1. At the cartilage, most chondrocytes expressed COL2A1 and some hypertrophic chondrocytes COL10A1. In some regions, co-expression of COL1A1 and COL2A1 was observed. At four weeks, such expressions for COL1A1, COL2A1 and COL10A1 became prominent at the area of the fusion mass. From four to six weeks, bone remodelling progressed from the area of the transverse processes towards the central zone. Osteoblasts lining the trabeculae expressed a strong signal for COL1A1. At the central portion of the area of the fusion mass, endochondral ossification progressed and chondrocytes expressed COL2A1 and COL10A1. Our findings show that the fusion process begins with the synthesis of collagens around the transverse processes and around the grafted bone independently. Various spatial and temporal osteogenic and chondrogenic responses, including intramembranous, endochondral and transchondroid bone formation, progress after bone grafting at the intertransverse processes. Bone formation through cartilage may play an important role in posterolateral spinal fusion


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 600 - 606
1 May 2002
Lietman SA Miyamoto S Brown PR Inoue N Reddi AH

Damage to articular cartilage is a common injury, for which there is no effective treatment. Our aims were to investigate the temporal sequence of the repair of articular cartilage and to define a critical-size defect. Full-thickness defects were made in adult male New Zealand white rabbits. The diameter (1 to 4 mm) of the defects was varied in order to determine the effect that the size and depth of the defect had on its healing. The defects were made in the femoral groove of the knee with one defect per knee and eight knees per group. The tissues were fixed in formalin at days 3, 7, 14, 21, 28, 42, 84 and 126 after operation and the sections stained with Toluidine Blue. These were then examined and evaluated for several parameters including the degree of metachromasia and the amount of subchondral bone which had reformed in the defect. The defects had a characteristic pattern of healing which differed at different days and for different sizes of defect. Specifically, the defects of 1 mm first peaked in terms of metachromasia at day 21, those of 2 mm at day 28, followed by defects of 3 mm and 4 mm. The healing of the subchondral bone was slowest in defects of 1 mm


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 159 - 163
1 Jan 2010
Aykut S Öztürk A Özkan Y Yanik K İlman AA Özdemir RM

We studied the effects of coating titanium implants with teicoplanin and clindamycin in 30 New Zealand White rabbits which were randomly assigned to three groups. The intramedullary canal of the left tibia of each rabbit was inoculated with 500 colony forming units of Staphylococcus aureus. Teicoplanin-coated implants were implanted into rabbits in group 1, clindamycin-coated implants into rabbits in group 2, and uncoated implants into those in group 3. All the rabbits were killed one week later. The implants were removed and cultured together with pieces of tibial bone and wound swabs. The rate of colonisation of the organisms in the three groups was compared. Organisms were cultured from no rabbits in group 1, one in group 2 but from all in group 3. There was no significant difference between groups 1 and 2 (p = 1.000). There were significant differences between groups 1 and 3 and groups 2 and 3 (p < 0.001). Significant protection against bacterial colonisation and infection was found with teicoplanin- and clindamycin-coated implants in this experimental model


Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives. The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model. Methods. MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium. A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically. Results. The cell count in the low-dose G-CSF medium was significantly higher than that in the control medium. The differentiation potential of MSCs was preserved after culturing them with G-CSF. Macroscopically, defects were filled and surfaces were smoother in the G-CSF groups than in the control group at four weeks. At 12 weeks, the quality of repaired cartilage improved further, and defects were almost completely filled in all groups. Microscopically, at four weeks, defects were partially filled with hyaline-like cartilage in the G-CSF groups. At 12 weeks, defects were repaired with hyaline-like cartilage in all groups. Conclusions. G-CSF promoted proliferation of MSCs in vitro. The systemic administration of G-CSF promoted the repair of damaged cartilage possibly through increasing the number of MSCs in a rabbit model. Cite this article: T. Sasaki, R. Akagi, Y. Akatsu, T. Fukawa, H. Hoshi, Y. Yamamoto, T. Enomoto, Y. Sato, R. Nakagawa, K. Takahashi, S. Yamaguchi, T. Sasho. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism: G-CSF for cartilage repair. Bone Joint Res 2017;6:123–131. DOI: 10.1302/2046-3758.63.BJR-2016-0083


