Advertisement for orthosearch.org.uk
Results 1 - 100 of 126
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 522 - 529
1 Mar 2021
Nichol T Callaghan J Townsend R Stockley I Hatton PV Le Maitre C Smith TJ Akid R

Aims. The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Methods. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods. Results. The coating released gentamicin at > 10 × minimum inhibitory concentration (MIC) for sensitive staphylococcal strains within one hour thereby potentially giving effective prophylaxis for arthroplasty surgery, and showed > 99% elution of the antibiotic within the coating after 48 hours. There was total eradication of both planktonic bacteria and established bacterial biofilms of a panel of clinically relevant staphylococci. Mesenchymal stem cells adhered to the coated surfaces and differentiated towards osteoblasts, depositing calcium and expressing the bone marker protein, osteopontin. In the in vivo small animal bone healing model, the antibiotic sol-gel coated titanium (Ti)/HA rod led to osseointegration equivalent to that of the conventional HA-coated surface. Conclusion. In this study we report a new sol-gel technology that can release gentamicin from a bioceramic-coated cementless arthroplasty material. In vitro, local gentamicin levels are in excess of what can be achieved by antibiotic-loaded bone cement. In vivo, bone healing in an animal model is not impaired. This, thus, represents a biomaterial modification that may have the potential to protect at-risk patients from implant-related deep infection. Cite this article: Bone Joint J 2021;103-B(3):522–529


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 3 | Pages 348 - 349
1 May 1994
Williams D


Bone & Joint Research
Vol. 12, Issue 3 | Pages 179 - 188
7 Mar 2023
Itoh M Itou J Imai S Okazaki K Iwasaki K

Aims. Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery. Methods. Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites. Results. We initially identified 4,402 clinical trials, 27 of which were eligible for inclusion and analysis, including nine shoulder surgery trials, eight knee surgery trials, two ankle surgery trials, two hand surgery trials, and six peripheral nerve graft trials. Nine of the trials were completed. We identified only one product that will be commercially available for use in knee surgery with significant mechanical load resistance. Peracetic acid and gamma irradiation were frequently used for sterilization. Conclusion. Despite the demand for decellularized tissue, few decellularized tissue products are currently commercially available, particularly for the knee joint. To be viable in orthopaedic surgery, decellularized tissue must exhibit biocompatibility and mechanical strength, and these requirements are challenging for the clinical application of decellularized tissue. However, the variety of available decellularized products has recently increased. Therefore, decellularized grafts may become a promising option in orthopaedic surgery. Cite this article: Bone Joint Res 2023;12(3):179–188


Bone & Joint Research
Vol. 4, Issue 5 | Pages 70 - 77
1 May 2015
Gupta A Liberati TA Verhulst SJ Main BJ Roberts MH Potty AGR Pylawka TK El-Amin III SF

Objectives. The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration. Methods. A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed. Results. No mortality and clinical signs were observed. All groups showed consistent weight gain, and the rate of gain for each group was similar. All groups exhibited a similar pattern for food consumption. No difference in urinalysis, haematology, and absolute and relative organ weight was observed. A mild to moderate increase in the summary toxicity (sumtox) score was observed for PLAGA and SWCNT/PLAGA implanted animals, whereas the control animals did not show any response. Both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score compared with the control group at all time intervals. However, there was no significant difference between PLAGA and SWCNT/PLAGA groups. Conclusions. Our results demonstrate that SWCNT/PLAGA composites exhibited in vivo biocompatibility similar to the Food and Drug Administration approved biocompatible polymer, PLAGA, over a period of 12 weeks. These results showed potential of SWCNT/PLAGA composites for bone regeneration as the low percentage of SWCNT did not elicit a localised or general overt toxicity. Following the 12-week exposure, the material was considered to have an acceptable biocompatibility to warrant further long-term and more invasive in vivo studies. Cite this article: Bone Joint Res 2015;4:70–7


Bone & Joint Research
Vol. 9, Issue 10 | Pages 667 - 674
1 Oct 2020
Antich-Rosselló M Forteza-Genestra MA Calvo J Gayà A Monjo M Ramis JM

