Advertisement for orthosearch.org.uk
Results 1 - 47 of 47
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 349 - 355
1 Mar 1999
Hernigou P Beaujean F Lambotte JC

We have evaluated bone-marrow activity in the proximal femur of patients with corticosteroid-induced osteonecrosis and compared it with that of patients with osteonecrosis related to sickle-cell disease and with a control group without osteonecrosis. Bone marrow was obtained by puncture of the femoral head outside the area of necrosis and in the intertrochanteric region. The activity of stromal cells was assessed by culturing fibroblast colony-forming units (FCFUs). We found a decrease in the number of FCFUs outside the area of osteonecrosis in the upper end of the femur of patients with corticosteroid-induced osteonecrosis compared with the other groups. We suggest that glucocorticosteroids may also have an adverse effect on bone by decreasing the number of progenitors. The possible relevance of this finding to osteonecrosis is discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1176 - 1181
1 Aug 2010
Tayton E Evans S O’Doherty D

We implanted titanium and carbon fibre-reinforced plastic (CFRP) femoral prostheses of the same dimensions into five prosthetic femora. An abductor jig was attached and a 1 kN load applied. This was repeated with five control femora. Digital image correlation was used to give a detailed two-dimensional strain map of the medial cortex of the proximal femur. Both implants caused stress shielding around the calcar. Distally, the titanium implant showed stress shielding, whereas the CFRP prosthesis did not produce a strain pattern which was statistically different from the controls. There was a reduction in strain beyond the tip of both the implants. This investigation indicates that use of the CFRP stem should avoid stress shielding in total hip replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 2 | Pages 283 - 288
1 Mar 2001
Wilkinson JM Peel NFA Elson RA Stockley I Eastell R

We aimed to evaluate the precision and longitudinal sensitivity of measurement of bone mineral density (BMD) in the pelvis and to determine the effect of bone cement on the measurement of BMD in femoral regions of interest (ROI) after total hip arthroplasty (THA).

A series of 29 patients had duplicate dual-energy x-ray absorptiometry (DXA) scans of the hip within 13 months of THA. Pelvic analyses using 3- and 4-ROI models gave a coefficient of variation (CV) of 2.5% to 3.6% and of 2.5% to 4.8%, respectively. Repeat scans in 17 subjects one year later showed a significant change in BMD in three regions using the 4-ROI model, compared with change in only one region with the 3-ROI model (p < 0.05).

Manual exclusion of cement from femoral ROIs increased the net CV from 1.6% to 3.6% (p = 0.001), and decreased the measured BMD by 20% (t = 12.1, p < 0.001). Studies of two cement phantoms in vitro showed a small downward drift in bone cement BMD giving a measurement error of less than 0.03 g/cm2/year associated with inclusion of cement in femoral ROIs.

Changes in pelvic periprosthetic BMD are best detected using a 4-ROI model. Analysis of femoral ROI is more precise without exclusion of cement although an awareness of its effect on the measurement of the BMD is needed.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 2 | Pages 295 - 301
1 Mar 2001
Kim Y Kim J Cho S

Six pairs of human cadaver femora were divided equally into two groups one of which received a non-cemented reference implant and the other a very short non-dependent experimental implant. Thirteen strain-gauge rosettes were attached to the external surface of each specimen and, during application of combined axial and torsional loads to the femoral head, the strains in both groups were measured. After the insertion of a non-cemented femoral component, the normal pattern of a progressive proximal-to-distal increase in strains was similar to that in the intact femur and the strain was maximum near the tip of the prosthesis. On the medial and lateral aspects of the proximal femur, the strains were greatly reduced after implantation of both types of implant. The pattern and magnitude of the strains, however, were closer to those in the intact femur after insertion of the experimental stem than in the reference stem. On the anterior and posterior aspects of the femur, implantation of both types of stem led to increased principal strains E1, E2 and E3. This was most pronounced for the experimental stem. Our findings suggest that the experimental stem, which has a more anatomical proximal fit without having a distal stem and cortex contact, can provide immediate postoperative stability. Pure proximal loading by the experimental stem in the metaphysis, reduction of excessive bending stiffness of the stem by tapering and the absence of contact between the stem and the distal cortex may reduce stress shielding, bone resorption and thigh pain


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 676 - 682
1 May 2009
Østbyhaug PO Klaksvik J Romundstad P Aamodt A

Hydroxyapatite-coated standard anatomical and customised femoral stems are designed to transmit load to the metaphyseal part of the proximal femur in order to avoid stress shielding and to reduce resorption of bone. In a randomised in vitro study, we compared the changes in the pattern of cortical strain after the insertion of hydroxyapatite-coated standard anatomical and customised stems in 12 pairs of human cadaver femora. A hip simulator reproduced the physiological loads on the proximal femur in single-leg stance and stair-climbing. The cortical strains were measured before and after the insertion of the stems. Significantly higher strain shielding was seen in Gruen zones 7, 6, 5, 3 and 2 after the insertion of the anatomical stem compared with the customised stem. For the anatomical stem, the hoop strains on the femur also indicated that the load was transferred to the cortical bone at the lower metaphyseal or upper diaphyseal part of the proximal femur. The customised stem induced a strain pattern more similar to that of the intact femur than the standard, anatomical stem


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 461 - 467
1 Mar 2010
Wik TS Østbyhaug PO Klaksvik J Aamodt A

The cortical strains on the femoral neck and proximal femur were measured before and after implantation of a resurfacing femoral component in 13 femurs from human cadavers. These were loaded into a hip simulator for single-leg stance and stair-climbing. After resurfacing, the mean tensile strain increased by 15% (95% confidence interval (CI) 6 to 24, p = 0.003) on the lateral femoral neck and the mean compressive strain increased by 11% (95% CI 5 to 17, p = 0.002) on the medial femoral neck during stimulation of single-leg stance. On the proximal femur the deformation pattern remained similar to that of the unoperated femurs. The small increase of strains in the neck area alone would probably not be sufficient to cause fracture of the neck However, with patient-related and surgical factors these strain changes may contribute to the risk of early periprosthetic fracture