Bone & Joint Research
Vol. 5, Issue 11 | Pages 577 - 585
1 Nov 2016
Hase E Sato K Yonekura D Minamikawa T Takahashi M Yasui T

Objectives. This study aimed to evaluate the histological and mechanical features of tendon healing in a rabbit model with second-harmonic-generation (SHG) imaging and tensile testing. Materials and Methods. A total of eight male Japanese white rabbits were used for this study. The flexor digitorum tendons in their right leg were sharply transected, and then were repaired by intratendinous stitching. At four weeks post-operatively, the rabbits were killed and the flexor digitorum tendons in both right and left legs were excised and used as specimens for tendon healing (n = 8) and control (n = 8), respectively. Each specimen was examined by SHG imaging, followed by tensile testing, and the results of the two testing modalities were assessed for correlation. Results. While the SHG light intensity of the healing tendon samples was significantly lower than that of the uninjured tendon samples, 2D Fourier transform SHG images showed a clear difference in collagen fibre structure between the uninjured and the healing samples, and among the healing samples. The mean intensity of the SHG image showed a moderate correlation (R. 2. = 0.37) with Young’s modulus obtained from the tensile testing. Conclusion. Our results indicate that SHG microscopy may be a potential indicator of tendon healing. Cite this article: E. Hase, K. Sato, D. Yonekura, T. Minamikawa, M. Takahashi, T. Yasui. Evaluation of the histological and mechanical features of tendon healing in a rabbit model with the use of second-harmonic-generation imaging and tensile testing. Bone Joint Res 2016;5:577–585. DOI: 10.1302/2046-3758.511.BJR-2016-0162.R1


Bone & Joint Research
Vol. 4, Issue 3 | Pages 38 - 44
1 Mar 2015
Thornton GM Reno CR Achari Y Morck DW Hart DA

Objectives. Ligaments which heal spontaneously have a healing process that is similar to skin wound healing. Menopause impairs skin wound healing and may likewise impair ligament healing. Our purpose in this study was to investigate the effect of surgical menopause on ligament healing in a rabbit medial collateral ligament model. Methods. Surgical menopause was induced with ovariohysterectomy surgery in adult female rabbits. Ligament injury was created by making a surgical gap in the midsubstance of the medial collateral ligament. Ligaments were allowed to heal for six or 14 weeks in the presence or absence of oestrogen before being compared with uninjured ligaments. Molecular assessment examined the messenger ribonucleic acid levels for collagens, proteoglycans, proteinases, hormone receptors, growth factors and inflammatory mediators. Mechanical assessments examined ligament laxity, total creep strain and failure stress. Results. Surgical menopause in normal medial collateral ligaments initiated molecular changes in all the categories evaluated. In early healing medial collateral ligaments, surgical menopause resulted in downregulation of specific collagens, proteinases and inflammatory mediators at 6 weeks of healing, and proteoglycans, growth factors and hormone receptors at 14 weeks of healing. Surgical menopause did not produce mechanical changes in normal or early healing medial collateral ligaments. With or without surgical menopause, healing ligaments exhibited increased total creep strain and decreased failure stress compared with uninjured ligaments. Conclusions. Surgical menopause did not affect the mechanical properties of normal or early healing medial collateral ligaments in a rabbit model. The results in this preclinical model suggest that menopause may result in no further impairment to the ligament healing process. . Cite this article: Bone Joint Res 2015;4:38–44


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1392 - 1400
1 Oct 2008
Hayashi R Kondo E Tohyama H Saito T Yasuda K

We report the effects of local administration of osteogenic protein-1 on the biomechanical properties of the overstretched anterior cruciate ligament in an animal model. An injury in the anterior cruciate ligament was created in 45 rabbits. They were divided into three equal groups. In group 1, no treatment was applied, in group II, phosphate-buffered saline was applied around the injured ligament, and in group III, 12.5 μg of osteogenic protein-1 mixed with phosphate-buffered saline was applied around the injured ligament. A control group of 15 rabbits was assembled from randomly-selected injured knees from among the first three groups. Each rabbit was killed at 12 weeks. The maximum load and stiffness of the anterior cruciate ligament was found to be significantly greater in group III than either group 1 (p = 0.002, p = 0.014) or group II (p = 0.032, p = 0.025). The tensile strength and the tangent modulus of fascicles from the ligament were also significantly greater in group III than either group I (p = 0.002, p = 0.0174) or II (p = 0.005, p = 0.022). The application of osteogenic protein-1 enhanced the healing in the injured anterior cruciate ligament, but compared with the control group the treated ligament remained lengthened. The administration of osteogenic protein-1 may have a therapeutic role in treating the overstretched anterior cruciate ligament


