Advertisement for orthosearch.org.uk
Results 1 - 100 of 137
Results per page:
Bone & Joint Research
Vol. 11, Issue 4 | Pages 229 - 238
11 Apr 2022
Jaeger S Eissler M Schwarze M Schonhoff M Kretzer JP Bitsch RG

Aims

One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined.

Methods

A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD).


Bone & Joint Research
Vol. 7, Issue 2 | Pages 166 - 172
1 Feb 2018
Bujnowski K Getgood A Leitch K Farr J Dunning C Burkhart TA

Aim. It has been suggested that the use of a pilot-hole may reduce the risk of fracture to the lateral cortex. Therefore the purpose of this study was to determine the effect of a pilot hole on the strains and occurrence of fractures at the lateral cortex during the opening of a high tibial osteotomy (HTO) and post-surgery loading. Materials and Methods. A total of 14 cadaveric tibias were randomized to either a pilot hole (n = 7) or a no-hole (n = 7) condition. Lateral cortex strains were measured while the osteotomy was opened 9 mm and secured in place with a locking plate. The tibias were then subjected to an initial 800 N load that increased by 200 N every 5000 cycles, until failure or a maximum load of 2500 N. Results. There was no significant difference in the strains on the lateral cortex during HTO opening between the pilot hole and no-hole conditions. Similarly, the lateral cortex and fixation plate strains were not significantly different during cyclic loading between the two conditions. Using a pilot hole did not significantly decrease the strains experienced at the lateral cortex, nor did it reduce the risk of fracture. Conclusions. The nonsignificant differences found here most likely occurred because the pilot hole merely translated the stress concentration laterally to a parallel point on the surface of the hole. Cite this article: K. Bujnowski, A. Getgood, K. Leitch, J. Farr, C. Dunning, T. A. Burkhart. A pilot hole does not reduce the strains or risk of fracture to the lateral cortex during and following a medial opening wedge high tibial osteotomy in cadaveric specimens. Bone Joint Res 2018;7:166–172. DOI: 10.1302/2046-3758.72.BJR-2017-0337.R1


Bone & Joint Open
Vol. 4, Issue 6 | Pages 432 - 441
5 Jun 2023
Kahlenberg CA Berube EE Xiang W Manzi JE Jahandar H Chalmers BP Cross MB Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK

Aims. Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model. Methods. We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition. Results. Mid-level inserts reduced varus angulations compared to PS inserts by a median of 0.4°, 0.9°, and 1.5° at 0°, 30°, and 90° of flexion, respectively, and reduced valgus angulations by a median of 0.3°, 1.0°, and 1.2° (p ≤ 0.027 for all comparisons). Mid-level inserts reduced net IE rotations by a median of 5.6°, 14.7°, and 17.5° at 0°, 30°, and 90°, respectively (p = 0.012). Mid-level inserts reduced anterior tibial translation only at 90° of flexion by a median of 3.0 millimetres (p = 0.036). With an applied varus moment, the mid-level insert decreased LCL force compared to the PS insert at all three flexion angles that were tested (p ≤ 0.036). In contrast, with a valgus moment the mid-level insert did not reduce MCL force. With an applied internal rotation moment, the mid-level insert decreased LCL force at 30° and 90° by a median of 25.7 N and 31.7 N, respectively (p = 0.017 and p = 0.012). With an external rotation moment, the mid-level insert decreased MCL force at 30° and 90° by a median of 45.7 N and 20.0 N, respectively (p ≤ 0.017 for all comparisons). With an applied anterior load, MCL and LCL forces showed no differences between the two inserts at 30° and 90° of flexion. Conclusion. The mid-level insert used in this study decreased coronal and axial plane laxities compared to the PS insert, but its stabilizing benefit in the sagittal plane was limited. Both mid-level and PS inserts depended on the MCL to resist anterior loads during a simulated clinical exam of anterior laxity. Cite this article: Bone Jt Open 2023;4(6):432–441


Bone & Joint Open
Vol. 5, Issue 7 | Pages 592 - 600
18 Jul 2024
Faschingbauer M Hambrecht J Schwer J Martin JR Reichel H Seitz A

Aims. Patient dissatisfaction is not uncommon following primary total knee arthroplasty. One proposed method to alleviate this is by improving knee kinematics. Therefore, we aimed to answer the following research question: are there significant differences in knee kinematics based on the design of the tibial insert (cruciate-retaining (CR), ultra-congruent (UC), or medial congruent (MC))?. Methods. Overall, 15 cadaveric knee joints were examined with a CR implant with three different tibial inserts (CR, UC, and MC) using an established knee joint simulator. The effects on coronal alignment, medial and lateral femoral roll back, femorotibial rotation, bony rotations (femur, tibia, and patella), and patellofemoral length ratios were determined. Results. No statistically significant differences were found regarding coronal alignment (p = 0.087 to p = 0.832). The medial congruent insert demonstrated restricted femoral roll back (mean medial 37.57 mm; lateral 36.34 mm), while the CR insert demonstrated the greatest roll back (medial 42.21 mm; lateral 37.88 mm; p < 0.001, respectively). Femorotibial rotation was greatest with the CR insert with 2.45° (SD 4.75°), then the UC insert with 1.31° (SD 4.15°; p < 0.001), and lowest with the medial congruent insert with 0.8° (SD 4.24°; p < 0.001). The most pronounced patella shift, but lowest patellar rotation, was noted with the CR insert. Conclusion. The MC insert demonstrated the highest level of constraint of these inserts. Femoral roll back, femorotibial rotation, and single bony rotations were lowest with the MC insert. The patella showed less shifting with the MC insert, but there was significantly increased rotation. While the medial congruent insert was found to have highest constraint, it remains uncertain if this implant recreates native knee kinematics or if this will result in improved patient satisfaction. Cite this article: Bone Jt Open 2024;5(7):592–600


Bone & Joint Research
Vol. 9, Issue 6 | Pages 272 - 278
1 Jun 2020
Tapasvi S Shekhar A Patil S Pandit H

Aims. The mobile bearing Oxford unicompartmental knee arthroplasty (OUKA) is recommended to be performed with the leg in the hanging leg (HL) position, and the thigh placed in a stirrup. This comparative cadaveric study assesses implant positioning and intraoperative kinematics of OUKA implanted either in the HL position or in the supine leg (SL) position. Methods. A total of 16 fresh-frozen knees in eight human cadavers, without macroscopic anatomical defects, were selected. The knees from each cadaver were randomized to have the OUKA implanted in the HL or SL position. Results. Tibial base plate rotation was significantly more variable in the SL group with 75% of tibiae mal-rotated. Multivariate analysis of navigation data found no difference based on all kinematic parameters across the range of motion (ROM). However, area under the curve analysis showed that knees placed in the HL position had much smaller differences between the pre- and post-surgery conditions for kinematics mean values across the entire ROM. Conclusion. The sagittal tibia cut, not dependent on standard instrumentation, determines the tibial component rotation. The HL position improves accuracy of this step compared to the SL position, probably due to better visuospatial orientation of the hip and knee to the surgeon. The HL position is better for replicating native kinematics of the knee as shown by the area under the curve analysis. In the supine knee position, care must be taken during the sagittal tibia cut, while checking flexion balance and when sizing the tibial component


Bone & Joint Research
Vol. 11, Issue 2 | Pages 91 - 101
1 Feb 2022
Munford MJ Stoddart JC Liddle AD Cobb JP Jeffers JRT

Aims. Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia. Methods. In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee. Results. Titanium lattice implants were able to restore the mechanical environment of the native tibia for both UKA and TKA designs. Maximum stress at the bone-implant interface ranged from 1.2 MPa to 3.3 MPa compared with 1.3 MPa to 2.7 MPa for the native tibia. The conventional solid UKA and TKA implants reduced the maximum stress in the bone by a factor of 10 and caused > 70% of bone surface area to be underloaded compared to the native tibia. Conclusion. Titanium lattice implants maintained the natural mechanical loading in the proximal tibia after UKA and TKA, but conventional solid implants did not. This is an exciting first step towards implants that maintain bone health, but such implants also have to meet fatigue and micromotion criteria to be clinically viable. Cite this article: Bone Joint Res 2022;11(2):91–101


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative planning. The 3D US is radiation-free and offers numerous clinical opportunities for bone visualization rapidly during clinic visits, to enable preoperative planning with implant sizing. There is potential to extend its application to 3D dynamic ligament balancing, and intraoperative registration for use with robots and navigation systems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):81–86


Bone & Joint Research
Vol. 8, Issue 10 | Pages 495 - 501
1 Oct 2019
Hampp EL Sodhi N Scholl L Deren ME Yenna Z Westrich G Mont MA

Objectives. The use of the haptically bounded saw blades in robotic-assisted total knee arthroplasty (RTKA) can potentially help to limit surrounding soft-tissue injuries. However, there are limited data characterizing these injuries for cruciate-retaining (CR) TKA with the use of this technique. The objective of this cadaver study was to compare the extent of soft-tissue damage sustained through a robotic-assisted, haptically guided TKA (RATKA) versus a manual TKA (MTKA) approach. Methods. A total of 12 fresh-frozen pelvis-to-toe cadaver specimens were included. Four surgeons each prepared three RATKA and three MTKA specimens for cruciate-retaining TKAs. A RATKA was performed on one knee and a MTKA on the other. Postoperatively, two additional surgeons assessed and graded damage to 14 key anatomical structures in a blinded manner. Kruskal–Wallis hypothesis tests were performed to assess statistical differences in soft-tissue damage between RATKA and MTKA cases. Results. Significantly less damage occurred to the PCLs in the RATKA versus the MTKA specimens (p < 0.001). RATKA specimens had non-significantly less damage to the deep medial collateral ligaments (p = 0.149), iliotibial bands (p = 0.580), poplitei (p = 0.248), and patellar ligaments (p = 0.317). The remaining anatomical structures had minimal soft-tissue damage in all MTKA and RATKA specimens. Conclusion. The results of this study indicate that less soft-tissue damage may occur when utilizing RATKA compared with MTKA. These findings are likely due to the enhanced preoperative planning with the robotic software, the real-time intraoperative feedback, and the haptically bounded saw blade, all of which may help protect the surrounding soft tissues and ligaments. Cite this article: Bone Joint Res 2019;8:495–501


Bone & Joint Open
Vol. 2, Issue 6 | Pages 397 - 404
1 Jun 2021
Begum FA Kayani B Magan AA Chang JS Haddad FS

Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1324 - 1330
3 Oct 2020
Herregodts S Verhaeghe M Paridaens R Herregodts J Vermue H Arnout N De Baets P Victor J

Aims. Inadvertent soft tissue damage caused by the oscillating saw during total knee arthroplasty (TKA) occurs when the sawblade passes beyond the bony boundaries into the soft tissue. The primary objective of this study is to assess the risk of inadvertent soft tissue damage during jig-based TKA by evaluating the excursion of the oscillating saw past the bony boundaries. The second objective is the investigation of the relation between this excursion and the surgeon’s experience level. Methods. A conventional jig-based TKA procedure with medial parapatellar approach was performed on 12 cadaveric knees by three experienced surgeons and three residents. During the proximal tibial resection, the motion of the oscillating saw with respect to the tibia was recorded. The distance of the outer point of this cutting portion to the edge of the bone was defined as the excursion of the oscillating saw. The excursion of the sawblade was evaluated in six zones containing the following structures: medial collateral ligament (MCL), posteromedial corner (PMC), iliotibial band (ITB), lateral collateral ligament (LCL), popliteus tendon (PopT), and neurovascular bundle (NVB). Results. The mean 75. th. percentile value of the excursion of all cases was mean 2.8 mm (SD 2.9) for the MCL zone, mean 4.8 mm (SD 5.9) for the PMC zone, mean 3.4 mm (SD 2.0) for the ITB zone, mean 6.3 mm (SD 4.8) for the LCL zone, mean 4.9 mm (SD 5.7) for the PopT zone, and mean 6.1 mm (SD 3.9) for the NVB zone. Experienced surgeons had a significantly lower excursion than residents. Conclusion. This study showed that the oscillating saw significantly passes the edge of the bone during the tibial resection in TKA, even in experienced hands. While reported neurovascular complications in TKA are rare, direct injury to the capsule and stabilizing structures around the knee is a consequence of the use of a hand-held oscillating saw when making the tibial cut. Cite this article: Bone Joint J 2020;102-B(10):1324–1330


Bone & Joint Research
Vol. 12, Issue 4 | Pages 285 - 293
17 Apr 2023
Chevalier A Vermue H Pringels L Herregodts S Duquesne K Victor J Loccufier M

Aims

The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in vitro. The knee joint kinematics were evaluated for two types of knee implants: bi-cruciate retaining and bi-cruciate stabilized. It was hypothesized that the bi-cruciate retaining implant better approximates native kinematics.