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 6 | Pages 921 - 929
1 Aug 2001
Aamodt A Lund-Larsen J Eine J Andersen E Benum P Husby OS

We have compared the changes in the pattern of the principal strains in the proximal femur after insertion of eight uncemented anatomical stems and eight customised stems in human cadaver femora. During testing we aimed to reproduce the physiological loads on the proximal femur and to simulate single-leg stance and stair-climbing. The strains in the intact femora were measured and there were no significant differences in principal tensile and compressive strains in the left and right femora of each pair. The two types of femoral stem were then inserted randomly into the left or right femora and the cortical strains were again measured. Both induced significant stress shielding in the proximal part of the metaphysis, but the deviation from the physiological strains was most pronounced after insertion of the anatomical stems. The principal compressive strain at the calcar was reduced by 90% for the anatomical stems and 67% for the customised stems. Medially, at the level of the lesser trochanter, the corresponding figures were 59% and 21%. The anatomical stems induced more stress concentration on the anterior aspect of the femur than did the customised stems. They also increased the hoop strains in the proximomedial femur. Our study shows a consistently more physiological pattern of strain in the proximal femur after insertion of customised stems compared with standard, anatomical stems


Bone & Joint Research
Vol. 6, Issue 8 | Pages 481 - 488
1 Aug 2017
Caruso G Bonomo M Valpiani G Salvatori G Gildone A Lorusso V Massari L

Objectives. Intramedullary fixation is considered the most stable treatment for pertrochanteric fractures of the proximal femur and cut-out is one of the most frequent mechanical complications. In order to determine the role of clinical variables and radiological parameters in predicting the risk of this complication, we analysed the data pertaining to a group of patients recruited over the course of six years. Methods. A total of 571 patients were included in this study, which analysed the incidence of cut-out in relation to several clinical variables: age; gender; the AO Foundation and Orthopaedic Trauma Association classification system (AO/OTA); type of nail; cervical-diaphyseal angle; surgical wait times; anti-osteoporotic medication; complete post-operative weight bearing; and radiological parameters (namely the lag-screw position with respect to the femoral head, the Cleveland system, the tip-apex distance (TAD), and the calcar-referenced tip-apex distance (CalTAD)). Results. The incidence of cut-out across the sample was 5.6%, with a higher incidence in female patients. A significantly higher risk of this complication was correlated with lag-screw tip positioning in the upper part of the femoral head in the anteroposterior radiological view, posterior in the latero-lateral radiological view, and in the Cleveland peripheral zones. The tip-apex distance and the calcar-referenced tip-apex distance were found to be highly significant predictors of the risk of cut-out at cut-offs of 30.7 mm and 37.3 mm, respectively, but the former appeared more reliable than the latter in predicting the occurrence of this complication. Conclusion. The tip-apex distance remains the most accurate predictor of cut-out, which is significantly greater above a cut-off of 30.7 mm. Cite this article: G. Caruso, M. Bonomo, G. Valpiani, G. Salvatori, A. Gildone, V. Lorusso, L. Massari. A six-year retrospective analysis of cut-out risk predictors in cephalomedullary nailing for pertrochanteric fractures: Can the tip-apex distance (TAD) still be considered the best parameter?. Bone Joint Res 2017;6:481–488. DOI: 10.1302/2046-3758.68.BJR-2016-0299.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 6 | Pages 973 - 978
1 Nov 1996
Malkani AL Voor MJ Fee KA Bates CS

We have tested the axial and torsional stability of femoral components after revision arthroplasty in a cadaver model, using impacted morsellised cancellous graft and cement. Each one of six matched pairs of fresh frozen human femora had either a primary or a revision prosthesis cemented in place. For the ‘revision’ experiments, all cancellous bone was removed from the proximal femur which was then over-reamed to create a smooth-walled cortical shell. An MTS servohydraulic test frame was used to apply axial and torsional loads to each specimen through the prosthetic femoral heads with the femur submerged in isotonic saline solution at 37°C. The mean subsidence was 0.27 ± 0.17 mm for the primary and 0.52 ± 0.30 mm for the revision groups. The difference was statistically significant (p < 0.025), but the mean subsidence was < 1 mm in both groups. The mean maximum torque before failure was 42.9 ± 26.9 N-m for the primary and 34.8± 20.7 N-m for the revision groups. This difference was not statistically significant (p > 0.015). Based on our results we suggest that revision of the femoral component using morsellised cancellous graft followed by cementing with a collarless prosthesis with a polished tapered stem restores the integrity of the proximal femur and provides immediate stability of the implant


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1110 - 1115
1 Aug 2006
Ong KL Kurtz SM Manley MT Rushton N Mohammed NA Field RE

The effects of the method of fixation and interface conditions on the biomechanics of the femoral component of the Birmingham hip resurfacing arthroplasty were examined using a highly detailed three-dimensional computer model of the hip. Stresses and strains in the proximal femur were compared for the natural femur and for the femur resurfaced with the Birmingham hip resurfacing. A comparison of cemented versus uncemented fixation showed no advantage of either with regard to bone loading. When the Birmingham hip resurfacing femoral component was fixed to bone, proximal femoral stresses and strains were non-physiological. Bone resorption was predicted in the inferomedial and superolateral bone within the Birmingham hip resurfacing shell. Resorption was limited to the superolateral region when the stem was not fixed. The increased bone strain observed adjacent to the distal stem should stimulate an increase in bone density at that location. The remodelling of bone seen during revision of failed Birmingham hip resurfacing implants appears to be consistent with the predictions of our finite element analysis