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1606 - 1613
1 Nov 2010
Oshima S Ishikawa M Mochizuki Y Kobayashi T Yasunaga Y Ochi M

We used interconnected porous calcium hydroxyapatite ceramic to bridge a rabbit ulnar defect. Two weeks after inducing the defect we percutaneously injected rabbit bone marrow-derived mesenchymal stromal cells labelled with ferumoxide. The contribution of an external magnetic targeting system to attract these cells into the ceramic and their effect on subsequent bone formation were evaluated. This technique significantly facilitated the infiltration of ferumoxide-labelled cells into ceramic and significantly contributed to the enhancement of bone formation even in the chronic phase. As such, it is potentially of clinical use to treat fractures, bone defects, delayed union and nonunion


Bone & Joint Research
Vol. 1, Issue 6 | Pages 125 - 130
1 Jun 2012
Bøe BG Støen RØ Solberg LB Reinholt FP Ellingsen JE Nordsletten L

Objectives. An experimental rabbit model was used to test the null hypothesis, that there is no difference in new bone formation around uncoated titanium discs compared with coated titanium discs when implanted into the muscles of rabbits. Methods. A total of three titanium discs with different surface and coating (1, porous coating; 2, porous coating + Bonemaster (Biomet); and 3, porous coating + plasma-sprayed hydroxyapatite) were implanted in 12 female rabbits. Six animals were killed after six weeks and the remaining six were killed after 12 weeks. The implants with surrounding tissues were embedded in methyl methacrylate and grinded sections were stained with Masson-Goldners trichrome and examined by light microscopy of coded sections. Results. Small amounts of bone were observed scattered along the surface of five of the 12 implants coated with porous titanium, and around one out of 12 porous coated surfaces with Bonemaster. No bone formation could be detected around porous coated implants with plasma-sprayed hydroxyapatite. Conclusion. Porous titanium coating is to some degree osteoinductive in muscles


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 7 | Pages 1033 - 1040
1 Jul 2010
Nishino T Chang F Ishii T Yanai T Mishima H Ochiai N

We have previously shown that joint distraction and movement with a hinged external fixation device for 12 weeks was useful for repairing a large articular cartilage defect in a rabbit model. We have now investigated the results after six months and one year. The device was applied to 16 rabbits who underwent resection of the articular cartilage and subchondral bone from the entire tibial plateau. In group A (nine rabbits) the device was applied for six months. In group B (seven rabbits) it was in place for six months, after which it was removed and the animals were allowed to move freely for an additional six months. The cartilage remained sound in all rabbits. The areas of type II collagen-positive staining and repaired soft tissue were larger in group B than in group A. These findings provide evidence of long-term persistence of repaired cartilage with this technique and that weight-bearing has a positive effect on the quality of the cartilage


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1278 - 1284
1 Sep 2005
Irie T Aizawa T Kokubun S

Sex hormones play important roles in the regulation of the proliferation, maturation and death of chondrocytes in the epiphyseal growth plate. We have investigated the effects of male castration on the cell kinetics of chondrocytes as defined by the numbers of proliferating and dying cells. The growth plates of normal rabbits and animals castrated at eight weeks of age were obtained at 10, 15, 20 and 25 weeks of age. Our study suggested that castration led to an increase in apoptosis and a decrease in the proliferation of chondrocytes in the growth plate. In addition, the number of chondrocytes in the castrated rabbits was less than that of normal animals of the same age


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1666 - 1669
1 Dec 2006
Shisha T Kiss S Pap K Simpson H Szöke G

The response of the muscle is critical in determining the functional outcome of limb lengthening. We hypothesised that muscle response would vary with age and therefore studied the response of the muscles during tibial lengthening in ten young and ten mature rabbits. A bromodeoxyuridine technique was used to identify the dividing cells. The young rabbits demonstrated a significantly greater proliferative response to the distraction stimulus than the mature ones. This was particularly pronounced at the myotendinous junction, but was also evident within the muscle belly. Younger muscle adapted better to lengthening, suggesting that in patients in whom a large degree of muscle lengthening is required it may be beneficial to carry out this procedure when they are young, in order to achieve the optimal functional result