Methods

The in vitro study included 20 specimens which were tested during a full stair descent with physiological muscle forces in a dynamic knee rig. Laxity envelopes were measured by applying external loading conditions in varus/valgus and internal/external direction.


Bone & Joint Open
Vol. 4, Issue 9 | Pages 682 - 688
6 Sep 2023
Hampton M Balachandar V Charalambous CP Sutton PM

Aims

Aseptic loosening is the most common cause of failure following cemented total knee arthroplasty (TKA), and has been linked to poor cementation technique. We aimed to develop a consensus on the optimal technique for component cementation in TKA.

Methods

A UK-based, three-round, online modified Delphi Expert Consensus Study was completed focusing on cementation technique in TKA. Experts were identified as having a minimum of five years’ consultant experience in the NHS and fulfilling any one of the following criteria: a ‘high volume’ knee arthroplasty practice (> 150 TKAs per annum) as identified from the National joint Registry of England, Wales, Northern Ireland and the Isle of Man; a senior author of at least five peer reviewed articles related to TKA in the previous five years; a surgeon who is named trainer for a post-certificate of comletion of training fellowship in TKA.


Bone & Joint Research
Vol. 5, Issue 8 | Pages 320 - 327
1 Aug 2016
van IJsseldijk EA Valstar ER Stoel BC Nelissen RGHH Baka N van’t Klooster R Kaptein BL

Objectives. An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. Materials and Methods. A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans. Results. The SSM-based measurement method was more robust (consistent output for a wide range of input data/consistent output under varying measurement circumstances) than the conventional 2D method, showing that the 3D reconstruction indeed reduces the influence of patient positioning. However, the SSM-based method showed comparable sensitivity to changes in the mJSW with respect to the conventional method. The CT-based measurement was more accurate than the SSM-based measurement (smallest detectable differences 0.55 mm versus 0. 82 mm, respectively). Conclusion. The proposed measurement method is not a substitute for the conventional 2D measurement due to limitations in the SSM model accuracy. However, further improvement of the model accuracy and optimisation technique can be obtained. Combined with the promising options for applications using quantitative information on bone morphology, SSM based 3D reconstructions of natural knees are attractive for further development. Cite this article: E. A. van IJsseldijk, E. R. Valstar, B. C. Stoel, R. G. H. H. Nelissen, N. Baka, R. van’t Klooster, B. L. Kaptein. Three dimensional measurement of minimum joint space width in the knee from stereo radiographs using statistical shape models. Bone Joint Res 2016;320–327. DOI: 10.1302/2046-3758.58.2000626


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims

The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population.

Methods

We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 20 - 27
17 Jan 2024
Turgeon TR Vasarhelyi E Howard J Teeter M Righolt CH Gascoyne T Bohm E

Aims

A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis.

Methods

Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits.


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1271 - 1278
1 Dec 2023
Rehman Y Korsvold AM Lerdal A Aamodt A

Aims

This study compared patient-reported outcomes of three total knee arthroplasty (TKA) designs from one manufacturer: one cruciate-retaining (CR) design, and two cruciate-sacrificing designs, anterior-stabilized (AS) and posterior-stabilized (PS).

Methods

Patients scheduled for primary TKA were included in a single-centre, prospective, three-armed, blinded randomized trial (n = 216; 72 per group). After intraoperative confirmation of posterior cruciate ligament (PCL) integrity, patients were randomly allocated to receive a CR, AS, or PS design from the same TKA system. Insertion of an AS or PS design required PCL resection. The primary outcome was the mean score of all five subscales of the Knee injury and Osteoarthritis Outcome Score (KOOS) at two-year follow-up. Secondary outcomes included all KOOS subscales, Oxford Knee Score, EuroQol five-dimension health questionnaire, EuroQol visual analogue scale, range of motion (ROM), and willingness to undergo the operation again. Patient satisfaction was also assessed.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1240 - 1248
1 Nov 2024
Smolle MA Keintzel M Staats K Böhler C Windhager R Koutp A Leithner A Donner S Reiner T Renkawitz T Sava M Hirschmann MT Sadoghi P

Aims

This multicentre retrospective observational study’s aims were to investigate whether there are differences in the occurrence of radiolucent lines (RLLs) following total knee arthroplasty (TKA) between the conventional Attune baseplate and its successor, the novel Attune S+, independent from other potentially influencing factors; and whether tibial baseplate design and presence of RLLs are associated with differing risk of revision.

Methods

A total of 780 patients (39% male; median age 70.7 years (IQR 62.0 to 77.2)) underwent cemented TKA using the Attune Knee System) at five centres, and with the latest radiograph available for the evaluation of RLL at between six and 36 months from surgery. Univariate and multivariate logistic regression models were performed to assess associations between patient and implant-associated factors on the presence of tibial and femoral RLLs. Differences in revision risk depending on RLLs and tibial baseplate design were investigated with the log-rank test.


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 148 - 157
1 Feb 2023
Koster LA Rassir R Kaptein BL Sierevelt IN Schager M Nelissen RGHH Nolte PA

Aims

The primary aim of this study was to compare the migration of the femoral and tibial components of the cementless rotating platform Attune and Low Contact Stress (LCS) total knee arthroplasty (TKA) designs, two years postoperatively, using radiostereometric analysis (RSA) in order to assess the risk of the development of aseptic loosening. A secondary aim was to compare clinical and patient-reported outcome measures (PROMs) between the designs.

Methods

A total of 61 TKAs were analyzed in this randomized clinical RSA trial. RSA examinations were performed one day and three, six, 12, and 24 months postoperatively. The maximal total point motion (MPTM), translations, and rotations of the components were analyzed. PROMs and clinical data were collected preoperatively and at six weeks and three, six, 12, and 24 months postoperatively. Linear mixed effect modelling was used for statistical analyses.


Bone & Joint Open
Vol. 5, Issue 6 | Pages 489 - 498
12 Jun 2024
Kriechling P Bowley ALW Ross LA Moran M Scott CEH

Aims

The purpose of this study was to compare reoperation and revision rates of double plating (DP), single plating using a lateral locking plate (SP), or distal femoral arthroplasty (DFA) for the treatment of periprosthetic distal femur fractures (PDFFs).

Methods

All patients with PDFF primarily treated with DP, SP, or DFA between 2008 and 2022 at a university teaching hospital were included in this retrospective cohort study. The primary outcome was revision surgery for failure following DP, SP, or DFA. Secondary outcome measures included any reoperation, length of hospital stay, and mortality. All basic demographic and relevant implant and injury details were collected. Radiological analysis included fracture classification and evaluation of metaphyseal and medial comminution.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims

This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy.

Methods

Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups.


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1168 - 1176
1 Nov 2023
Yüksel Y Koster LA Kaptein BL Nelissen RGHH den Hollander P

Aims

Conflicting clinical results are reported for the ATTUNE Total Knee Arthroplasty (TKA). This randomized controlled trial (RCT) evaluated five-year follow-up results comparing cemented ATTUNE and PFC-Sigma cruciate retaining TKAs, analyzing component migration as measured by radiostereometric analysis (RSA), clinical outcomes, patient-reported outcome measures (PROMs), and radiological outcomes.

Methods

A total of 74 primary TKAs were included in this single-blind RCT. RSA examinations were performed, and PROMs and clinical outcomes were collected immediate postoperatively, and at three, six, 12, 24, and 60 months’ follow-up. Radiolucent lines (RLLs) were measured in standard anteroposterior radiographs at six weeks, and 12 and 60 months postoperatively.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 338 - 356
10 May 2023
Belt M Robben B Smolders JMH Schreurs BW Hannink G Smulders K

Aims

To map literature on prognostic factors related to outcomes of revision total knee arthroplasty (rTKA), to identify extensively studied factors and to guide future research into what domains need further exploration.

Methods

We performed a systematic literature search in MEDLINE, Embase, and Web of Science. The search string included multiple synonyms of the following keywords: "revision TKA", "outcome" and "prognostic factor". We searched for studies assessing the association between at least one prognostic factor and at least one outcome measure after rTKA surgery. Data on sample size, study design, prognostic factors, outcomes, and the direction of the association was extracted and included in an evidence map.


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 642 - 648
1 May 2015
Hunt NC Ghosh KM Blain AP Rushton SP Longstaff LM Deehan DJ

The aim of this study was to compare the maximum laxity conferred by the cruciate-retaining (CR) and posterior-stabilised (PS) Triathlon single-radius total knee arthroplasty (TKA) for anterior drawer, varus–valgus opening and rotation in eight cadaver knees through a defined arc of flexion (0º to 110º). The null hypothesis was that the limits of laxity of CR- and PS-TKAs are not significantly different. The investigation was undertaken in eight loaded cadaver knees undergoing subjective stress testing using a measurement rig. Firstly the native knee was tested prior to preparation for CR-TKA and subsequently for PS-TKA implantation. Surgical navigation was used to track maximal displacements/rotations at 0º, 30º, 60º, 90º and 110° of flexion. Mixed-effects modelling was used to define the behaviour of the TKAs. . The laxity measured for the CR- and PS-TKAs revealed no statistically significant differences over the studied flexion arc for the two versions of TKA. Compared with the native knee both TKAs exhibited slightly increased anterior drawer and decreased varus-valgus and internal-external roational laxities. We believe further study is required to define the clinical states for which the additional constraint offered by a PS-TKA implant may be beneficial. Cite this article: Bone Joint J 2015; 97-B:642–8


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 838 - 847
1 Jul 2019
Robinson PG Clement ND Hamilton D Blyth MJG Haddad FS Patton JT

Aims. Robotic-assisted unicompartmental knee arthroplasty (UKA) promises accurate implant placement with the potential of improved survival and functional outcomes. The aim of this study was to present the current evidence for robotic-assisted UKA and describe the outcome in terms of implant positioning, range of movement (ROM), function and survival, and the types of robot and implants that are currently used. Materials and Methods. A search of PubMed and Medline was performed in October 2018 in line with the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “knee”, and “surgery”. The criteria for inclusion was any study describing the use of robotic UKA and reporting implant positioning, ROM, function, and survival for clinical, cadaveric, or dry bone studies. Results. A total of 528 articles were initially identified from the databases and reference lists. Following full text screening, 38 studies that satisfied the inclusion criteria were included. In all, 20 studies reported on implant positioning, 18 on functional outcomes, 16 on survivorship, and six on ROM. The Mako (Stryker, Mahwah, New Jersey) robot was used in 32 studies (84%), the BlueBelt Navio (Blue Belt Technologies, Plymouth, Minnesota) in three (8%), the Sculptor RGA (Stanmore Implants, Borehamwood United Kingdom) in two (5%), and the Acrobot (The Acrobot Co. Ltd., London, United Kingdom) in one study (3%). The most commonly used implant was the Restoris MCK (Stryker). Nine studies (24%) did not report the implant that was used. The pooled survivorship at six years follow-up was 96%. However, when assessing survival according to implant design, survivorship of an inlay (all-polyethylene) tibial implant was 89%, whereas that of an onlay (metal-backed) implant was 97% at six years (odds ratio 3.66, 95% confidence interval 20.7 to 6.46, p < 0.001). Conclusion. There is little description of the choice of implant when reporting robotic-assisted UKA, which is essential when assessing survivorship, in the literature. Implant positioning with robotic-assisted UKA is more accurate and more reproducible than that performed manually and may offer better functional outcomes, but whether this translates into improved implant survival in the mid- to longer-term remains to be seen. Cite this article: Bone Joint J 2019;101-B:838–847