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1182 - 1188
1 Nov 2000
Barker DS Wang AW Yeo MF Nawana NS Brumby SA Pearcy MJ Howie DW

We studied the effect of the surface finish of the stem on the transfer of load in the proximal femur in a sheep model of cemented hip arthroplasty. Strain-gauge analysis and corresponding finite-element (FE) analysis were performed to assess the effect of friction and creep at the cement-stem interface. No difference was seen between the matt and polished stems. FE analysis showed that the effects of cement creep and friction at the stem-cement interface on femoral strain were small compared with the effect of inserting a cemented stem


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 5 | Pages 831 - 834
1 Sep 1996
Koot VCM Kesselaer SMMJ Clevers GJ de Hooge P Weits T van der Werken C

We studied the reliability of the Singh classification of trabecular bone structure in the proximal femur as a measure of osteoporosis, using kappa statistics. Radiographs of fractures of the femoral neck or trochanteric region in 80 consecutive patients were assessed by six observers. The interobserver variation was large; only three of 72 radiographs were given the same classification by all six observers and the kappa values ranged from 0.15 to 0.54. The intraobserver variation showed substantial strength of agreement; kappa values ranged from 0.63 to 0.88. In 77 patients dual-energy X-ray absorptiometry was used to measure bone mineral density. The results were compared with those of the Singh classification: we found no correlation


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 2 | Pages 274 - 277
1 Mar 2001
Drescher W Schneider T Becker C Hobolth J Rüther W Hansen ES Bünger C

Treatment with corticosteroids is a risk factor for non-traumatic avascular necrosis of the femoral head, but the pathological mechanism is poorly understood. Short-term treatment with high doses of methylprednisolone is used in severe neurotrauma and after kidney and heart transplantation. We investigated the effect of such treatment on the pattern of perfusion of the femoral head and of bone in general in the pig. We allocated 15 immature pigs to treatment with high-dose methylprednisolone (20 mg/kg per day intramuscularly for three days, followed by 10 mg/kg intramuscularly for a further 11 days) and 15 to a control group. Perfusion of the systematically subdivided femoral head, proximal femur, acetabulum, humerus, and soft tissues was determined by the microsphere technique. Blood flow in bone was severely reduced in the steroid-treated group. The reduction of flow affected all the segments and the entire epiphysis of the femoral head. No changes in flow were found in non-osseous tissue. Short-term treatment with high-dose methylprednisolone causes reduction of osseous blood flow which may be the pathogenetic factor in the early stage of steroid-induced osteonecrosis


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 7 | Pages 1065 - 1071
1 Sep 2000
Martini F Lebherz C Mayer F Leichtle U Kremling E Sell S

Our aim was to determine the precision of the measurements of bone mineral density (BMD) by dual-energy x-ray absorptiometry in the proximal femur before and after implantation of an uncemented implant, with particular regard to the significance of retro- and prospective studies. We examined 60 patients to determine the difference in preoperative BMD between osteoarthritic and healthy hips. The results showed a preoperative BMD of the affected hip which was lower by a mean of 4% and by a maximum of 9% compared with the opposite side. In addition, measurements were made in the operated hip before and at ten days after operation to determine the effect of the implantation of an uncemented custom-made femoral stem. The mean increase in the BMD was 8% and the maximum was 24%. Previous retrospective studies have reported a marked loss of BMD on the operated side. The precision of double measurements using a special foot jig showed a modified coefficient of variation of 0.6% for the non-operated side in 15 patients and of 0.6% for the operated femur in 20 patients. The effect of rotation on the precision of the measurements after implantation of an uncemented femoral stem was determined in ten explanted femora and for the operated side in ten patients at 10° rotation and in 20 patients at 30° rotation. Rotation within 30° influenced the precision in studies in vivo and in vitro by a mean of 3% and in single cases in up to 60%. Precise prediction of the degree of loss of BMD is thus only possible in prospective cross-sectional measurements, since the effect of the difference in preoperative BMD, as well as the apparent increase in BMD after implantation of an uncemented stem, is not known from retrospective studies. The DEXA method is a reliable procedure for determining periprosthetic BMD when positioning and rotation are strictly controlled


Bone & Joint Research
Vol. 7, Issue 1 | Pages 6 - 11
1 Jan 2018
Wong RMY Choy MHV Li MCM Leung K K-H. Chow S Cheung W Cheng JCY

Objectives

The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models.

Materials and Methods

A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted.


Bone & Joint Research
Vol. 6, Issue 12 | Pages 640 - 648
1 Dec 2017
Xia B Li Y Zhou J Tian B Feng L

Objectives

Osteoporosis is a chronic disease. The aim of this study was to identify key genes in osteoporosis.

Methods

Microarray data sets GSE56815 and GSE56814, comprising 67 osteoporosis blood samples and 62 control blood samples, were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in osteoporosis using Limma package (3.2.1) and Meta-MA packages. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify biological functions. Furthermore, the transcriptional regulatory network was established between the top 20 DEGs and transcriptional factors using the UCSC ENCODE Genome Browser. Receiver operating characteristic (ROC) analysis was applied to investigate the diagnostic value of several DEGs.


Bone & Joint Research
Vol. 6, Issue 10 | Pages 602 - 609
1 Oct 2017
Jin A Cobb J Hansen U Bhattacharya R Reinhard C Vo N Atwood R Li J Karunaratne A Wiles C Abel R

Objectives

Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls.

Methods

Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 538 - 543
1 Nov 2016
Weeks BK Hirsch R Nogueira RC Beck BR

Objectives

The aim of the current study was to assess whether calcaneal broadband ultrasound attenuation (BUA) can predict whole body and regional dual-energy x-ray absorptiometry (DXA)-derived bone mass in healthy, Australian children and adolescents at different stages of maturity.