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 4 | Pages 583 - 587
1 Apr 2005
Szöke G Lee S Simpson AHRW Prescott J

Little is known about the increase in length of tendons in postnatal life or of their response to limb lengthening procedures. A study was carried out in ten young and nine adult rabbits in which the tibia was lengthened by 20% at two rates 0.8 mm/day and 1.6 mm/day. The tendon of the flexor digitorum longus (FDL) muscle showed a significant increase in length in response to lengthening of the tibia. The young rabbits exhibited a significantly higher increase in length in the FDL tendon compared with the adults. There was no difference in the amount of lengthening of the FDL tendon at the different rates. Of the increase in length which occurred, 77% was in the proximal half of the tendon. This investigation demonstrated that tendons have the ability to lengthen during limb distraction. This occurred to a greater extent in the young who showed a higher proliferative response, suggesting that there may be less need for formal tendon lengthening in young children


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1386 - 1391
1 Oct 2008
Ozbaydar M Elhassan B Esenyel C Atalar A Bozdag E Sunbuloglu E Kopuz N Demirhan M

We compared time-dependent changes in the biomechanical properties of single-and double-row repair of a simulated acute tear of the rotator cuff in rabbits to determine the effect of the fixation techniques on the healing process. A tear of the supraspinatus tendon was created in 80 rabbits which were separated into two equal groups. A single-row repair with two suture anchors was conducted in group 1 and a double-row repair with four suture anchors in group 2. A total of ten intact contralateral shoulder joints was used as a control group. Biomechanical testing was performed immediately post-operatively and at four and eight weeks, and histological analysis at four and eight weeks. The mean load to failure in group 2 animals was greater than in group 1, but both groups remained lower than the control group at all intervals. Histological analysis showed similar healing properties at four and eight weeks in both groups, but a significantly larger number of healed tendon-bone interfaces were identified in group 2 than in group 1 at eight weeks (p < 0.012). The ultimate load to failure increased with the number of suture anchors used immediately post-operatively, and at four and eight weeks. The increased load to failure at eight weeks seemed to be related to the increase in the surface area of healed tendon-to-bone in the double-row repair group


Bone & Joint Research
Vol. 6, Issue 6 | Pages 385 - 390
1 Jun 2017
Yang Y Lin S Wang B Gu W Li G

Objectives. Distraction osteogenesis (DO) mobilises bone regenerative potential and avoids the complications of other treatments such as bone graft. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation with some good results. Methods. We hereby review the published literature on the use of MSCs in promoting bone consolidation during DO. Results. Studies differed in animal type (mice, rabbit, dog, sheep), bone type (femur, tibia, skull), DO protocols and cell transplantation methods. Conclusion. The majority of studies reported that the transplantation of MSCs enhanced bone consolidation or formation in DO. Many questions relating to animal model, DO protocol and cell transplantation regime remain to be further investigated. Clinical trials are needed to test and confirm these findings from animal studies. Cite this article: Y. Yang, S. Lin, B. Wang, W. Gu, G. Li. Stem cell therapy for enhancement of bone consolidation in distraction osteogenesis: A contemporary review of experimental studies. Bone Joint Res 2017;6:385–390. DOI: 10.1302/2046-3758.66.BJR-2017-0023


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 12 | Pages 1689 - 1693
1 Dec 2005
Ikema Y Tohyama H Nakamura H Kanaya F Yasuda K

We compared the biological characteristics of extrinsic fibroblasts infiltrating the patellar tendon with those of normal, intrinsic fibroblasts in the normal tendon in vitro. Infiltrative fibroblasts were isolated from the patellar tendons of rabbits six weeks after an in situ freeze-thaw treatment which killed the intrinsic fibroblasts. These intrinsic cells were also isolated from the patellar tendons of rabbits which had not been so treated. Proliferation and invasive migration into the patellar tendon was significantly slower for infiltrative fibroblasts than for normal tendon fibroblasts. Flow-cytometric analysis indicated that expression of α5β1 integrin at the cell surface was significantly lower in infiltrative fibroblasts than in normal tendon fibroblasts. The findings suggest that cellular proliferation and invasive migration of fibroblasts into the patellar tendon after necrosis are inferior to those of the normal fibroblasts. The inferior intrinsic properties of infiltrative fibroblasts may contribute to a slow remodelling process in the grafted tendon after ligament reconstruction


