header advert
You currently have no access to view or download this content. Please log in with your institutional or personal account if you should have access to through either of these
The Bone & Joint Journal Logo

Receive monthly Table of Contents alerts from The Bone & Joint Journal

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Get Access locked padlock

Research

The effect of vacuum mixing and pre-heating the femoral component on the mechanical properties of the cement mantle



Download PDF

Abstract

We investigated the effect of pre-heating a femoral component on the porosity and strength of bone cement, with or without vacuum mixing used for total hip replacement.

Cement mantles were moulded in a manner simulating clinical practice for cemented hip replacement. During polymerisation, the temperature was monitored. Specimens of cement extracted from the mantles underwent bending or fatigue tests, and were examined for porosity.

Pre-heating the stem alone significantly increased the mean temperature values measured within the mantle (+14.2°C) (p < 0.001) and reduced the mean curing time (−1.5 min) (p < 0.001). The addition of vacuum mixing modulated the mean rise in the temperature of polymerisation to 11°C and reduced the mean duration of the process by one minute and 50 seconds (p = 0.01 and p < 0.001, respectively). In all cases, the maximum temperature values measured in the mould simulating the femur were < 50°C. The mixing technique and pre-heating the stem slightly increased the static mechanical strength of bone cement. However, the fatigue life of the cement was improved by both vacuum mixing and pre-heating the stem, but was most marked (+ 280°C) when these methods were combined.

Pre-heating the stem appears to be an effective way of improving the quality of the cement mantle, which might enhance the long-term performance of bone cement, especially when combined with vacuum mixing.


Correspondence should be sent to Dr M. Baleani; e-mail: baleani@tecno.ior.it

For access options please click here