Methods

A total of 389 boys and girls across a wide age range (four to 18 years) volunteered to participate. The estimated age of peak height velocity (APHV) was used to classify children into pre-, peri-, and post-APHV groups. BUA was measured at the non-dominant heel with quantitative ultrasonometry (QUS) (Lunar Achilles Insight, GE), while bone mineral density (BMD) and bone mineral content (BMC) were examined at the femoral neck, lumbar spine and whole body (DXA, XR-800, Norland). Associations between BUA and DXA-derived measures were examined with Pearson correlations and linear regression. Participants were additionally ranked in quartiles for QUS and DXA measures in order to determine agreement in rankings.


Bone & Joint Research
Vol. 6, Issue 6 | Pages 366 - 375
1 Jun 2017
Neves N Linhares D Costa G Ribeiro CC Barbosa MA

Objectives

This systematic review aimed to assess the in vivo and clinical effect of strontium (Sr)-enriched biomaterials in bone formation and/or remodelling.

Methods

A systematic search was performed in Pubmed, followed by a two-step selection process. We included in vivo original studies on Sr-containing biomaterials used for bone support or regeneration, comparing at least two groups that only differ in Sr addition in the experimental group.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 66 - 72
1 Jan 2017
Mayne E Memarzadeh A Raut P Arora A Khanduja V

Objectives

The aim of this study was to systematically review the literature on measurement of muscle strength in patients with femoroacetabular impingement (FAI) and other pathologies and to suggest guidelines to standardise protocols for future research in the field.

Methods

The Cochrane and PubMed libraries were searched for any publications using the terms ‘hip’, ‘muscle’, ‘strength’, and ‘measurement’ in the ‘Title, Abstract, Keywords’ field. A further search was performed using the terms ‘femoroacetabular’ or ‘impingement’. The search was limited to recent literature only.


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1274 - 1281
1 Sep 2014
Farhang K Desai R Wilber JH Cooperman DR Liu RW

Malpositioning of the trochanteric entry point during the introduction of an intramedullary nail may cause iatrogenic fracture or malreduction. Although the optimal point of insertion in the coronal plane has been well described, positioning in the sagittal plane is poorly defined.

The paired femora from 374 cadavers were placed both in the anatomical position and in internal rotation to neutralise femoral anteversion. A marker was placed at the apparent apex of the greater trochanter, and the lateral and anterior offsets from the axis of the femoral shaft were measured on anteroposterior and lateral photographs. Greater trochanteric morphology and trochanteric overhang were graded.

The mean anterior offset of the apex of the trochanter relative to the axis of the femoral shaft was 5.1 mm (sd 4.0) and 4.6 mm (sd 4.2) for the anatomical and neutralised positions, respectively. The mean lateral offset of the apex was 7.1 mm (sd 4.6) and 6.4 mm (sd 4.6), respectively.

Placement of the entry position at the apex of the greater trochanter in the anteroposterior view does not reliably centre an intramedullary nail in the sagittal plane. Based on our findings, the site of insertion should be about 5 mm posterior to the apex of the trochanter to allow for its anterior offset.

Cite this article: Bone Joint J 2014;96-B:1274–81.


The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 141 - 144
1 Jan 2015
Hughes AW Clark D Carlino W Gosling O Spencer RF

Reported rates of dislocation in hip hemiarthroplasty (HA) for the treatment of intra-capsular fractures of the hip, range between 1% and 10%. HA is frequently performed through a direct lateral surgical approach. The aim of this study is to determine the contribution of the anterior capsule to the stability of a cemented HA through a direct lateral approach.

A total of five whole-body cadavers were thawed at room temperature, providing ten hip joints for investigation. A Thompson HA was cemented in place via a direct lateral approach. The cadavers were then positioned supine, both knee joints were disarticulated and a digital torque wrench was attached to the femur using a circular frame with three half pins. The wrench applied an external rotation force with the hip in extension to allow the hip to dislocate anteriorly. Each hip was dislocated twice; once with a capsular repair and once without repairing the capsule. Stratified sampling ensured the order in which this was performed was alternated for the paired hips on each cadaver.

Comparing peak torque force in hips with the capsule repaired and peak torque force in hips without repair of the capsule, revealed a significant difference between the ‘capsule repaired’ (mean 22.96 Nm, standard deviation (sd) 4.61) and the ‘capsule not repaired’ group (mean 5.6 Nm, sd 2.81) (p < 0.001). Capsular repair may help reduce the risk of hip dislocation following HA.

Cite this article: Bone Joint J 2015;97-B:141–4.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 12 | Pages 1703 - 1709
1 Dec 2010
Aoki H Nagao Y Ishii S Masuda T Beppu M

In order to evaluate the relationship between acetabular and proximal femoral alignment in the initiation and evolution of osteoarthritis of the dysplastic hip, the acetabular and femoral angles were calculated geometrically from radiographs of 62 patients with pre-arthrosis and early osteoarthritis. The sum of the lateral opening angle of the acetabulum and the neck-shaft angle was defined as the lateral instability index (LII), and the sum of the anterior opening angle of the acetabulum and the anteversion angle of the femoral neck as the anterior instability index (AII). These two indices were compared in dysplastic and unaffected hips. A total of 22 unilateral hips with pre-arthrosis were followed for at least 15 years to determine whether the two indices were associated with the progression of osteoarthritis.