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 862 - 868
1 Jun 2015
Corominas-Frances L Sanpera I Saus-Sarrias C Tejada-Gavela S Sanpera-Iglesias J Frontera-Juan G

Rebound growth after hemiepiphysiodesis may be a normal event, but little is known about its causes, incidence or factors related to its intensity. The aim of this study was to evaluate rebound growth under controlled experimental conditions. A total of 22 six-week-old rabbits underwent a medial proximal tibial hemiepiphysiodesis using a two-hole plate and screws. Temporal growth plate arrest was maintained for three weeks, and animals were killed at intervals ranging between three days and three weeks after removal of the device. The radiological angulation of the proximal tibia was studied at weekly intervals during and after hemiepiphysiodesis. A histological study of the retrieved proximal physis of the tibia was performed. The mean angulation achieved at three weeks was 34.7° (standard deviation (. sd). 3.4), and this remained unchanged for the study period of up to two weeks. By three weeks after removal of the implant the mean angulation had dropped to 28.2° (. sd. 1.8) (p < 0.001). Histologically, widening of the medial side was noted during the first two weeks. By three weeks this widening had substantially disappeared and the normal columnar structure was virtually re-established. In our rabbit model, rebound was an event of variable incidence and intensity and, when present, did not appear immediately after restoration of growth, but took some time to appear. Cite this article: Bone Joint J 2015;97-B:862–8


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1614 - 1620
1 Nov 2010
Fini M Tschon M Ronchetti M Cavani F Bianchi G Mercuri M Alberghini M Cadossi R

Short intense electrical pulses transiently increase the permeability of the cell membrane, an effect known as electroporation. This can be combined with antiblastic drugs for ablation of tumours of the skin and subcutaneous tissue. The aim of this study was to test the efficacy of electroporation when applied to bone and to understand whether the presence of mineralised trabeculae would affect the capability of the electric field to porate the membrane of bone cells. Different levels of electrical field were applied to the femoral bone of rabbits. The field distribution and modelling were simulated by computer. Specimens of bone from treated and control rabbits were obtained for histology, histomorphometry and biomechanical testing. After seven days, the area of ablation had increased in line with the number of pulses and/or with the amplitude of the electrical field applied. The osteogenic activity in the ablated area had recovered by 30 days. Biomechanical testing showed structural integrity of the bone at both times. Electroporation using the appropriate combination of voltage and pulses induced ablation of bone cells without affecting the recovery of osteogenic activity. It can be an effective treatment in bone and when used in combination with drugs, an option for the treatment of metastases


Bone & Joint Research
Vol. 7, Issue 8 | Pages 511 - 516
1 Aug 2018
Beverly M Mellon S Kennedy JA Murray DW

Objectives. We studied subchondral intraosseous pressure (IOP) in an animal model during loading, and with vascular occlusion. We explored bone compartmentalization by saline injection. Materials and Methods. Needles were placed in the femoral condyle and proximal tibia of five anaesthetized rabbits and connected to pressure recorders. The limb was loaded with and without proximal vascular occlusion. An additional subject had simultaneous triple recordings at the femoral head, femoral condyle and proximal tibia. In a further subject, saline injections at three sites were carried out in turn. Results. Loading alone caused a rise in subchondral IOP from 11.7 mmHg (. sd. 7.1) to 17.9 mmHg (. sd. 8.1; p < 0.0002). During arterial occlusion, IOP fell to 5.3 mmHg (. sd. 4.1), then with loading there was a small rise to 7.6 mmHg (. sd. 4.5; p < 0.002). During venous occlusion, IOP rose to 20.2 mmHg (. sd. 5.8), and with loading there was a further rise to 26.3 mmHg (. sd. 6.3; p < 0.003). The effects were present at three different sites along the limb simultaneously. Saline injections showed pressure transmitted throughout the length of the femur but not across the knee joint. Conclusion. This is the first study to report changes in IOP in vivo during loading and with combinations of vascular occlusion and loading. Intraosseous pressure is not a constant. It is reduced during proximal arterial occlusion and increased with proximal venous occlusion. Whatever the perfusion state, in vivo load is transferred partly by hydraulic pressure. We propose that joints act as hydraulic pressure barriers. An understanding of subchondral physiology may be important in understanding osteoarthritis and other bone diseases. Cite this article: M. Beverly, S. Mellon, J. A. Kennedy, D. W. Murray. Intraosseous pressure during loading and with vascular occlusion in an animal model. Bone Joint Res 2018;7:511–516. DOI: 10.1302/2046-3758.78.BJR-2017-0343.R2


Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims. Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. Methods. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis. Results. There was no significant difference in post-traumatic contracture between the rosiglitazone and control groups (33° (standard deviation (. sd. ) 11) vs 37° (. sd. 14), respectively; p = 0.4). There was no difference in number or percentage of myofibroblasts. Importantly, there were ten genes and 17 pathways that were significantly modulated by rosiglitazone in the posterior capsule. Discussion. Rosiglitazone significantly altered the genetic expression of the posterior capsular tissue in a rabbit model, with ten genes and 17 pathways demonstrating significant modulation. However, there was no significant effect on biomechanical or histological properties. Cite this article: M. P. Abdel. Effectiveness of rosiglitazone in reducing flexion contracture in a rabbit model of arthrofibrosis with surgical capsular release: A biomechanical, histological, and genetic analysis. Bone Joint Res 2016;5:11–17. doi: 10.1302/2046-3758.51.2000593


Aims

This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation.

Methods

In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 7 | Pages 1072 - 1076
1 Sep 2004
Tien Y Chih T Lin JC Ju C Lin S

The healing of a hamstring graft to bone is the weak link in the reconstruction of a cruciate ligament using this donor material. We therefore investigated the augmentation of healing at the tendon-bone interface using calcium-phosphate cement (CPC). We performed semitendinosus autograft reconstructions of the anterior cruciate ligament on both knees of 22 New Zealand white rabbits. The interface between the grafted tendon and the bone tunnel for one knee was filled with CPC. Six rabbits were killed at the end of the first and second post-operative weeks in order to evaluate the biomechanical changes. Two rabbits were then killed sequentially at the end of weeks 1, 3, 6, 12 and 24 after operation and tissue removed for serial histological observation. Histological examination showed that the use of CPC produced early, diffuse and massive bone ingrowth. By contrast, in the non-CPC group of rabbits only a thin layer of new bone was seen. Mechanical pull-out testing at one week showed that the mean maximal tensile strength was 6.505 ± 1.333 N for the CPC group and 2.048 ± 0.950 N for the non-CPC group. At two weeks the values were 11.491 ± 2.865 N and 5.452 ± 3.955 N, respectively. Our findings indicate that CPC is a potentially promising material in clinical practice as regards its ability to reinforce the fixation of the tendon attachment to bone and to augment the overall effectiveness of tendon healing to bone


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 7 | Pages 1069 - 1074
1 Sep 2001
Little DG Cornell MS Briody J Cowell CT Arbuckle S Cooke-Yarborough CM

We examined the effect on bone mineral density (BMD) of a single dose of 3 mg/kg of the bisphosphonate, pamidronate (Novartis) in distraction osteogenesis in immature rabbits. Seventeen rabbits (9 control, 8 given pamidronate) were examined by dual-energy x-ray absorptiometry. There was a significant increase in the BMD in the pamidronate group compared with the control animals. The mean areal BMD (g/cm. 2. ) in the bone proximal and distal to the regenerate was increased by 40% and 39%, respectively, compared with the control group (p < 0.05). The BMD of the regenerate bone was increased by a mean of 43% (p < 0.05). There was an increase of 22% in the mean area of regenerate formed in the pamidronate group (p< 0.05). Histological examination of bone in nine rabbits (5 control, 4 pamidronate) showed an increase in osteoblastic rimming and mineralisation of the regenerate, increased formation of bone around the pin sites and an increase in the cortical width of the bone adjacent to the regenerate in the rabbits given pamidronate. Pamidronate had a markedly positive effect. It reduced the disuse osteoporosis normally associated with lengthening using an external fixator and increased the amount and density of the regenerate bone. Further study is required to examine the mechanical properties of the regenerate after the administration of pamidronate


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 726 - 736
1 May 2010
Hee HT Ismail HD Lim CT Goh JCH Wong HK