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 12 | Pages 1637 - 1640
1 Dec 2012
Clark DA Upadhyay N Gillespie G Wakeley C Eldridge JD

Ensuring correct rotation of the femoral component is a challenging aspect of patellofemoral replacement surgery. Rotation equal to the epicondylar axis or marginally more external rotation is acceptable. Internal rotation is associated with poor outcomes. This paper comprises two studies evaluating the use of the medial malleolus as a landmark to guide rotation. We used 100 lower-leg anteroposterior radiographs to evaluate the reliability of the medial malleolus as a landmark. Assessment was made of the angle between the tibial shaft and a line from the intramedullary rod entry site to the medial malleolus. The femoral cut was made in ten cadaver knees using the inferior tip of the medial malleolus as a landmark for rotation. Rotation of the cut relative to the anatomical epicondylar axis was assessed using CT. The study of radiographs found the position of the medial malleolus relative to the tibial axis is consistent. Using the inferior tip of the medial malleolus in the cadaver study produced a mean external rotation of 1.6° (0.1° to 3.7°) from the anatomical epicondylar axis. Using the inferior tip of the medial malleolus to guide the femoral cutting jig avoids internal rotation and introduces an acceptable amount of external rotation of the femoral component


Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal.


Bone & Joint Research
Vol. 6, Issue 6 | Pages 376 - 384
1 Jun 2017
Stentz-Olesen K Nielsen ET De Raedt S Jørgensen PB Sørensen OG Kaptein BL Andersen MS Stilling M

Objectives. Static radiostereometric analysis (RSA) using implanted markers is considered the most accurate system for the evaluation of prosthesis migration. By using CT bone models instead of markers, combined with a dynamic RSA system, a non-invasive measurement of joint movement is enabled. This method is more accurate than current 3D skin marker-based tracking systems. The purpose of this study was to evaluate the accuracy of the CT model method for measuring knee joint kinematics in static and dynamic RSA using the marker method as the benchmark. Methods. Bone models were created from CT scans, and tantalum beads were implanted into the tibia and femur of eight human cadaver knees. Each specimen was secured in a fixture, static and dynamic stereoradiographs were recorded, and the bone models and marker models were fitted to the stereoradiographs. Results. Results showed a mean difference between the two methods in all six degrees of freedom for static RSA to be within -0.10 mm/° and 0.08 mm/° with a 95% limit of agreement (LoA) ranging from ± 0.49 to 1.26. Dynamic RSA had a slightly larger range in mean difference of -0.23 mm/° to 0.16 mm/° with LoA ranging from ± 0.75 to 1.50. Conclusions. In a laboratory-controlled setting, the CT model method combined with dynamic RSA may be an alternative to previous marker-based methods for kinematic analyses. Cite this article: K. Stentz-Olesen, E. T. Nielsen, S. De Raedt, P. B. Jørgensen, O. G. Sørensen, B. L. Kaptein, M. S. Andersen, M. Stilling. Validation of static and dynamic radiostereometric analysis of the knee joint using bone models from CT data. Bone Joint Res 2017;6:376–384. DOI: 10.1302/2046-3758.66.BJR-2016-0113.R3


Bone & Joint Research
Vol. 5, Issue 7 | Pages 280 - 286
1 Jul 2016
Ozkurt B Sen T Cankaya D Kendir S Basarır K Tabak Y

Objectives. The purpose of this study was to develop an accurate, reliable and easily applicable method for determining the anatomical location of the joint line during revision knee arthroplasty. Methods. The transepicondylar width (TEW), the perpendicular distance between the medial and lateral epicondyles and the distal articular surfaces (DMAD, DLAD) and the distance between the medial and lateral epicondyles and the posterior articular surfaces (PMAD, DLAD) were measured in 40 knees from 20 formalin-fixed adult cadavers (11 male and nine female; mean age at death 56.9 years, . sd. 9.4; 34 to 69). The ratios of the DMAD, PMAD, DLAD and PLAD to TEW were calculated. Results. The mean TEW, DMAD, PMAD, DLAD and PLAD were 82.76 mm (standard deviation (. sd. ) 7.74), 28.95 mm (. sd. 3.3), 28.57 mm (. sd. 3), 23.97 mm (. sd. 3.27) and 24.42 mm (. sd. 3.14), respectively. The ratios between the TEW and the articular distances (DMAD/TEW, DLAD/TEW, PMAD/TEW and PLAD/TEW) were calculated and their means were 0.35 (. sd. 0.02), 0.34 (. sd. 0.02), 0.28 (. sd. 0.03) and 0.29 (. sd. 0.03), respectively. Conclusion. This method provides a simple, reproducible and reliable technique enabling accurate anatomical joint line restoration during revision total knee arthroplasty. Cite this article: B. Ozkurt, T. Sen, D. Cankaya, S. Kendir, K. Basarır, Y. Tabak. The medial and lateral epicondyle as a reliable landmark for intra-operative joint line determination in revision knee arthroplasty. Bone Joint Res 2016;5:280–286. DOI: 10.1302/2046-3758.57.BJR-2016-0002.R1


Bone & Joint Research
Vol. 10, Issue 8 | Pages 467 - 473
2 Aug 2021
Rodríguez-Collell JR Mifsut D Ruiz-Sauri A Rodríguez-Pino L González-Soler EM Valverde-Navarro AA

Aims

The main objective of this study is to analyze the penetration of bone cement in four different full cementation techniques of the tibial tray.

Methods

In order to determine the best tibial tray cementation technique, we applied cement to 40 cryopreserved donor tibiae by four different techniques: 1) double-layer cementation of the tibial component and tibial bone with bone restrictor; 2) metallic cementation of the tibial component without bone restrictor; 3) bone cementation of the tibia with bone restrictor; and 4) superficial bone cementation of the tibia and metallic keel cementation of the tibial component without bone restrictor. We performed CT exams of all 40 subjects, and measured cement layer thickness at both levels of the resected surface of the epiphysis and the endomedular metaphyseal level.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 87 - 93
1 Jun 2021
Chalmers BP Elmasry SS Kahlenberg CA Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK Cross MB

Aims

Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture, which leads to femoral joint line elevation. There is a paucity of data describing the effect of joint line elevation on mid-flexion stability and knee kinematics. Thus, the goal of this study was to quantify the effect of joint line elevation on mid-flexion laxity.

Methods

Six computational knee models with cadaver-specific capsular and collateral ligament properties were implanted with a posterior-stabilized (PS) TKA. A 10° flexion contracture was created in each model to simulate a capsular contracture. Distal femoral resections of + 2 mm and + 4 mm were then simulated for each knee. The knee models were then extended under a standard moment. Subsequently, varus and valgus moments of 10 Nm were applied as the knee was flexed from 0° to 90° at baseline and repeated after each of the two distal resections. Coronal laxity (the sum of varus and valgus angulation with respective maximum moments) was measured throughout flexion.


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1075 - 1081
17 Dec 2021
Suthar A Yukata K Azuma Y Suetomi Y Yamazaki K Seki K Sakai T Fujii H

Aims

This study aimed to investigate the relationship between changes in patellar height and clinical outcomes at a mean follow-up of 7.7 years (5 to 10) after fixed-bearing posterior-stabilized total knee arthroplasty (PS-TKA).

Methods

We retrospectively evaluated knee radiographs of 165 knees, which underwent fixed-bearing PS-TKA with patella resurfacing. The incidence of patella baja and changes in patellar height over a minimum of five years of follow-up were determined using Insall-Salvati ratio (ISR) measurement. We examined whether patella baja (ISR < 0.8) at final follow-up affected clinical outcomes, knee joint range of motion (ROM), and Knee Society Score (KSS). We also assessed inter- and intrarater reliability of ISR measurements and focused on the relationship between patellar height reduction beyond measurement error and clinical outcomes.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 84 - 88
1 Jan 2016
Vince K

The term mid-flexion instability has entered the orthopaedic literature as a concept, but has not been confirmed as a distinct clinical entity. The term is used freely, sometimes as a synonym for flexion instability. However, the terms need to be clearly separated. A cadaver study published in 1990 associated joint line elevation with decreased stability at many angles of flexion, but that model was not typical of clinical scenarios. The literature is considered and it is proposed that the more common entity of an uncorrected flexion contracture after a measured resection arthroplasty technique is more likely to produce clinical findings that suggest instability mid-flexion. It is proposed that the clinical scenario encountered is generalised instability, with the appearance of stability in full extension from tight posterior structures. This paper seeks to clarify whether mid-flexion instability exists as an entity distinct from other commonly recognised forms of instability. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):84–8


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 74 - 80
1 Jun 2021
Deckey DG Rosenow CS Verhey JT Brinkman JC Mayfield CK Clarke HD Bingham JS

Aims

Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA.

Methods

A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and tibial components and overall limb alignment remained 0 ± 3°; planned tibial posterior slope was 1.5°. Mean deviations from plan for each parameter were compared between groups for positioning and size and outliers were assessed.


Bone & Joint Research
Vol. 2, Issue 11 | Pages 233 - 237
1 Nov 2013
Russell DF Deakin AH Fogg QA Picard F

Objectives. We performed in vitro validation of a non-invasive skin-mounted system that could allow quantification of anteroposterior (AP) laxity in the outpatient setting. Methods. A total of 12 cadaveric lower limbs were tested with a commercial image-free navigation system using trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° of knee flexion and 100 N of force was applied perpendicular to the tibia. Acceptable coefficient of repeatability (CR) and limits of agreement (LOA) of 3 mm were set based on diagnostic criteria for anterior cruciate ligament (ACL) insufficiency. Results. Reliability and precision within the individual invasive and non-invasive systems was acceptable throughout the range of flexion tested (intra-class correlation coefficient 0.88, CR 1.6 mm). Agreement between the two systems was acceptable measuring AP laxity between full extension and 40° knee flexion (LOA 2.9 mm). Beyond 40° of flexion, agreement between the systems was unacceptable (LOA > 3 mm). Conclusions. These results indicate that from full knee extension to 40° flexion, non-invasive navigation-based quantification of AP tibial translation is as accurate as the standard validated commercial system, particularly in the clinically and functionally important range of 20° to 30° knee flexion. This could be useful in diagnosis and post-operative evaluation of ACL pathology. Cite this article: Bone Joint Res 2013;2:233–7


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 896 - 901
1 Jul 2014
Reiner T Jaeger S Schwarze M Klotz MC Beckmann NA Bitsch RG

Aseptic loosening of the femoral component is an important indication for revision surgery in unicompartmental knee replacement (UKR). A new design of femoral component with an additional peg was introduced for the cemented Oxford UKR to increase its stability. The purpose of this study was to compare the primary stability of the two designs of component. Medial Oxford UKR was performed in 12 pairs of human cadaver knees. In each pair, one knee received the single peg and one received the twin peg design. Three dimensional micromotion and subsidence of the component in relation to the bone was measured under cyclical loading at flexion of 40° and 70° using an optical measuring system. Wilcoxon matched pairs signed-rank test was performed to detect differences between the two groups. . There was no significant difference in the relative micromotion (p = 0.791 and 0.380, respectively) and subsidence (p = 0.301 and 0.176, respectively) of the component between the two groups at both angles of flexion. Both designs of component offered good strength of fixation in this cadaver study. Cite this article: Bone Joint J 2014;96-B:896–901


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1261 - 1269
1 Jul 2021
Burger JA Zuiderbaan HA Sierevelt IN van Steenbergen L Nolte PA Pearle AD Kerkhoffs GMMJ

Aims

Uncemented mobile bearing designs in medial unicompartmental knee arthroplasty (UKA) have seen an increase over the last decade. However, there are a lack of large-scale studies comparing survivorship of these specific designs to commonly used cemented mobile and fixed bearing designs. The aim of this study was to evaluate the survivorship of these designs.