The LII of the affected hips (197.4 (sd 6.0)) was significantly greater than that of the unaffected hips (1830 (sd 6.9)). A follow-up study of 22 hips with pre-arthrosis showed that only the LII was associated with progression of the disease, and an LII of 196 was the threshold value for this progression.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1522 - 1527
1 Nov 2008
Davis ET Olsen M Zdero R Waddell JP Schemitsch EH

A total of 20 pairs of fresh-frozen cadaver femurs were assigned to four alignment groups consisting of relative varus (10° and 20°) and relative valgus (10° and 20°), 75 composite femurs of two neck geometries were also used. In both the cadaver and the composite femurs, placing the component in 20° of valgus resulted in a significant increase in load to failure. Placing the component in 10° of valgus had no appreciable effect on increasing the load to failure except in the composite femurs with varus native femoral necks. Specimens in 10° of varus were significantly weaker than the neutrally-aligned specimens.

The results suggest that retention of the intact proximal femoral strength occurs at an implant angulation of ≥ 142°. However, the benefit of extreme valgus alignment may be outweighed in clinical practice by the risk of superior femoral neck notching, which was avoided in this study.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 9 | Pages 1317 - 1324
1 Sep 2010
Solomon LB Lee YC Callary SA Beck M Howie DW

We dissected 20 cadaver hips in order to investigate the anatomy and excursion of the trochanteric muscles in relation to the posterior approach for total hip replacement. String models of each muscle were created and their excursion measured while the femur was moved between its anatomical position and the dislocated position. The position of the hip was determined by computer navigation.

In contrast to previous studies which showed a separate insertion of piriformis and obturator internus, our findings indicated that piriformis inserted onto the superior and anterior margins of the greater trochanter through a conjoint tendon with obturator internus, and had connections to gluteus medius posteriorly. Division of these connections allowed lateral mobilisation of gluteus medius with minimal retraction. Analysis of the excursion of these muscles revealed that positioning the thigh for preparation of the femur through this approach elongated piriformis to a maximum of 182%, obturator internus to 185% and obturator externus to 220% of their resting lengths, which are above the thresholds for rupture of these muscles.

Our findings suggested that gluteus medius may be protected from overstretching by release of its connection with the conjoint tendon. In addition, failure to detach piriformis or the obturators during a posterior approach for total hip replacement could potentially produce damage to these muscles because of over-stretching, obturator externus being the most vulnerable.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 421 - 425
1 Mar 2005
Blom AW Cunningham JL Hughes G Lawes TJ Smith N Blunn G Learmonth ID Goodship AE

This study investigates the use of porous biphasic ceramics as graft extenders in impaction grafting of the femur during revision hip surgery.

Impaction grafting of the femur was performed in four groups of sheep. Group one received pure allograft, group two 50% allograft and 50% BoneSave, group three 50% allograft and 50% BoneSave type 2 and group four 10% allograft and 90% BoneSave as the graft material. Function was assessed using an index of pre- and post-operative peak vertical ground reaction force ratios. Changes in bone mineral density were measured by dual energy X ray absorptiometry (DEXA) scanning. Loosening and subsidence were assessed radiographically and by histological examination of the explanted specimens.

There was no statistically significant difference between the four groups after 18 months of unrestricted functional loading for all outcome measures.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 557 - 560
1 Apr 2007
Davis ET Gallie P Macgroarty K Waddell JP Schemitsch E

A cadaver study using six pairs of lower limbs was conducted to investigate the accuracy of computer navigation and standard instrumentation for the placement of the Birmingham Hip Resurfacing femoral component. The aim was to place all the femoral components with a stem-shaft angle of 135°.

The mean stem-shaft angle obtained in the standard instrumentation group was 127.7° (120° to 132°), compared with 133.3° (131° to 139°) in the computer navigation group (p = 0.03). The scatter obtained with computer-assisted navigation was approximately half that found using the conventional jig.

Computer navigation was more accurate and more consistent in its placement of the femoral component than standard instrumentation. We suggest that image-free computer-assisted navigation may have an application in aligning the femoral component during hip resurfacing.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 962 - 970
1 Jul 2007
Albert C Patil S Frei H Masri B Duncan C Oxland T Fernlund G

This study explored the relationship between the initial stability of the femoral component and penetration of cement into the graft bed following impaction allografting.

Impaction allografting was carried out in human cadaveric femurs. In one group the cement was pressurised conventionally but in the other it was not pressurised. Migration and micromotion of the implant were measured under simulated walking loads. The specimens were then cross-sectioned and penetration of the cement measured.

Around the distal half of the implant we found approximately 70% and 40% of contact of the cement with the endosteum in the pressure and no-pressure groups, respectively. The distal migration/micromotion, and valgus/varus migration were significantly higher in the no-pressure group than in that subjected to pressure. These motion components correlated negatively with the mean area of cement and its contact with the endosteum.

The presence of cement at the endosteum appears to play an important role in the initial stability of the implant following impaction allografting.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 1 | Pages 107 - 113
1 Jan 2008
Scheerlinck T Vandenbussche P Noble PC

Interfacial defects between the cement mantle and a hip implant may arise from constrained shrinkage of the cement or from air introduced during insertion of the stem. Shrinkage-induced interfacial porosity consists of small pores randomly located around the stem, whereas introduced interfacial gaps are large, individual and less uniformly distributed areas of stem-cement separation. Using a validated CT-based technique, we investigated the extent, morphology and distribution of interfacial gaps for two types of stem, the Charnley-Kerboul and the Lubinus SPII, and for two techniques of implantation, line-to-line and undersized.