Although success has been achieved with implantation of bone marrow mesenchymal stem cells (bMSCs) in degenerative discs, its full potential may not be achieved if the harsh environment of the degenerative disc remains. Axial distraction has been shown to increase hydration and nutrition. Combining both therapies may have a synergistic effect in reversing degenerative disc disease. In order to evaluate the effect of bMSC implantation, axial distraction and combination therapy in stimulating regeneration and retarding degeneration in degenerative discs, we first induced disc degeneration by axial loading in a rabbit model. The rabbits in the intervention groups performed better with respect to disc height, morphological grading, histological scoring and average dead cell count. The groups with distraction performed better than those without on all criteria except the average dead cell count. Our findings suggest that bMSC implantation and distraction stimulate regenerative changes in degenerative discs in a rabbit model


Bone & Joint Research
Vol. 3, Issue 2 | Pages 32 - 37
1 Feb 2014
Singh A Goel SC Gupta KK Kumar M Arun GR Patil H Kumaraswamy V Jha S

Introduction. Osteoarthritis (OA) is a progressively debilitating disease that affects mostly cartilage, with associated changes in the bone. The increasing incidence of OA and an ageing population, coupled with insufficient therapeutic choices, has led to focus on the potential of stem cells as a novel strategy for cartilage repair. Methods. In this study, we used scaffold-free mesenchymal stem cells (MSCs) obtained from bone marrow in an experimental animal model of OA by direct intra-articular injection. MSCs were isolated from 2.8 kg white New Zealand rabbits. There were ten in the study group and ten in the control group. OA was induced by unilateral transection of the anterior cruciate ligament of the knee joint. At 12 weeks post-operatively, a single dose of 1 million cells suspended in 1 ml of medium was delivered to the injured knee by direct intra-articular injection. The control group received 1 ml of medium without cells. The knees were examined at 16 and 20 weeks following surgery. Repair was investigated radiologically, grossly and histologically using haematoxylin and eosin, Safranin-O and toluidine blue staining. Results. Radiological assessment confirmed development of OA changes after 12 weeks. Rabbits receiving MSCs showed a lower degree of cartilage degeneration, osteophyte formation, and subchondral sclerosis than the control group at 20 weeks post-operatively. The quality of cartilage was significantly better in the cell-treated group compared with the control group after 20 weeks. Conclusions. Bone marrow-derived MSCs could be promising cell sources for the treatment of OA. Neither stem cell culture nor scaffolds are absolutely necessary for a favourable outcome. Cite this article: Bone Joint Res 2014;3:32–7


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1434 - 1438
1 Oct 2005
Eckardt H Ding M Lind M Hansen ES Christensen KS Hvid I

The re-establishment of vascularity is an early event in fracture healing; upregulation of angiogenesis may therefore promote the formation of bone. We have investigated the capacity of vascular endothelial growth factor (VEGF) to stimulate the formation of bone in an experimental atrophic nonunion model. Three groups of eight rabbits underwent a standard nonunion operation. This was followed by interfragmentary deposition of 100 μg VEGF, carrier alone or autograft. After seven weeks, torsional failure tests and callus size confirmed that VEGF-treated osteotomies had united whereas the carrier-treated osteotomies failed to unite. The biomechanical properties of the groups treated with VEGF and autograft were identical. There was no difference in bone blood flow. We considered that VEGF stimulated the formation of competent bone in an environment deprived of its normal vascularisation and osteoprogenitor cell supply. It could be used to enhance the healing of fractures predisposed to nonunion


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 5 | Pages 752 - 758
1 Jul 2004
Pötzl W Kümpers P Szuwart T Götze G Marquardt B Steinbeck J

Despite widespread use of radiofrequency (RF) shrinkage, there have been no animal studies on the effects of post-operative immobilisation on the histological properties of the shrunken tissue. We have therefore examined the role of post-operative immobilisation after RF shrinkage with special emphasis on the histological properties of collagenous tissue. One patellar tendon of 66 New Zealand White rabbits was shrunk. Six rabbits were killed immediately after the operation. Twenty rabbits were not immobilised, 20 were immobilised for three weeks and 20 for six weeks. Fibroblasts, collagen and vascular quality and density were evaluated on sections, stained by haematoxylin and eosin. Nine weeks after operation the histological properties were inferior to those of the contralateral control tendons. Shrunk tendons did not return to normal at any time after operation irrespective of whether the animals had been immobilised or not. All the parameters improved significantly between zero and three weeks after operation. Immobilised tendons tended to have a better and faster recovery. Careful rehabilitation is imperative after RF shrinkage. Immobilisation aids recovery of the histological properties. Our findings in this animal model support a period of immobilisation of more than three weeks