Methods

A total of 21,610 medial UKAs from 2007 to 2018 were selected from the Dutch Arthroplasty Register. Multivariate Cox regression analyses were used to compare uncemented mobile bearings with cemented mobile and fixed bearings. Adjustments were made for patient and surgical factors, with their interactions being considered. Reasons and type of revision in the first two years after surgery were assessed.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims

The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups.

Methods

This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 357 - 363
1 Mar 2011
Gillespie RJ Levine A Fitzgerald SJ Kolaczko J DeMaio M Marcus RE Cooperman DR

Recently, gender-specific designs of total knee replacement have been developed to accommodate anatomical differences between males and females. We examined a group of male and female distal femora matched for age and height, to determine if there was a difference in the aspect ratio (mediolateral distance versus anteroposterior distance) and the height of the anterior flange between the genders. The Hamann-Todd Collection provided 1207 skeletally mature cadaver femora. The femoral length, the anteroposterior height, height of the lateral and medial flanges and the mediolateral width were measured in all the specimens. The mechanical axis of the femur, the cut articular width and the aspect ratio were assessed. Statistical analysis of the effect of gender upon the aspect ratio and the lateral and medial flanges was undertaken, controlling for age, height and race. The mean aspect ratio of male femora was 1.21 (. sd. 0.07) and of female femora it was 1.16 (. sd. 0.06) (p < 0.001). There was no significant difference between male and female specimens in the mean size of the lateral flange (6.57 mm (. sd. 2.57) and 7.02 mm (. sd. 2.36), respectively; p = 0.099) or of the medial flange (3.03 mm (. sd. 2.47) and 3.56 mm (. sd. 2.32), respectively; p = 0.67). Future work in the design of knee prostheses should take into account the overall variability of the anatomy of the distal femur


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 68 - 74
1 Jan 2012
Christel PS Akgun U Yasar T Karahan M Demirel B

The clinical diagnosis of a partial tear of the anterior cruciate ligament (ACL) is still subject to debate. Little is known about the contribution of each ACL bundle during the Lachman test. We investigated this using six fresh-frozen cadaveric lower limbs. Screws were placed in the femora and tibiae as fixed landmarks for digitisation of the bone positions. The femur was secured horizontally in a clamp. A metal hook was screwed to the tibial tubercle and used to apply a load of 150 N directed anteroposteriorly to the tibia to simulate the Lachman test. The knees then received constant axial compression and 3D knee kinematic data were collected by digitising the screw head positions in 30° flexion under each test condition. Measurements of tibial translation and rotation were made, first with the ACL intact, then after sequential cutting of the ACL bundles, and finally after complete division of the ACL. Two-way analysis of variance analysis was performed. During the Lachman test, in all knees and in all test conditions, lateral tibial translation exceeded that on the medial side. With an intact ACL, both anterior and lateral tibial landmarks translated significantly more than those on the medial side (p < 0.001). With sequential division of the ACL bundles, selective cutting of the posterolateral bundle (PLB) did not increase translation of any landmark compared with when the ACL remained intact. Cutting the anteromedial bundle (AMB) resulted in an increased anterior translation of all landmarks. Compared to the intact ACL, when the ACL was fully transected a significant increase in anterior translation of all landmarks occurred (p < 0.001). However, anterior tibial translation was almost identical after AMB or complete ACL division. We found that the AMB confers its most significant contribution to tibial translation during the Lachman test, whereas the PLB has a negligible effect on anterior translation. Section of the PLB had a greater effect on increasing the internal rotation of the tibia than the AMB. However, its contribution of a mean of 2.8° amplitude remains low. The clinical relevance of our investigation suggests that, based on anterior tibial translation only, one cannot distinguish between a full ACL and an isolated AMB tear. Isolated PLB tears cannot be detected solely by the Lachman test, as this bundle probably contributes more resistance to the pivot shift


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 43 - 48
1 Jun 2020
D’Lima DP Huang P Suryanarayan P Rosen A D’Lima DD

Aims

The extensive variation in axial rotation of tibial components can lead to coronal plane malalignment. We analyzed the change in coronal alignment induced by tray malrotation.

Methods

We constructed a computer model of knee arthroplasty and used a virtual cutting guide to cut the tibia at 90° to the coronal plane. The virtual guide was rotated axially (15° medial to 15° lateral) and with posterior slopes (0° to 7°). To assess the effect of axial malrotation, we measured the coronal plane alignment of a tibial tray that was axially rotated (25° internal to 15° external), as viewed on a standard anteroposterior (AP) radiograph.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 442 - 448
1 Apr 2020
Kayani B Konan S Ahmed SS Chang JS Ayuob A Haddad FS

Aims

The objectives of this study were to assess the effect of anterior cruciate ligament (ACL) resection on flexion-extension gaps, mediolateral soft tissue laxity, maximum knee extension, and limb alignment during primary total knee arthroplasty (TKA).

Methods

This prospective study included 140 patients with symptomatic knee osteoarthritis undergoing primary robotic-arm assisted TKA. All operative procedures were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess study outcomes pre- and post-ACL resection with knee extension and 90° knee flexion. This study included 76 males (54.3%) and 64 females (45.7%) with a mean age of 64.1 years (SD 6.8) at time of surgery. Mean preoperative hip-knee-ankle deformity was 6.1° varus (SD 4.6° varus).


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 643 - 648
1 May 2013
Wang J Hsu C Huang C Lin P Chen W

Structural allografts may be used to manage uncontained bone defects in revision total knee replacement (TKR). However, the availability of cadaver grafts is limited in some areas of Asia. The aim of this study was to evaluate the mid-term outcome of the use of femoral head allografts for the reconstruction of uncontained defects in revision TKR, focusing on complications related to the graft. We retrospectively reviewed 28 patients (30 TKRs) with Anderson Orthopaedic Research Institute (AORI) type 3 bone defects, who underwent revision using femoral head allografts and stemmed components. The mean number of femoral heads used was 1.7 (1 to 3). The allograft–host junctions were packed with cancellous autograft. At a mean follow-up of 76 months (38 to 136) the mean American Knee Society knee score improved from 37.2 (17 to 60) pre-operatively to 90 (83 to 100) (p < 0.001). The mean function score improved from 26.5 (0 to 50) pre-operatively to 81 (60 to 100) (p < 0.001). All the grafts healed to the host bone. The mean time to healing of the graft was 6.6 months (4 to 16). There have been no complications of collapse of the graft, nonunion, infection or implant loosening. No revision surgery was required. The use of femoral head allografts in conjunction with a stemmed component and autogenous bone graft in revision TKR in patients with uncontained bone defects resulted in a high rate of healing of the graft with minimal complications and a satisfactory outcome. Longer follow-up is needed to observe the evolution of the graft. Cite this article: Bone Joint J 2013;95-B:643–8


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1364 - 1368
1 Oct 2005
Brinkman J Schwering PJA Blankevoort L Koolos JG Luites J Wymenga AB

We have quantitatively documented the insertion geometry of the main stabilising structures of the posterolateral corner of the knee in 34 human cadavers. The lateral collateral ligament inserted posterior (4.6 mm, . sd. 2) and proximal (1.3 mm, . sd. 3.6) to the lateral epicondyle of the femur and posterior (8.1 mm, . sd. 3.2) to the anterior point of the head of the fibula. On the femur, the popliteus tendon inserted distally (11 mm, . sd. 0.8) and either anterior or posterior (mean 0.84 mm anterior, . sd. 4) to the lateral collateral ligament. The popliteofibular ligament inserted distal (1.3 mm, . sd. 1.2) and anterior (0.5 mm, . sd. 2.0) to the tip of the styloid process of the fibula. The ligaments had a consistent pattern of insertion and, despite the variation between specimens, the standard deviations were less than the typical size of drill hole used in reconstruction of the posterolateral corner. The data provided in this study can be used in the anatomical repair and reconstruction of this region of the knee


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1591 - 1595
1 Dec 2006
Price AJ Oppold PT Murray DW Zavatsky AB

The Oxford medial unicompartmental knee replacement was designed to reproduce normal mobility and forces in the knee, but its detailed effect on the patellofemoral joint has not been studied previously. We have examined the effect on patellofemoral mechanics of the knee by simultaneously measuring patellofemoral kinematics and forces in 11 cadaver knee specimens in a supine leg-extension rig. Comparison was made between the intact normal knee and sequential unicompartmental and total knee replacement. Following medial mobile-bearing unicompartmental replacement in 11 knees, patellofemoral kinematics and forces did not change significantly from those in the intact knee across any measured parameter. In contrast, following posterior cruciate ligament retaining total knee replacement in eight knees, there were significant changes in patellofemoral movement and forces. The Oxford device appears to produce near-normal patellofemoral mechanics, which may partly explain the low incidence of complications with the extensor mechanism associated with clinical use


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 1 | Pages 36 - 40
1 Jan 2005
Mountney J Senavongse W Amis AA Thomas NP

The tensile strength of the medial patellofemoral ligament (MPFL), and of surgical procedures which reconstitute it, are unknown. Ten fresh cadaver knees were prepared by isolating the patella, leaving only the MPFL as its attachment to the medial femoral condyle. The MPFL was either repaired by using a Kessler suture or reconstructed using either bone anchors or one of two tendon grafting techniques. The tensile strength and the displacement to peak force of the MPFL were then measured using an Instron materials-testing machine. The MPFL was found to have a mean tensile strength of 208 N (SD 90) at 26 mm (SD 7) of displacement. The strengths of the other techniques were: sutures alone, 37 N (SD 27); bone anchors plus sutures, 142 N (SD 39); blind-tunnel tendon graft, 126 N (SD 21); and through-tunnel tendon graft, 195 N (SD 66). The last was not significantly weaker than the MPFL itself


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 426 - 433
1 Apr 2020
Boettner F Sculco P Faschingbauer M Rueckl K Windhager R Kasparek MF

Aims

To compare patients undergoing total knee arthroplasty (TKA) with ≤ 80° range of movement (ROM) operated with a 2 mm increase in the flexion gap with matched non-stiff patients with at least 100° of preoperative ROM and balanced flexion and extension gaps.

Methods

In a retrospective cohort study, 98 TKAs (91 patients) with a preoperative ROM of ≤ 80° were examined. Mean follow-up time was 53 months (24 to 112). All TKAs in stiff knees were performed with a 2 mm increased flexion gap. Data were compared to a matched control group of 98 TKAs (86 patients) with a mean follow-up of 43 months (24 to 89). Knees in the control group had a preoperative ROM of at least 100° and balanced flexion and extension gaps. In all stiff and non-stiff knees posterior stabilized (PS) TKAs with patellar resurfacing in combination with adequate soft tissue balancing were used.


Bone & Joint Research
Vol. 8, Issue 11 | Pages 509 - 517
1 Nov 2019
Kang K Koh Y Park K Choi C Jung M Shin J Kim S

Objectives

The aim of this study was to investigate the biomechanical effect of the anterolateral ligament (ALL), anterior cruciate ligament (ACL), or both ALL and ACL on kinematics under dynamic loading conditions using dynamic simulation subject-specific knee models.