The interfacial gaps were variable and involved a mean of 6.43% (sd 8.99) of the surface of the stem. Neither the type of implant nor the technique of implantation had a significant effect on the regions of the gaps, which occurred more often over the flat areas of the implant than along the corners of the stems, and were more common proximally than distally for Charnley-Kerboul stems cemented line-to-line. Interfacial defects could have a major effect on the stability and survival of the implant.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 246 - 253
1 Feb 2008
Coathup M Smith N Kingsley C Buckland T Dattani R Ascroft GP Blunn G

An experimental sheep model was used for impaction allografting of 12 hemiarthroplasty femoral components placed into two equal-sized groups. In group 1, a 50:50 mixture of ApaPore hydroxyapatite bone-graft substitute and allograft was used. In group 2, ApaPore and allograft were mixed in a 90:10 ratio. Both groups were killed at six months. Ground reaction force results demonstrated no significant differences (p > 0.05) between the two groups at 8, 16 and 24 weeks post-operatively, and all animals remained active. The mean bone turnover rates were significantly greater in group 1, at 0.00206 mm/day, compared to group 2 at 0.0013 mm/day (p < 0.05). The results for the area of new bone formation demonstrated no significant differences (p > 0.05) between the two groups. No significant differences were found between the two groups in thickness of the cement mantle (p > 0.05) and percentage ApaPore-bone contact (p > 0.05).

The results of this animal study demonstrated that a mixture of ApaPore allograft in a 90:10 ratio was comparable to using a 50:50 mixture.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 839 - 845
1 Jun 2007
Barsoum WK Patterson RW Higuera C Klika AK Krebs VE Molloy R

Dislocation remains a major concern after total hip replacement, and is often attributed to malposition of the components. The optimum position for placement of the components remains uncertain. We have attempted to identify a relatively safe zone in which movement of the hip will occur without impingement, even if one component is positioned incorrectly. A three-dimensional computer model was designed to simulate impingement and used to examine 125 combinations of positioning of the components in order to allow maximum movement without impingement. Increase in acetabular and/or femoral anteversion allowed greater internal rotation before impingement occurred, but decreases the amount of external rotation. A decrease in abduction of the acetabular components increased internal rotation while decreasing external rotation. Although some correction for malposition was allowable on the opposite side of the joint, extreme degrees could not be corrected because of bony impingement.

We introduce the concept of combined component position, in which anteversion and abduction of the acetabular component, along with femoral anteversion, are all defined as critical elements for stability.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 686 - 692
1 May 2007
Bolland BJRF New AMR Madabhushi SPG Oreffo ROC Dunlop DG

The complications of impaction bone grafting in revision hip replacement includes fracture of the femur and subsidence of the prosthesis. In this in vitro study we aimed to investigate whether the use of vibration, combined with a perforated tamp during the compaction of morsellised allograft would reduce peak loads and hoop strains in the femur as a surrogate marker of the risk of fracture and whether it would also improve graft compaction and prosthetic stability.

We found that the peak loads and hoop strains transmitted to the femoral cortex during graft compaction and subsidence of the stem in subsequent mechanical testing were reduced. This innovative technique has the potential to reduce the risk of intra-operative fracture and to improve graft compaction and therefore prosthetic stability.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 832 - 836
1 Jun 2006
Barker R Takahashi T Toms A Gregson P Kuiper JH

The use of impaction bone grafting during revision arthroplasty of the hip in the presence of cortical defects has a high risk of post-operative fracture. Our laboratory study addressed the effect of extramedullary augmentation and length of femoral stem on the initial stability of the prosthesis and the risk of fracture.

Cortical defects in plastic femora were repaired using either surgical mesh without extramedullary augmentation, mesh with a strut graft or mesh with a plate. After bone impaction, standard or long-stem Exeter prostheses were inserted, which were tested by cyclical loading while measuring defect strain and migration of the stem.

Compared with standard stems without extramedullary augmentation, defect strains were 31% lower with longer stems, 43% lower with a plate and 50% lower with a strut graft. Combining extramedullary augmentation with a long stem showed little additional benefit (p = 0.67). The type of repair did not affect the initial stability. Our results support the use of impaction bone grafting and extramedullary augmentation of diaphyseal defects after mesh containment.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 1012 - 1018
1 Jul 2005
Beck M Kalhor M Leunig M Ganz R

Recently, femoroacetabular impingement has been recognised as a cause of early osteoarthritis. There are two mechanisms of impingement: 1) cam impingement caused by a non-spherical head and 2) pincer impingement caused by excessive acetabular cover. We hypothesised that both mechanisms result in different patterns of articular damage. Of 302 analysed hips only 26 had an isolated cam and 16 an isolated pincer impingement. Cam impingement caused damage to the anterosuperior acetabular cartilage with separation between the labrum and cartilage. During flexion, the cartilage was sheared off the bone by the non-spherical femoral head while the labrum remained untouched. In pincer impingement, the cartilage damage was located circumferentially and included only a narrow strip. During movement the labrum is crushed between the acetabular rim and the femoral neck causing degeneration and ossification.

Both cam and pincer impingement lead to osteoarthritis of the hip. Labral damage indicates ongoing impingement and rarely occurs alone.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 267 - 271
1 Feb 2005
van Haaren EH Smit TH Phipps K Wuisman PIJM Blunn G Heyligers IC

Impacted morsellised allografts have been used successfully to address the problem of poor bone stock in revision surgery. However, there are concerns about the transmission of pathogens, the high cost and the shortage of supply of donor bone. Bone-graft extenders, such as tricalcium phosphate (TCP) and hydroxyapatite (HA), have been developed to minimise the use of donor bone. In a human cadaver model we have evaluated the surgical and mechanical feasibility of a TCP/HA bone-graft extender during impaction grafting revision surgery.