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 123 - 128
1 Jan 2006
Fini M Giavaresi G Giardino R Cavani F Cadossi R

We investigated the effect of stimulation with a pulsed electromagnetic field on the osseointegration of hydroxyapatite in cortical bone in rabbits. Implants were inserted into femoral cortical bone and were stimulated for six hours per day for three weeks. Electromagnetic stimulation improved osseointegration of hydroxyapatite compared with animals which did not receive this treatment in terms of direct contact with the bone, the maturity of the bone and mechanical fixation. The highest values of maximum push-out force (F. max. ) and ultimate shear strength (σ. u. ) were observed in the treated group and differed significantly from those of the control group at three weeks (F. max. ; p < 0.0001; σ. u. , p < 0.0005)


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 258 - 264
1 Feb 2007
Nagura I Fujioka H Kokubu T Makino T Sumi Y Kurosaka M

We developed a new porous scaffold made from a synthetic polymer, poly(DL-lactide-co-glycolide) (PLG), and evaluated its use in the repair of cartilage. Osteochondral defects made on the femoral trochlear of rabbits were treated by transplantation of the PLG scaffold, examined histologically and compared with an untreated control group. Fibrous tissue was initially organised in an arcade array with poor cellularity at the articular surface of the scaffold. The tissue regenerated to cartilage at the articular surface. In the subchondral area, new bone formed and the scaffold was absorbed. The histological scores were significantly higher in the defects treated by the scaffold than in the control group (p < 0.05). Our findings suggest that in an animal model the new porous PLG scaffold is effective for repairing full-thickness osteochondral defects without cultured cells and growth factors


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 3 | Pages 440 - 446
1 Apr 2002
Tohyama H Yasuda K

We performed a biomechanical and histological study to clarify the effect of stress enhancement on the in situ frozen-thawed patellar tendon of the rabbit as a tendon autograft model. We used 48 Japanese White rabbits divided into three groups. In group 1, the patellar tendon underwent in situ freeze-thaw treatment with liquid nitrogen to kill intrinsic fibroblasts. In group 2, after similar treatment, the medial and lateral portions were resected so that the cross-sectional area was reduced by a third. In group 3, after treatment, the cross-sectional area was reduced by a half. In groups 2 and 3, the stress in the tendon was calculated theoretically to be 150% and 200% of the physiological stress during locomotion. Eight rabbits in each group were killed at three and six weeks, respectively. At three weeks, the mean values for the tensile strength of groups 2 and 3 were 113.7% and 75.7% of that of group 1, and at six weeks 101.2% and 57.4%, respectively. The tensile strength in group 3 was significantly lower than that in groups 1 and 2. The histological findings in group 2 were similar to those in group 1, although an acellular area appeared to be wider in the core portion compared with group 1 at each period. In group 3, the collagen bundles of the tendon were less organised than those of groups 1 and 2. Our findings showed that stress enhancement affects the remodelling of the frozen-thawed patellar tendon and that excessively high stress reduces the mechanical properties of the tendon. This indicates that high stress on the patellar tendon autograft should be avoided during ligament reconstruction


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 984 - 988
1 Jul 2007
Omi H Kusumi T Kijima H Toh S

We investigated the effect of locally administered bisphosphonate on distraction osteogenesis in a rabbit model and evaluated its systemic effect. An osteotomy on the right tibia followed by distraction for four weeks was performed on 47 immature rabbits. They were divided into seven equal groups, with each group receiving a different treatment regime. Saline and three types of dosage of alendronate (low, 0.75 μg/kg; mid, 7.5 μg/kg and high 75 μg/kg) were given by systemic injection in four groups, and saline and two dosages (low and mild) were delivered by local injection to the distraction gap in the remaining three groups. The injections were performed five times weekly during the period of distraction. After nine weeks the animals were killed and image analysis and mechanical testing were performed on the distracted right tibiae and the left tibiae which served as a control group. The local low-dose alendronate group showed a mean increase in bone mineral density of 124.3 mg/cm. 3. over the local saline group (analysis of variance, p < 0.05) without any adverse effect on the left control tibiae. The findings indicate that the administration of local low-dose alendronate could be an effective pharmacological means of improving bone formation in distraction osteogenesis