Methods

Five subject-specific musculoskeletal models were validated with computationally predicted muscle activation, electromyography data, and previous experimental data to analyze effects of the ALL and ACL on knee kinematics under gait and squat loading conditions.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 59 - 65
1 Jun 2020
Kwon Y Arauz P Peng Y Klemt C

Aims

The removal of the cruciate ligaments in total knee arthroplasty (TKA) has been suggested as a potential contributing factor to patient dissatisfaction, due to alteration of the in vivo biomechanics of the knee. Bicruciate retaining (BCR) TKA allows the preservation of the cruciate ligaments, thus offering the potential to reproduce healthy kinematics. The aim of this study was to compare in vivo kinematics between the operated and contralateral knee in patients who have undergone TKA with a contemporary BCR design.

Methods

A total of 29 patients who underwent unilateral BCR TKA were evaluated during single-leg deep lunges and sit-to-stand tests using a validated computer tomography and fluoroscopic imaging system. In vivo six-degrees of freedom (6DOF) kinematics were compared between the BCR TKA and the contralateral knee.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 49 - 58
1 Jun 2020
Mullaji A

Aims

The aims of this study were to determine the effect of osteophyte excision on deformity correction and soft tissue gap balance in varus knees undergoing computer-assisted total knee arthroplasty (TKA).

Methods

A total of 492 consecutive, cemented, cruciate-substituting TKAs performed for varus osteoarthritis were studied. After exposure and excision of both cruciates and menisci, it was noted from operative records the corrective interventions performed in each case. Knees in which no releases after the initial exposure, those which had only osteophyte excision, and those in which further interventions were performed were identified. From recorded navigation data, coronal and sagittal limb alignment, knee flexion range, and medial and lateral gap distances in maximum knee extension and 90° knee flexion with maximal varus and valgus stresses, were established, initially after exposure and excision of both cruciate ligaments, and then also at trialling. Knees were defined as ‘aligned’ if the hip-knee-ankle axis was between 177° and 180°, (0° to 3° varus) and ‘balanced’ if medial and lateral gaps in extension and at 90° flexion were within 2 mm of each other.


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1230 - 1237
1 Oct 2019
Kayani B Konan S Horriat S Ibrahim MS Haddad FS

Aims

The aim of this study was to assess the effect of posterior cruciate ligament (PCL) resection on flexion-extension gaps, mediolateral soft-tissue laxity, fixed flexion deformity (FFD), and limb alignment during posterior-stabilized (PS) total knee arthroplasty (TKA).

Patients and Methods

This prospective study included 110 patients with symptomatic osteoarthritis of the knee undergoing primary robot-assisted PS TKA. All operations were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess gaps before and after PCL resection in extension and 90° knee flexion. Measurements were made after excision of the anterior cruciate ligament and prior to bone resection. There were 54 men (49.1%) and 56 women (50.9%) with a mean age of 68 years (sd 6.2) at the time of surgery. The mean preoperative hip-knee-ankle deformity was 4.1° varus (sd 3.4).


Bone & Joint Open
Vol. 1, Issue 2 | Pages 8 - 12
18 Feb 2020
Bhimani SJ Bhimani R Smith A Eccles C Smith L Malkani A

Aims

Robotic-assisted total knee arthroplasty (RA-TKA) has been introduced to provide accurate bone cuts and help achieve the target knee alignment, along with symmetric gap balancing. The purpose of this study was to determine if any early clinical benefits could be realized following TKA using robotic-assisted technology.

Methods

In all, 140 consecutive patients undergoing RA-TKA and 127 consecutive patients undergoing conventional TKA with minimum six-week follow-up were reviewed. Differences in visual analogue scores (VAS) for pain at rest and with activity, postoperative opiate usage, and length of stay (LOS) between the RA-TKA and conventional TKA groups were compared.


Bone & Joint Research
Vol. 8, Issue 10 | Pages 438 - 442
1 Oct 2019
Kayani B Haddad FS


Bone & Joint Research
Vol. 8, Issue 3 | Pages 126 - 135
1 Mar 2019
Sekiguchi K Nakamura S Kuriyama S Nishitani K Ito H Tanaka Y Watanabe M Matsuda S

Objectives

Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation.

Methods

The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle.


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 915 - 921
1 Aug 2019
Beckers L Ooms D Berger P Van Laere K Scheys L Vandenneucker H

Aims

Altered alignment and biomechanics are thought to contribute to the progression of osteoarthritis (OA) in the native compartments after medial unicompartmental knee arthroplasty (UKA). The aim of this study was to evaluate the bone activity and remodelling in the lateral tibiofemoral and patellofemoral compartment after medial mobile-bearing UKA.

Patients and Methods

In total, 24 patients (nine female, 15 male) with 25 medial Oxford UKAs (13 left, 12 right) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively and at one and two years postoperatively, along with standard radiographs and clinical outcome scores. The mean patient age was 62 years (40 to 78) and the mean body mass index (BMI) was 29.7 kg/m2 (23.6 to 42.2). Mean osteoblastic activity was evaluated using a tracer localization scheme with volumes of interest (VOIs). Normalized mean tracer values were calculated as the ratio between the mean tracer activity in a VOI and background activity in the femoral diaphysis.


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1238 - 1247
1 Oct 2019
Soreide E Denbeigh JM Lewallen EA Thaler R Xu W Berglund L Yao JJ Martinez A Nordsletten L van Wijnen AJ Kakar S

Aims

Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function.

Materials and Methods

A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6).


Aims

Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual kinematic alignment, but deviation from a neutral mechanical axis may have implications on implant fixation and therefore survivorship. The primary objective of this randomized controlled study was to compare the fixation of tibial components implanted with patient-specific instrumentation targeting kinematic alignment (KA+PSI) versus components placed using computer-assisted surgery targeting neutral mechanical alignment (MA+CAS). Tibial component migration measured by radiostereometric analysis was the primary outcome measure (compared longitudinally between groups and to published acceptable thresholds). Secondary outcome measures were inducible displacement after one year and patient-reported outcome measures (PROMS) over two years. The secondary objective was to assess the relationship between alignment and both tibial component migration and inducible displacement.

Patients and Methods

A total of 47 patients due to undergo TKA were randomized to KA+PSI (n = 24) or MA+CAS (n = 23). In the KA+PSI group, there were 16 female and eight male patients with a mean age of 64 years (sd 8). In the MA+CAS group, there were 17 female and six male patients with a mean age of 63 years (sd 7). Surgery was performed using cemented, cruciate-retaining Triathlon total knees with patellar resurfacing, and patients were followed up for two years. The effect of alignment on tibial component migration and inducible displacement was analyzed irrespective of study group.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 366 - 371
1 Apr 2004
Nabeyama R Matsuda S Miura H Mawatari T Kawano T Iwamoto Y

Our study evaluated the accuracy of an image-guided total knee replacement system based on CT with regard to preparation of the femoral and tibial bone using nine limbs from five cadavers. The accuracy was assessed by direct measurement using an extramedullary alignment rod without radiographs. The mean angular errors of the femur and tibia, which represent angular gaps from the real mechanical axis in the coronal plane, were 0.3° and 1.1°, respectively. The CT-based system, provided almost perfect alignment of the femoral component with less than 1° of error and excellent alignment with less than 3° of error for the tibial component. Our results suggest that standardisation of knee replacement by the use of this system will lead to improved long-term survival of total knee arthroplasty


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 6 | Pages 991 - 994
1 Nov 1999
Morgan-Jones RL Cross MJ

Thirty cruciate ligaments were retrieved from either cadavers or limbs which had been amputated. Each specimen was sectioned and stained to demonstrate the presence of collagen, nerves and vessels. All 30 specimens contained an interconnecting band of collagen fibres between the anterior and posterior cruciate ligaments. Vascular structures were present in all specimens and nerve fibres were identified in 26 (86%). We have called this structure the ‘intercruciate band’. The anterior and posterior cruciate ligaments should no longer be thought of in isolation, but together as a ‘cruciate complex’


The Bone & Joint Journal
Vol. 101-B, Issue 1 | Pages 24 - 33
1 Jan 2019
Kayani B Konan S Tahmassebi J Rowan FE Haddad FS

Aims

The objectives of this study were to compare postoperative pain, analgesia requirements, inpatient functional rehabilitation, time to hospital discharge, and complications in patients undergoing conventional jig-based unicompartmental knee arthroplasty (UKA) versus robotic-arm assisted UKA.

Patients and Methods

This prospective cohort study included 146 patients with symptomatic medial compartment knee osteoarthritis undergoing primary UKA performed by a single surgeon. This included 73 consecutive patients undergoing conventional jig-based mobile bearing UKA, followed by 73 consecutive patients receiving robotic-arm assisted fixed bearing UKA. All surgical procedures were performed using the standard medial parapatellar approach for UKA, and all patients underwent the same postoperative rehabilitation programme. Postoperative pain scores on the numerical rating scale and opiate analgesia consumption were recorded until discharge. Time to attainment of predefined functional rehabilitation outcomes, hospital discharge, and postoperative complications were recorded by independent observers.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 2 | Pages 218 - 222
1 Mar 2003
Shetty AA Tindall AJ Qureshi F Divekar M Fernando KWK

Total knee replacement and high tibial osteotomy are common orthopaedic operations with low complication rates. Such surgery is in close proximity to the popliteal artery (PA), the behaviour of which during flexion of the knee is poorly understood. We used Duplex ultrasonography to determine the distance of the PA from the posterior tibial surface at 0° and 90° of flexion in 100 knees. When the knee was flexed the PA was closer to the posterior tibial surface at 1 to 1.5 cm below the joint line in 24% and at 1.5 to 2 cm below the joint line in 15%. There was a high branching anterior tibal artery in 6% of knees. We provide an anatomical account to help to explain our findings by using cadaver dissections, arteriography and static MRI studies


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 3 | Pages 452 - 458
1 May 1999
Stäubli H Dürrenmatt U Porcellini B Rauschning W

We studied the anatomy of the patellofemoral joint in the axial plane on cryosections from a cadaver knee and on MR arthrotomograms from 30 patients. The cryosections revealed differences in the geometry and anatomy of the surface of the articular cartilage and corresponding subchondral osseous contours of the patellofemoral joint. On the MR arthrotomograms the surface geometry of the cartilage matched the osseous contour of the patella in only four of the 30 knees. The articular cartilaginous surface of the intercondylar sulcus and corresponding osseous contour of the femoral trochlea matched in only seven knees. Since MR arthrotomography can distinguish between the surface geometry of the articular cartilage and subchondral osseous anatomy of the patellofemoral joint, it allows the surgeon and the radiologist to appraise the true articulating surfaces. We therefore recommend MR arthrotomography as the imaging technique of choice


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 6 | Pages 818 - 823
1 Aug 2004
Chauhan SK Clark GW Lloyd S Scott RG Breidahl W Sikorski JM

A controlled study, comparing computer- and conventional jig-assisted total knee replacement in six cadavers is presented. In order to provide a quantitative assessment of the alignment of the replacements, a CT-based technique which measures seven parameters of alignment has been devised and used. In this a multi-slice CT machine scanned in 2.5 mm slices from the acetabular roof to the dome of the talus with the subject’s legs held in a standard position. The mechanical and anatomical axes were identified, from three-dimensional landmarks, in both anteroposterior and lateral planes. The coronal and sagittal alignment of the prosthesis was then measured against the axes. The rotation of the femoral component was measured relative to the transepicondylar axis. The rotation of the tibial component was measured with reference to the posterior tibial condyles and the tibial tuberosity. Coupled femorotibial rotational alignment was assessed by superimposition of the femoral and tibial axial images. The radiation dose was 2.7 mSV. The computer-assisted total knee replacements showed better alignment in rotation and flexion of the femoral component, the posterior slope of the tibial component and in the matching of the femoral and tibial components in rotation. Differences were statistically significant and of a magnitude that support extension of computer assistance to the clinical situation


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 5 | Pages 674 - 681
1 Jul 2004
Robinson JR Sanchez-Ballester J Bull AMJ Thomas RDWM Amis AA