A TCP/HA allograft mix increased the risk of producing a fissure in the femur during the impaction procedure, but provided a higher initial mechanical stability when compared with bone graft alone. The implications of the use of this type of graft extender in impaction grafting revision surgery are discussed.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 311 - 314
1 Feb 2010
Cereatti A Margheritini F Donati M Cappozzo A

The human acetabulofemoral joint is commonly modelled as a pure ball-and-socket joint, but there has been no quantitative assessment of this assumption in the literature. Our aim was to test the limits and validity of this hypothesis. We performed experiments on four adult cadavers. Cortical pins, each equipped with a marker cluster, were implanted in the pelvis and the femur. Movements were recorded using stereophotogrammetry while an operator rotated the cadaver’s acetabulofemoral joint, exploiting the widest possible range of movement. The functional consistency of the acetabulofemoral joint as a pure spherical joint was assessed by comparing the magnitude of the translations of the hip joint centre as obtained on cadavers, with the centre of rotation of two metal segments linked through a perfectly spherical hinge. The results showed that the radii of the spheres containing 95% of the positions of the estimated centres of rotation were separated by less than 1 mm for both the acetabulofemoral joint and the mechanical spherical hinge.

Therefore, the acetabulofemoral joint can be modelled as a spherical joint within the considered range of movement (flexion/extension 20° to 70°; abduction/adduction 0° to 45°; internal/external rotation 0° to 30°).


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 298 - 303
1 Feb 2010
Toom A Suutre S Märtson A Haviko T Selstam G Arend A

We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically.

Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% (sd 4.5) versus 12.7% (sd 2.9, p < 0.019), respectively.

Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 454 - 460
1 Mar 2010
Baleani M Bialoblocka-Juszczyk E Engels GE Viceconti M

We investigated the effect of pre-heating a femoral component on the porosity and strength of bone cement, with or without vacuum mixing used for total hip replacement.

Cement mantles were moulded in a manner simulating clinical practice for cemented hip replacement. During polymerisation, the temperature was monitored. Specimens of cement extracted from the mantles underwent bending or fatigue tests, and were examined for porosity.

Pre-heating the stem alone significantly increased the mean temperature values measured within the mantle (+14.2°C) (p < 0.001) and reduced the mean curing time (−1.5 min) (p < 0.001). The addition of vacuum mixing modulated the mean rise in the temperature of polymerisation to 11°C and reduced the mean duration of the process by one minute and 50 seconds (p = 0.01 and p < 0.001, respectively). In all cases, the maximum temperature values measured in the mould simulating the femur were < 50°C. The mixing technique and pre-heating the stem slightly increased the static mechanical strength of bone cement. However, the fatigue life of the cement was improved by both vacuum mixing and pre-heating the stem, but was most marked (+ 280°C) when these methods were combined.

Pre-heating the stem appears to be an effective way of improving the quality of the cement mantle, which might enhance the long-term performance of bone cement, especially when combined with vacuum mixing.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 124 - 130
1 Jan 2009
Deuel CR Jamali AA Stover SM Hazelwood SJ

Bone surface strains were measured in cadaver femora during loading prior to and after resurfacing of the hip and total hip replacement using an uncemented, tapered femoral component. In vitro loading simulated the single-leg stance phase during walking. Strains were measured on the medial and the lateral sides of the proximal aspect and the mid-diaphysis of the femur. Bone surface strains following femoral resurfacing were similar to those in the native femur, except for proximal shear strains, which were significantly less than those in the native femur. Proximomedial strains following total hip replacement were significantly less than those in the native and the resurfaced femur.

These results are consistent with previous clinical evidence of bone loss after total hip replacement, and provide support for claims of bone preservation after resurfacing arthroplasty of the hip.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 545 - 551
1 Apr 2009
Schnurr C Nessler J Meyer C Schild HH Koebke J König DP

The aim of our study was to investigate whether placing of the femoral component of a hip resurfacing in valgus protected against spontaneous fracture of the femoral neck.

We performed a hip resurfacing in 20 pairs of embalmed femora. The femoral component was implanted at the natural neck-shaft angle in the left femur and with a 10° valgus angle on the right. The bone mineral density of each femur was measured and CT was performed. Each femur was evaluated in a materials testing machine using increasing cyclical loads.

In specimens with good bone quality, the 10° valgus placement of the femoral component had a protective effect against fractures of the femoral neck. An adverse effect was detected in osteoporotic specimens.

When resurfacing the hip a valgus position of the femoral component should be achieved in order to prevent fracture of the femoral neck. Patient selection remains absolutely imperative. In borderline cases, measurement of bone mineral density may be indicated.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 971 - 976
1 Jul 2007
Kampa RJ Prasthofer A Lawrence-Watt DJ Pattison RM

In order to determine the potential for an internervous safe zone, 20 hips from human cadavers were dissected to map out the precise pattern of innervation of the hip capsule. The results were illustrated in the form of a clock face. The reference point for measurement was the inferior acetabular notch, representing six o’clock. Capsular branches from between five and seven nerves contributed to each hip joint, and were found to innervate the capsule in a relatively constant pattern. An internervous safe zone was identified anterosuperiorly in an arc of 45° between the positions of one o’clock and half past two.

Our study shows that there is an internervous zone that could be safely used in a capsule-retaining anterior, anterolateral or lateral approach to the hip, or during portal placement in hip arthroscopy.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 701 - 705
1 May 2007
Thiele OC Eckhardt C Linke B Schneider E Lill CA

We investigated several factors which affect the stability of cortical screws in osteoporotic bone using 18 femora from cadavers of women aged between 45 and 96 years (mean 76). We performed bone densitometry to measure the bone mineral density of the cortical and cancellous bone of the shaft and head of the femur, respectively. The thickness and overall bone mass of the cortical layer of the shaft of the femur were measured using a microCT scanner. The force required to pull-out a 3.5 mm titanium cortical bone screw was determined after standardised insertion into specimens of the cortex of the femoral shaft.

A significant correlation was found between the pull-out strength and the overall bone mass of the cortical layer (r2 = 0.867, p < 0.01) and also between its thickness (r2 = 0.826, p < 0.01) and bone mineral density (r2 = 0.861, p < 0.01). There was no statistically significant correlation between the age of the donor and the pull-out force (p = 0.246), the cortical thickness (p = 0.199), the bone mineral density (p = 0.697) or the level of osteoporosis (p = 0.378).