We have reviewed the literature on the anatomy of the posteromedial peripheral ligamentous structures of the knee and found differing descriptions. Our aim was to clarify the differing descriptions with a simplified interpretation of the anatomy and its contribution to the stability of the knee. We dissected 20 fresh-frozen cadaver knees and the anatomy was recorded using video and still digital photography. The anatomy was described by dividing the medial collateral ligament (MCL) complex into thirds, from anterior to posterior and into superficial and deep layers. The main passive restraining structures of the posteromedial aspect of the knee were found to be superficial MCL (parallel, longitudinal fibres), the deep MCL and the posteromedial capsule (PMC). In the posterior third, the superficial and deep layers blend. Although there are oblique fibres (capsular condensations) running posterodistally from femur to tibia, no discrete ligament was seen. In extension, the PMC appears to be an important functional unit in restraining tibial internal rotation and valgus. Our aim was to clarify and possibly simplify the anatomy of the posteromedial structures. The information would serve as the basis for future biomechanical studies to investigate the contribution of the posteromedial structures to joint stability


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 846 - 851
1 Aug 2002
Gupte CM Smith A McDermott ID Bull AMJ Thomas RD Amis AA

The meniscofemoral ligaments were studied in 84 fresh-frozen knees from 49 cadavers. Combined anterior and posterior approaches were used to identify the ligaments. In total, 78 specimens (93%) contained at least one meniscofemoral ligament. The anterior meniscofemoral ligament (aMFL) was present in 62 specimens (74%), and the posterior meniscofemoral ligament (pMFL) in 58 (69%). The 42 specimens (50%) in which both ligaments were present were from a significantly younger population than that with one MFL or none (p < 0.05). Several anatomical variations were identified, including oblique fibres of the posterior cruciate ligament (PCL), which were seen in 16 specimens (19%). These were termed the ‘false pMFL’. The high incidence of MFLs and their anatomical variations should be borne in mind during arthroscopic and radiological examination of the PCL. It is important to recognise the oblique fibres of the PCL on MRI in order to avoid wrongly identifying them as either a pMFL or a tear of the lateral meniscus. The increased incidence of MFLs in younger donors suggests that they degenerate with age


Aims

The objective of this study was to compare early postoperative functional outcomes and time to hospital discharge between conventional jig-based total knee arthroplasty (TKA) and robotic-arm assisted TKA.

Patients and Methods

This prospective cohort study included 40 consecutive patients undergoing conventional jig-based TKA followed by 40 consecutive patients receiving robotic-arm assisted TKA. All surgical procedures were performed by a single surgeon using the medial parapatellar approach with identical implant designs and standardized postoperative inpatient rehabilitation. Inpatient functional outcomes and time to hospital discharge were collected in all study patients.


Bone & Joint Research
Vol. 7, Issue 3 | Pages 226 - 231
1 Mar 2018
Campi S Mellon SJ Ridley D Foulke B Dodd CAF Pandit HG Murray DW

Objectives

The primary stability of the cementless Oxford Unicompartmental Knee Replacement (OUKR) relies on interference fit (or press fit). Insufficient interference may cause implant loosening, whilst excessive interference could cause bone damage and fracture.

The aim of this study was to identify the optimal interference fit by measuring the force required to seat the tibial component of the cementless OUKR (push-in force) and the force required to remove the component (pull-out force).

Materials and Methods

Six cementless OUKR tibial components were implanted in 12 new slots prepared on blocks of solid polyurethane foam (20 pounds per cubic foot (PCF), Sawbones, Malmo, Sweden) with a range of interference of 0.1 mm to 1.9 mm using a Dartec materials testing machine HC10 (Zwick Ltd, Herefordshire, United Kingdom) . The experiment was repeated with cellular polyurethane foam (15 PCF), which is a more porous analogue for trabecular bone.


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 331 - 339
1 Mar 2019
McEwen P Balendra G Doma K

Aims

The results of kinematic total knee arthroplasty (KTKA) have been reported in terms of limb and component alignment parameters but not in terms of gap laxities and differentials. In kinematic alignment (KA), balance should reflect the asymmetrical balance of the normal knee, not the classic rectangular flexion and extension gaps sought with gap-balanced mechanical axis total knee arthroplasty (MATKA). This paper aims to address the following questions: 1) what factors determine coronal joint congruence as measured on standing radiographs?; 2) is flexion gap asymmetry produced with KA?; 3) does lateral flexion gap laxity affect outcomes?; 4) is lateral flexion gap laxity associated with lateral extension gap laxity?; and 5) can consistent ligament balance be produced without releases?

Patients and Methods

A total of 192 KTKAs completed by a single surgeon using a computer-assisted technique were followed for a mean of 3.5 years (2 to 5). There were 116 male patients (60%) and 76 female patients (40%) with a mean age of 65 years (48 to 88). Outcome measures included intraoperative gap laxity measurements and component positions, as well as joint angles from postoperative three-foot standing radiographs. Patient-reported outcome measures (PROMs) were analyzed in terms of alignment and balance: EuroQol (EQ)-5D visual analogue scale (VAS), Knee Injury and Osteoarthritis Outcome Score (KOOS), KOOS Joint Replacement (JR), and Oxford Knee Score (OKS).


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 636 - 642
1 Jul 1999
Shahane SA Ibbotson C Strachan R Bickerstaff D

We designed an experimental study to prove the existence of the popliteofibular ligament (PFL) and to define its role in providing static stability of the knee. We also examined the contribution of the lateral collateral ligament (LCL). We found this ligament to be present in all eight human cadaver knees examined. These specimens were mounted on a specially designed rig and subjected to posterior, varus and external rotational forces. We used the technique of selective sectioning of ligaments and measured the displacement with a constant force applied, before and after its division. We recorded the displacement in primary posterior translation, coupled external rotation, primary varus angulation and primary external rotation. Statistical analysis using the standard error of the mean by plotting 95% confidence intervals, was used to evaluate the results. The PFL had a significant role in preventing excessive posterior translation and varus angulation, and in restricting excessive primary and coupled external rotation. Isolated section of the belly of popliteus did not cause significant posterolateral instability of the knee. The LCL was also seen to act as a primary restraint against varus angulation and secondary restraint against external rotation and posterior displacement. Our findings showed that in knees with isolated disruption of the PFL stability was restored when it was reconstructed. However in knees in which the LCL was also disrupted, isolated reconstruction of the PFL did not restore stability


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 53 - 58
1 Jan 2019
Billi F Kavanaugh A Schmalzried H Schmalzried TP

Aims

Loosening of the tibial component after total knee arthroplasty (TKA) is a common indication for revision. Increasing the strength of the initial tibial implant/cement interface is desirable. There is little information about the surgical techniques that lead to the highest strength. We investigated the effects of eight variables on the strength of the initial tibial baseplate/cement interface.

Materials and Methods

A total of 48 tibial trays were cemented into acrylic holders using cement from two manufacturers, at three different times (early, normal, and late) using two techniques: cementing the tibial plateau or the plateau and the keel; and involving two conditions of contamination with marrow fat (at the metal/cement and cement/cement interfaces). Push-out tests were performed with load continuously recorded.


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1579 - 1584
1 Dec 2018
Turgeon TR Gascoyne TC Laende EK Dunbar MJ Bohm ER Richardson CG

Aims

The introduction of a novel design of total knee arthroplasty (TKA) must achieve outcomes at least as good as existing designs. A novel design of TKA with a reducing radius of the femoral component and a modified cam-post articulation has been released and requires assessment of the fixation to bone. Radiostereometric analysis (RSA) of the components within the first two postoperative years has been shown to be predictive of medium- to long-term fixation. The aim of this study was to assess the stability of the tibial component of this system during this period of time using RSA.

Patients and Methods

A cohort of 30 patients underwent primary, cemented TKA using the novel posterior stabilized fixed-bearing (ATTUNE) design. There was an even distribution of men and women (15:15). The mean age of the patients was 64 years (sd 8) at the time of surgery; their mean body mass index (BMI) was 35.4 kg/m2 (sd 7.9). RSA was used to assess the stability of the tibial component at 6, 12, and 24 months compared with a six-week baseline examination. Patient-reported outcome measures were also assessed.


Objectives

Posterior condylar offset (PCO) and posterior tibial slope (PTS) are critical factors in total knee arthroplasty (TKA). A computational simulation was performed to evaluate the biomechanical effect of PCO and PTS on cruciate retaining TKA.

Methods

We generated a subject-specific computational model followed by the development of ± 1 mm, ± 2 mm and ± 3 mm PCO models in the posterior direction, and -3°, 0°, 3° and 6° PTS models with each of the PCO models. Using a validated finite element (FE) model, we investigated the influence of the changes in PCO and PTS on the contact stress in the patellar button and the forces on the posterior cruciate ligament (PCL), patellar tendon and quadriceps muscles under the deep knee-bend loading conditions.


The Bone & Joint Journal
Vol. 99-B, Issue 1 | Pages 59 - 65
1 Jan 2017
Krause F Barandun A Klammer G Zderic I Gueorguiev B Schmid T

Aims

To assess the effect of high tibial and distal femoral osteotomies (HTO and DFO) on the pressure characteristics of the ankle joint.

Materials and Methods

Varus and valgus malalignment of the knee was simulated in human cadaver full-length legs. Testing included four measurements: baseline malalignment, 5° and 10° re-aligning osteotomy, and control baseline malalignment. For HTO, testing was rerun with the subtalar joint fixed. In order to represent half body weight, a 300 N force was applied onto the femoral head. Intra-articular sensors captured ankle pressure.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 31 - 42
1 Jan 2017
Kang K Koh Y Jung M Nam J Son J Lee Y Kim S Kim S

Objectives

The aim of the current study was to analyse the effects of posterior cruciate ligament (PCL) deficiency on forces of the posterolateral corner structure and on tibiofemoral (TF) and patellofemoral (PF) contact force under dynamic-loading conditions.

Methods

A subject-specific knee model was validated using a passive flexion experiment, electromyography data, muscle activation, and previous experimental studies. The simulation was performed on the musculoskeletal models with and without PCL deficiency using a novel force-dependent kinematics method under gait- and squat-loading conditions, followed by probabilistic analysis for material uncertain to be considered.


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1020 - 1026
1 Aug 2016
Śmigielski R Zdanowicz U Drwięga M Ciszek B Williams A

Anterior cruciate ligament (ACL) reconstruction is commonly performed and has been for many years. Despite this, the technical details related to ACL anatomy, such as tunnel placement, are still a topic for debate. In this paper, we introduce the flat ribbon concept of the anatomy of the ACL, and its relevance to clinical practice.

Cite this article: Bone Joint J 2016;98-B:1020–6.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 22 - 30
1 Jan 2017
Scott CEH Eaton MJ Nutton RW Wade FA Evans SL Pankaj P

Objectives

Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE).

Materials and Methods

A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed.


The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 50 - 55
1 Jan 2018
Kono K Tomita T Futai K Yamazaki T Tanaka S Yoshikawa H Sugamoto K

Aims

In Asia and the Middle-East, people often flex their knees deeply in order to perform activities of daily living. The purpose of this study was to investigate the 3D kinematics of normal knees during high-flexion activities. Our hypothesis was that the femorotibial rotation, varus-valgus angle, translations, and kinematic pathway of normal knees during high-flexion activities, varied according to activity.

Materials and Methods

We investigated the in vivo kinematics of eight normal knees in four male volunteers (mean age 41.8 years; 37 to 53) using 2D and 3D registration technique, and modelled the knees with a computer aided design program. Each subject squatted, kneeled, and sat cross-legged. We evaluated the femoral rotation and varus-valgus angle relative to the tibia and anteroposterior translation of the medial and lateral side, using the transepicodylar axis as our femoral reference relative to the perpendicular projection on to the tibial plateau. This method evaluates the femur medially from what has elsewhere been described as the extension facet centre, and differs from the method classically applied.


Bone & Joint Research
Vol. 6, Issue 11 | Pages 623 - 630
1 Nov 2017
Suh D Kang K Son J Kwon O Baek C Koh Y

Objectives

Malalignment of the tibial component could influence the long-term survival of a total knee arthroplasty (TKA). The object of this study was to investigate the biomechanical effect of varus and valgus malalignment on the tibial component under stance-phase gait cycle loading conditions.

Methods

Validated finite element models for varus and valgus malalignment by 3° and 5° were developed to evaluate the effect of malalignment on the tibial component in TKA. Maximum contact stress and contact area on a polyethylene insert, maximum contact stress on patellar button and the collateral ligament force were investigated.


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1319 - 1328
1 Oct 2017
Shelton TJ Nedopil AJ Howell SM Hull ML

Aims

The aims of this study were to determine the proportion of patients with outlier varus or valgus alignment in kinematically aligned total knee arthroplasty (TKA), whether those with outlier varus or valgus alignment have higher forces in the medial or lateral compartments of the knee than those with in-range alignment and whether measurements of the alignment of the limb, knee and components predict compartment forces.

Patients and Methods

The intra-operative forces in the medial and lateral compartments were measured with an instrumented tibial insert in 67 patients who underwent a kinematically aligned TKA during passive movement. The mean of the forces at full extension, 45° and 90° of flexion determined the force in the medial and lateral compartments. Measurements of the alignment of the limb and the components included the hip-knee-ankle (HKA) angle, proximal medial tibial angle (PMTA), and distal lateral femoral angle (DLFA). Measurements of the alignment of the knee and the components included the tibiofemoral angle (TFA), tibial component angle (TCA) and femoral component angle (FCA). Alignment was measured on post-operative, non-weight-bearing anteroposterior (AP) scanograms and categorised as varus or valgus outlier or in-range in relation to mechanically aligned criteria.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 43 - 51
1 Jan 2017
Nakamura S Tian Y Tanaka Y Kuriyama S Ito H Furu M Matsuda S

Objectives

Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments.

Materials and Methods

Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis.


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 1053 - 1060
1 Aug 2017
Longo UG Ciuffreda M Casciaro C Mannering N Candela V Salvatore G Denaro V

Aims

Different methods of anterior cruciate ligament (ACL) reconstruction have been described for skeletally immature patients before closure of the growth plates. However, the outcome and complications following this treatment remain unclear. The aim of this systematic review was to analyse the outcome and complications of different techniques which may be used for reconstruction of the ACL in these patients.

Materials and Methods

We performed a systematic review of the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. This involved a comprehensive search of PubMed, Medline, CINAHL, Cochrane, Embase and Google Scholar databases using the following combinations of keywords, “knee”, “anterior cruciate ligament”, “reconstruction”, “injury”, “children”, “adolescent”, “skeletally immature”, “open physis” and “surgery”.


Bone & Joint Research
Vol. 5, Issue 3 | Pages 80 - 86
1 Mar 2016
Scott G Imam MA Eifert A Freeman MAR Pinskerova V Field RE Skinner J Banks SA

Objectives

Throughout the 20th Century, it has been postulated that the knee moves on the basis of a four-bar link mechanism composed of the cruciate ligaments, the femur and the tibia. As a consequence, the femur has been thought to roll back with flexion, and total knee arthroplasty (TKA) prostheses have been designed on this basis. Recent work, however, has proposed that at a position of between 0° and 120° the medial femoral condyle does not move anteroposteriorly whereas the lateral femoral condyle tends, but is not obliged, to roll back – a combination of movements which equates to tibial internal/ femoral external rotation with flexion. The aim of this paper was to assess if the articular geometry of the GMK Sphere TKA could recreate the natural knee movements in situ/in vivo.

Methods

The pattern of knee movement was studied in 15 patients (six male: nine female; one male with bilateral TKAs) with 16 GMK Sphere implants, at a mean age of 66 years (53 to 76) with a mean BMI of 30 kg/m2 (20 to 35). The motions of all 16 knees were observed using pulsed fluoroscopy during a number of weight-bearing and non-weight-bearing static and dynamic activities.


The Bone & Joint Journal
Vol. 99-B, Issue 6 | Pages 774 - 778
1 Jun 2017
Agolley D Gabr A Benjamin-Laing H Haddad FS

Aims

The aim of this study was to report the outcome of the non-operative treatment of high-grade posterior cruciate ligament (PCL) injuries, particularly Hughston grade III injuries, which have not previously been described.

Patients and Methods

This was a prospective study involving 46 consecutive patients who were athletes with MRI-confirmed isolated PCL injuries presenting within four weeks of injury. All had Hughston grade II (25 athletes) or III (21 athletes) injuries. Our non-operative treatment regimen involved initial bracing, followed by an individualised rehabilitation programme determined by the symptoms and physical signs. The patients were reviewed until they had returned to sports-specific training, and were reviewed again at a mean of 5.2 years (3 to 9).


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 632 - 639
1 May 2017
Hamilton TW Pandit HG Maurer DG Ostlere SJ Jenkins C Mellon SJ Dodd CAF Murray DW

Aims

It is not clear whether anterior knee pain and osteoarthritis (OA) of the patellofemoral joint (PFJ) are contraindications to medial unicompartmental knee arthroplasty (UKA). Our aim was to investigate the long-term outcome of a consecutive series of patients, some of whom had anterior knee pain and PFJ OA managed with UKA.

Patients and Methods

We assessed the ten-year functional outcomes and 15-year implant survival of 805 knees (677 patients) following medial mobile-bearing UKA. The intra-operative status of the PFJ was documented and, with the exception of bone loss with grooving to the lateral side, neither the clinical or radiological state of the PFJ nor the presence of anterior knee pain were considered a contraindication. The impact of radiographic findings and anterior knee pain was studied in a subgroup of 100 knees (91 patients).


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 151 - 158
1 Feb 2017
Huang T Long Y George D Wang W

Aims

There are two techniques widely used to determine the rotational alignment of the components in total knee arthroplasty (TKA); gap balancing (GB) and measured resection (MR). Which technique is the best remains controversial. We aimed to investigate this in a systematic review and meta-analysis.

Materials and Methods

In accordance with the methods of Cochrane, databases were searched for all randomised controlled trials in the literature between January 1986 and June 2015 comparing radiographic and clinical outcomes between the use of these two tecniques. Meta-analysis involved the use of the Revman5.3 software provided by Cochrane collaboration.


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 159 - 170
1 Feb 2017
Clark D Metcalfe A Wogan C Mandalia V Eldridge J

Patellar instability most frequently presents during adolescence. Congenital and infantile dislocation of the patella is a distinct entity from adolescent instability and measurable abnormalities may be present at birth. In the normal patellofemoral joint an increase in quadriceps angle and patellar height are matched by an increase in trochlear depth as the joint matures. Adolescent instability may herald a lifelong condition leading to chronic disability and arthritis.

Restoring normal anatomy by trochleoplasty, tibial tubercle transfer or medial patellofemoral ligament (MPFL) reconstruction in the young adult prevents further instability. Although these techniques are proven in the young adult, they may cause growth arrest and deformity where the physis is open. A vigorous non-operative strategy may permit delay of surgery until growth is complete. Where non-operative treatment has failed a modified MPFL reconstruction may be performed to maintain stability until physeal closure permits anatomical reconstruction. If significant growth remains an extraosseous reconstruction of the MPFL may impart the lowest risk to the physis. If minor growth remains image intensifier guided placement of femoral intraosseous fixation may impart a small, but acceptable, risk to the physis.

This paper presents and discusses the literature relating to adolescent instability and provides a framework for management of these patients.

Cite this article: Bone Joint J 2017;99-B:159–70.


The Bone & Joint Journal
Vol. 98-B, Issue 11 | Pages 1489 - 1496
1 Nov 2016
Konan S Sandiford N Unno F Masri BS Garbuz DS Duncan CP

Fractures around total knee arthroplasties pose a significant surgical challenge. Most can be managed with osteosynthesis and salvage of the replacement. The techniques of fixation of these fractures and revision surgery have evolved and so has the assessment of outcome. This specialty update summarises the current evidence for the classification, methods of fixation, revision surgery and outcomes of the management of periprosthetic fractures associated with total knee arthroplasty.

Cite this article: Bone Joint J 2016;98-B:1489–96.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 552 - 559
1 Nov 2016
Kang K Koh Y Son J Kwon O Baek C Jung SH Park KK

Objectives

Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments.

Materials and Methods

Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 294 - 300
1 Jul 2016
Nishioka H Nakamura E Hirose J Okamoto N Yamabe S Mizuta H

Objectives

The purpose of this study was to clarify the appearance of the reparative tissue on the articular surface and to analyse the properties of the reparative tissue after hemicallotasis osteotomy (HCO) using MRI T1ρ and T2 mapping.

Methods

Coronal T1ρ and T2 mapping and three-dimensional gradient-echo images were obtained from 20 subjects with medial knee osteoarthritis. We set the regions of interest (ROIs) on the full-thickness cartilage of the medial femoral condyle (MFC) and medial tibial plateau (MTP) of the knee and measured the cartilage thickness (mm) and T1ρ and T2 relaxation times (ms). Statistical analysis of time-dependent changes in the cartilage thickness and the T1ρ and T2 relaxation times was performed using one-way analysis of variance, and Scheffe’s test was employed for post hoc multiple comparison.


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 743 - 751
1 Jun 2014
Shin YS Ro KH Jeon JH Lee DH

We used immediate post-operative in vivo three-dimensional computed tomography to compare graft bending angles and femoral tunnel lengths in 155 patients who had undergone single-bundle reconstruction of the anterior cruciate ligament using the transtibial (n = 37), anteromedial portal (n = 72) and outside-in (n = 46) techniques.

The bending angles in the sagittal and axial planes were significantly greater but the coronal-bending angle was significantly less in the transtibial group than in the anteromedial portal and outside-in groups (p < 0.001 each). The mean length of the femoral tunnel in all three planes was significantly greater in the transtibial group than the anteromedial portal and outside-in groups (p < 0.001 each), but all mean tunnel lengths in the three groups exceeded 30 mm. The only significant difference was the coronal graft- bending angle in the anteromedial portal and outside-in groups (23.5° vs 29.8°, p = 0.012).

Compared with the transtibial technique, the anteromedial portal and outside-in techniques may reduce the graft-bending stress at the opening of the femoral tunnel. Despite the femoral tunnel length being shorter in the anteromedial portal and outside-in techniques than in the transtibial technique, a femoral tunnel length of more than 30 mm in the anteromedial portal and outside-in techniques may be sufficient for the graft to heal.

Cite this article: Bone Joint J 2014;96-B:743–51.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1339 - 1347
1 Oct 2013
Scott CEH Eaton MJ Nutton RW Wade FA Pankaj P Evans SL

As many as 25% to 40% of unicompartmental knee replacement (UKR) revisions are performed for pain, a possible cause of which is proximal tibial strain. The aim of this study was to examine the effect of UKR implant design and material on cortical and cancellous proximal tibial strain in a synthetic bone model. Composite Sawbone tibiae were implanted with cemented UKR components of different designs, either all-polyethylene or metal-backed. The tibiae were subsequently loaded in 500 N increments to 2500 N, unloading between increments. Cortical surface strain was measured using a digital image correlation technique. Cancellous damage was measured using acoustic emission, an engineering technique that detects sonic waves (‘hits’) produced when damage occurs in material.

Anteromedial cortical surface strain showed significant differences between implants at 1500 N and 2500 N in the proximal 10 mm only (p < 0.001), with relative strain shielding in metal-backed implants. Acoustic emission showed significant differences in cancellous bone damage between implants at all loads (p = 0.001). All-polyethylene implants displayed 16.6 times the total number of cumulative acoustic emission hits as controls. All-polyethylene implants also displayed more hits than controls at all loads (p < 0.001), more than metal-backed implants at loads ≥ 1500 N (p < 0.001), and greater acoustic emission activity on unloading than controls (p = 0.01), reflecting a lack of implant stiffness. All-polyethylene implants were associated with a significant increase in damage at the microscopic level compared with metal-backed implants, even at low loads. All-polyethylene implants should be used with caution in patients who are likely to impose large loads across their knee joint.