We conclude that the overall bone mass, the thickness and the bone mineral density of the cortical layer, are the main factors which affect the stability of a screw in human female osteoporotic cortical bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 549 - 556
1 Apr 2007
Udofia I Liu F Jin Z Roberts P Grigoris P

Finite element analysis was used to examine the initial stability after hip resurfacing and the effect of the procedure on the contact mechanics at the articulating surfaces. Models were created with the components positioned anatomically and loaded physiologically through major muscle forces. Total micromovement of less than 10 μm was predicted for the press-fit acetabular components models, much below the 50 μm limit required to encourage osseointegration. Relatively high compressive acetabular and contact stresses were observed in these models. The press-fit procedure showed a moderate influence on the contact mechanics at the bearing surfaces, but produced marked deformation of the acetabular components. No edge contact was predicted for the acetabular components studied.

It is concluded that the frictional compressive stresses generated by the 1 mm to 2 mm interference-fit acetabular components, together with the minimal micromovement, would provide adequate stability for the implant, at least in the immediate post-operative situation.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 121 - 126
1 Jan 2007
Jensen TB Overgaard S Lind M Rahbek O Bünger C Søballe K

Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1.

After three weeks osteogenic protein-1 increased bone formation and the energy absorption of implants grafted with allograft and ProOsteon. A composite of allograft, ProOsteon and osteogenic protein-1 was comparable, but not superior to, allograft used on its own.

ProOsteon alone cannot be recommended as a substitute for allograft around non-cemented implants, but should be used to extend the volume of the graft, preferably with the addition of a growth factor.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 127 - 129
1 Jan 2007
Tang TT Lu B Yue B Xie XH Xie YZ Dai KR Lu JX Lou JR

The efficacy of β-tricalcium phosphate (β-TCP) loaded with bone morphogenetic protein-2 (BMP-2)-gene-modified bone-marrow mesenchymal stem cells (BMSCs) was evaluated for the repair of experimentally-induced osteonecrosis of the femoral head in goats.

Bilateral early-stage osteonecrosis was induced in adult goats three weeks after ligation of the lateral and medial circumflex arteries and delivery of liquid nitrogen into the femoral head. After core decompression, porous β-TCP loaded with BMP-2 gene- or β-galactosidase (gal)-gene-transduced BMSCs was implanted into the left and right femoral heads, respectively. At 16 weeks after implantation, there was collapse of the femoral head in the untreated group but not in the BMP-2 or β-gal groups. The femoral heads in the BMP-2 group had a normal density and surface, while those in the β-gal group presented with a low density and an irregular surface. Histologically, new bone and fibrous tissue were formed in the macropores of the β-TCP. Sixteen weeks after implantation, lamellar bone had formed in the BMP-2 group, but there were some empty cavities and residual fibrous tissue in the β-gal group. The new bone volume in the BMP-2 group was significantly higher than that in the β-gal group. The maximum compressive strength and Young’s modulus of the repaired tissue in the BMP-2 group were similar to those of normal bone and significantly higher than those in the β-gal group.

Our findings indicate that porous β-TCP loaded with BMP-2-gene-transduced BMSCs are capable of repairing early-stage, experimentally-induced osteonecrosis of the femoral head and of restoring its mechanical function.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1252 - 1256
1 Sep 2006
Mayr E Krismer M Ertl M Kessler O Thaler M Nogler M

A complete cement mantle is important for the longevity of a total hip replacement. In the minimally-invasive direct anterior approach used at the Innsbruck University hospital, the femoral component has to be inserted into the femoral canal by an angulated movement. In a cadaver study, the quality and the extent of the cement mantle surrounding 13 Exeter femoral components implanted straight through a standard anterolateral transgluteal approach were compared with those of 13 similar femoral components implanted in an angulated fashion through a direct anterior approach. A third-generation cementing technique was used. The inner and outer contours of the cement mantles was traced from CT scans and the thickness and cross-sectional area determined.

In no case was the cement mantle incomplete. The total mean thickness of the cement mantle was 3.62 mm (95% confidence interval 3.59 to 3.65). The mean thickness in the group using the minimally-invasive approach was 0.16 mm less than that in the anterolateral group. The distribution of the thickness was similar in the two groups. The mean thickness was less on the anteromedial and anterolateral aspect than on the posterior aspect of the femur.

There is no evidence that the angulated introduction of Exeter femoral components in the direct anterior approach in cadavers compromises the quality, extent or thickness of the cement mantle.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 4 | Pages 571 - 576
1 Apr 2005
Savarino L Granchi D Cenni E Baldini N Greco M Giunti A

There is no diagnostic, non-invasive method for the early detection of loosening after total hip arthroplasty. In a pilot study, we have analysed two serum markers of bone remodelling, procollagen I C-terminal extension peptide (PICP) and cross-linked N-terminal telopeptide (NTx), as well as the diagnostic performance of NTx for the assessment of osteolysis. We recruited 21 patients with loosening (group I), 18 with a well-fixed prosthesis (group II) and 17 at the time of primary arthroplasty for osteoarthritis (OA) (group III). Internal normal reference ranges were obtained from 30 healthy subjects (group IV).

The serum PICP level was found to be significantly lower in patients with OA and those with loosening, when compared with those with stable implants, while the NTx level was significantly increased only in the group with loosening, suggesting that collagen degradation depended on the altered bone turnover induced by the implant. This hypothesis was reinforced by the finding that the values in the pre-surgery patients and stable subjects were comparable with the reference range of younger healthy subjects.

A high specificity and positive predictive value for NTx provided good diagnostic evidence of agreement between the test and the clinical and radiological evaluations. The NTx level could be used to indicate stability of the implant. However, further prospective, larger studies are necessary.