Cite this article: Bone Joint J 2013;95-B:1339–47.


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1623 - 1630
1 Dec 2014
Monk AP Choji K O’Connor JJ Goodfellow† JW Murray DW

We scanned 25 left knees in healthy human subjects using MRI. Multiplanar reconstruction software was used to take measurements of the inferior and posterior facets of the femoral condyles and the trochlea.

A ‘basic circle’ can be defined which, in the sagittal plane, fits the posterior and inferior facets of the lateral condyle, the posterior facet of the medial condyle and the floor of the groove of the trochlea. It also approximately fits both condyles in the coronal plane (inferior facets) and the axial plane (posterior facets). The circle fitting the inferior facet of the medial condyle in the sagittal plane was consistently 35% larger than the other circles and was termed the ‘medial inferior circle’. There were strong correlations between the radii of the circles, the relative positions of the centres of the condyles, the width of the condyles, the total knee width and skeletal measurements including height. There was poor correlation between the radii of the circles and the position of the trochlea relative to the condyles.

In summary, the condyles are approximately spherical except for the inferior facet medially, which has a larger radius in the sagittal plane. The size and position of the condyles are consistent and change with the size of the person. However, the position of the trochlea is variable even though its radius is similar to that of the condyles. This information has implications for understanding anterior knee pain and for the design of knee replacements.

Cite this article: Bone Joint J 2014;96-B:1623–30.


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 857 - 862
1 Jul 2014
Abdel MP Oussedik S Parratte S Lustig S Haddad FS

Substantial healthcare resources have been devoted to computer navigation and patient-specific instrumentation systems that improve the reproducibility with which neutral mechanical alignment can be achieved following total knee replacement (TKR). This choice of alignment is based on the long-held tenet that the alignment of the limb post-operatively should be within 3° of a neutral mechanical axis. Several recent studies have demonstrated no significant difference in survivorship when comparing well aligned versus malaligned TKRs. Our aim was to review the anatomical alignment of the knee, the historical and contemporary data on a neutral mechanical axis in TKR, and the feasibility of kinematically-aligned TKRs.

Review of the literature suggests that a neutral mechanical axis remains the optimal guide to alignment.

Cite this article: Bone Joint J 2014;96-B:857–62.


The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 933 - 938
1 Jul 2015
Sola M Dahners L Weinhold P Svetkey van der Horst A Kallianos S Flood D

This in vivo controlled laboratory study was performed to evaluate various intra-articular clinical injection regimes that might be less toxic than some in vitro studies suggest. We hypothesised that low-concentration, preservative-free, pH-balanced agents would be less toxic than high-concentration non-pH-balanced agents with preservatives, and that injections of individual agents are less toxic than combined injections. The left knees of 12- to 13-week-old Sprague–Dawley rats were injected once with eight different single agents, including low and high concentrations of ropivacaine and triamcinolone, alone and in combination, as well as negative and positive controls. The rats were killed at one week or five months, and live–dead staining was performed to quantify the death of chondrocytes. All injections except pH-balanced 0.2% ropivacaine combined with preservative-free 1 mg/ml triamcinolone acetonide resulted in statistically significant decreases in chondrocyte viability, compared with control knees, after one week and five months (p < 0.001). After one week there was no significant difference in viability between 0.2% and 0.5% ropivacaine; however, 4 mg/ml triamcinolone resulted in a lower viability than 1 mg/ml triamcinolone.

Although many agents commonly injected into joints are chondrotoxic, in this in vivo study diluting preservative-free 10 mg/ml triamcinolone 1:9 in 0.2% pH-balanced ropivacaine resulted in low toxicity.

Cite this article: Bone Joint J 2015; 97-B:933–8.


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 590 - 594
1 May 2015
Smith NA Costa ML Spalding T

The anatomy and microstructure of the menisci allow the effective distribution of load across the knee. Meniscectomy alters the biomechanical environment and is a potent risk factor for osteoarthritis. Despite a trend towards meniscus-preserving surgery, many tears are irreparable, and many repairs fail.

Meniscal allograft transplantation has principally been carried out for pain in patients who have had a meniscectomy. Numerous case series have reported a significant improvement in patient-reported outcomes after surgery, but randomised controlled trials have not been undertaken.

It is scientifically plausible that meniscal allograft transplantation is protective of cartilage, but this has not been established clinically to date.

Cite this article: Bone Joint J 2015; 97-B:590–4.


Bone & Joint Research
Vol. 2, Issue 1 | Pages 1 - 8
1 Jan 2013
Costa AJ Lustig S Scholes CJ Balestro J Fatima M Parker DA

Objectives

There remains a lack of data on the reliability of methods to estimate tibial coverage achieved during total knee replacement. In order to address this gap, the intra- and interobserver reliability of a three-dimensional (3D) digital templating method was assessed with one symmetric and one asymmetric prosthesis design.

Methods

A total of 120 template procedures were performed according to specific rotational and over-hang criteria by three observers at time zero and again two weeks later. Total and sub-region coverage were calculated and the reliability of the templating and measurement method was evaluated.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1372 - 1376
1 Oct 2012
Komzák M Hart R Okál F Safi A

The biomechanical function of the anteromedial (AM) and posterolateral (PL) bundles of the anterior cruciate ligament (ACL) remains controversial. Some studies report that the AM bundle stabilises the knee joint in anteroposterior (AP) translation and rotational movement (both internal and external) to the same extent as the PL bundle. Others conclude that the PL bundle is more important than the AM in controlling rotational movement.

The objective of this randomised cohort study involving 60 patients (39 men and 21 women) with a mean age of 32.9 years (18 to 53) was to evaluate the function of the AM and the PL bundles of the ACL in both AP and rotational movements of the knee joint after single-bundle and double-bundle ACL reconstruction using a computer navigation system. In the double-bundle group the patients were also randomised to have the AM or the PL bundle tensioned first, with knee laxity measured after each stage of reconstruction. All patients had isolated complete ACL tears, and the presence of a meniscal injury was the only supplementary pathology permitted for inclusion in the trial. The KT-1000 arthrometer was used to apply a constant load to evaluate the AP translation and the rolimeter was used to apply a constant rotational force. For the single-bundle group deviation was measured before and after ACL reconstruction. In the double-bundle group deviation was measured for the ACL-deficient, AM- or PL-reconstructed first conditions and for the total reconstruction.

We found that the AM bundle in the double-bundle group controlled rotation as much as the single-bundle technique, and to a greater extent than the PL bundle in the double-bundle technique. The double-bundle technique increases AP translation and rotational stability in internal rotation more than the single-bundle technique.


Bone & Joint Research
Vol. 1, Issue 11 | Pages 281 - 288
1 Nov 2012
Conlisk N Gray H Pankaj P Howie CR

Objectives

Orthopaedic surgeons use stems in revision knee surgery to obtain stability when metaphyseal bone is missing. No consensus exists regarding stem size or method of fixation. This in vitro study investigated the influence of stem length and method of fixation on the pattern and level of relative motion at the bone–implant interface at a range of functional flexion angles.

Methods

A custom test rig using differential variable reluctance transducers (DVRTs) was developed to record all translational and rotational motions at the bone–implant interface. Composite femurs were used. These were secured to permit variation in flexion angle from 0° to 90°. Cyclic loads were applied through a tibial component based on three peaks corresponding to 0°, 10° and 20° flexion from a normal walking cycle. Three different femoral components were investigated in this study for cementless and cemented interface conditions.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 339 - 344
1 Mar 2014
Saito T Kumagai K Akamatsu Y Kobayashi H Kusayama Y

Between 2003 and 2007, 99 knees in 77 patients underwent opening wedge high tibial osteotomy. We evaluated the effect of initial stable fixation combined with an artificial bone substitute on the mid- to long-term outcome after medial opening-wedge high tibial osteotomy (HTO) for medial compartmental osteoarthritis or spontaneous osteonecrosis of the knee in 78 knees in 64 patients available for review at a minimum of five years (mean age 68 years; 49 to 82). The mean follow-up was 6.5 years (5 to 10). The mean Knee Society knee score and function score improved from 49.6 (sd 11.4, 26 to 72) and 56.6 (sd 15.6, 5 to 100) before surgery to 88.1 (sd 12.5, 14 to 100) and 89.4 (sd 15.6, 5 to 100) at final follow-up (p <  0.001) respectively. There were no significant differences between patients aged ≥ 70 and < 70 years. The mean standing femorotibial angle was corrected significantly from 181.7° (sd 2.7°, 175° to 185°) pre-operatively to 169.7° (sd 2.4°, 164° to 175°) at one year’s follow-up (p < 0.001) and 169.6° (sd 3.0°, 157° to 179°) at the final follow-up (p = 0.69 vs one year).

Opening-wedge HTO using a stable plate fixation system combined with a bone substitute is a reliable procedure that provides excellent results. Although this treatment might seem challenging for older patients, our results strongly suggest that the results are equally good.

Cite this article: Bone Joint J 2014;96-B:339–44.


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 914 - 922
1 Jul 2014
Lee SY Bae JH Kim JG Jang KM Shon WY Kim KW Lim HC

The aim of this study was to evaluate the risk factors for dislocation of the bearing after a mobile-bearing Oxford medial unicompartmental knee replacement (UKR) and to test the hypothesis that surgical factors, as measured from post-operative radiographs, are associated with its dislocation

From a total of 480 UKRs performed between 2001 and 2012, in 391 patients with a mean age of 66.5 years (45 to 82) (316 female, 75 male), we identified 17 UKRs where bearing dislocation occurred. The post-operative radiological measurements of the 17 UKRs and 51 matched controls were analysed using conditional logistic regression analysis. The post-operative radiological measurements included post-operative change in limb alignment, the position of the femoral and tibial components, the resection depth of the proximal tibia, and the femoral component-posterior condyle classification.

We concluded that a post-operative decrease in the posterior tibial slope relative to the pre-operative value was the only significant determinant of dislocation of the bearing after medial Oxford UKR (odds ratio 1.881; 95% confidence interval 1.272 to 2.779). A post-operative posterior tibial slope < 8.45° and a difference between the pre-operative and post-operative posterior tibial slope of > 2.19° may increase the risk of dislocation.

Cite this article: Bone Joint J 2014; 96-B:914–22.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1202 - 1208
1 Sep 2012
Howells NR Barnett AJ Ahearn N Ansari A Eldridge JD

We report a prospective analysis of clinical outcome in patients treated with medial patellofemoral ligament (MPFL) reconstruction using an autologous semitendinosus graft. The technique includes superolateral portal arthroscopic assessment before and after graft placement to ensure correct graft tension and patellar tracking before fixation. Between October 2005 and October 2010, a total of 201 consecutive patients underwent 219 procedures. Follow-up is presented for 211 procedures in 193 patients with a mean age of 26 years (16 to 49), and mean follow-up of 16 months (6 to 42). Indications were atraumatic recurrent patellar dislocation in 141 patients, traumatic recurrent dislocation in 50, pain with subluxation in 14 and a single dislocation with persistent instability in six. There have been no recurrent dislocations/subluxations. There was a statistically significant improvement between available pre- and post-operative outcome scores for 193 patients (all p < 0.001). Female patients with a history of atraumatic recurrent dislocation and all patients with history of previous surgery had a significantly worse outcome (all p < 0.05). The indication for surgery, degree of dysplasia, associated patella alta, time from primary dislocation to surgery and evidence of associated cartilage damage at operation did not result in any significant difference in outcome.

This series adds considerably to existing evidence that MPFL reconstruction is an effective surgical procedure for selected patients with patellofemoral instability.