Aims. Platelet concentrates, like platelet-rich plasma (PRP) and platelet lysate (PL), are widely used in regenerative medicine, especially in bone regeneration. However, the lack of standard procedures and controls leads to high variability in the obtained results, limiting their regular clinical use. Here, we propose the use of platelet-derived extracellular vesicles (EVs) as an off-the-shelf alternative for PRP and PL for bone regeneration. In this article, we evaluate the effect of PL-derived EVs on the biocompatibility and differentiation of mesenchymal stromal cells (MSCs). Methods. EVs were obtained first by ultracentrifugation (UC) and then by size exclusion chromatography (SEC) from non-activated PL. EVs were characterized by transmission electron microscopy, nanoparticle tracking analysis, and the expression of CD9 and CD63 markers by western blot. The effect of the obtained EVs on osteoinduction was evaluated in vitro on human umbilical cord MSCs by messenger RNA (mRNA) expression analysis of bone markers, alkaline phosphatase activity (ALP), and calcium (Ca. 2+. ) content. Results. Osteogenic differentiation of MSCs was confirmed when treated with UC-isolated EVs. In order to disprove that the effect was due to co-isolated proteins, EVs were isolated by SEC. Purer EVs were obtained and proved to maintain the differentiation effect on MSCs and showed a dose-dependent response. Conclusion. PL-derived EVs present an osteogenic capability comparable to PL treatments, emerging as an alternative able to overcome PL and PRP limitations. Cite this article: Bone Joint Res 2020;9(10):667–674


Bone & Joint Research
Vol. 8, Issue 8 | Pages 387 - 396
1 Aug 2019
Alt V Rupp M Lemberger K Bechert T Konradt T Steinrücke P Schnettler R Söder S Ascherl R

Objectives. Preclinical data showed poly(methyl methacrylate) (PMMA) loaded with microsilver to be effective against a variety of bacteria. The purpose of this study was to assess patient safety of PMMA spacers with microsilver in prosthetic hip infections in a prospective cohort study. Methods. A total of 12 patients with prosthetic hip infections were included for a three-stage revision procedure. All patients received either a gentamicin-PMMA spacer (80 g to 160 g PMMA depending on hip joint dimension) with additional loading of 1% (w/w) of microsilver (0.8 g to 1.6 g per spacer) at surgery 1 followed by a gentamicin-PMMA spacer without microsilver at surgery 2 or vice versa. Implantation of the revision prosthesis was carried out at surgery 3. Results. In total, 11 of the 12 patients completed the study. No argyria or considerable differences in laboratory parameters were detected. Silver blood concentrations were below or around the detection limit of 1 ppb in ten of the 11 patients. A maximum of 5.6 ppb at 48 hours after implantation of the silver spacer, which is below the recommended maximum level of 10 ppb, was found in one patient. No silver was detected in the urine. Drainage fluids showed concentrations between 16.1 ppb and 23.3 ppb at 12 hours after implantation of the silver spacers, and between 16.8 ppb to 25.1 ppb at 48 hours after implantation. Pathohistological assessment of the periprosthetic membrane did not reveal any differences between the two groups. Conclusion. Microsilver-loaded gentamicin-PMMA spacers showed good biocompatibility and the broad antimicrobial activity warrants further clinical research to assess its effectivity in reducing infection rates in prosthetic joint infection. Cite this article: V. Alt, M. Rupp, K. Lemberger, T. Bechert, T. Konradt, P. Steinrücke, R. Schnettler, S. Söder, R. Ascherl. Safety assessment of microsilver-loaded poly(methyl methacrylate) (PMMA) cement spacers in patients with prosthetic hip infections: Results of a prospective cohort study. Bone Joint Res 2019;8:387–396. DOI: 10.1302/2046-3758.88.BJR-2018-0270.R1


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 897 - 901
1 Aug 2019
Konan S Alazzawi S Yoon B Cha Y Koo K

Ceramic bearings have several desirable properties, such as resistance to wear, hardness, and biocompatibility, that favour it as an articulating surface in hip arthroplasty. However, ceramic fracture remains a concern. We have reviewed the contemporary literature, addressing the factors that can influence the incidence of ceramic bearing surface fracture. Cite this article: Bone Joint J 2019;101-B:897–901


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 115 - 120
1 Jul 2019
Hooper J Schwarzkopf R Fernandez E Buckland A Werner J Einhorn T Walker PS

Aims. This aim of this study was to assess the feasibility of designing and introducing generic 3D-printed instrumentation for routine use in total knee arthroplasty. Materials and Methods. Instruments were designed to take advantage of 3D-printing technology, particularly ensuring that all parts were pre-assembled, to theoretically reduce the time and skill required during surgery. Concerning functionality, ranges of resection angle and distance were restricted within a safe zone, while accommodating either mechanical or anatomical alignment goals. To identify the most suitable biocompatible materials, typical instrument shapes and mating parts, such as dovetails and screws, were designed and produced. Results. Before and after steam sterilization, dimensional analysis showed that acrylonitrile butadiene styrene could not withstand the temperatures without dimensional changes. Oscillating saw tests with slotted cutting blocks produced debris, fractures, or further dimensional changes in the shape of Nylon-12 and polymethylmethacrylate (MED610), but polyetherimide ULTEM 1010 was least affected. Conclusion. The study showed that 3D-printed instrumentation was technically feasible and had some advantages. However, other factors, such as whether all procedural steps can be accomplished with a set of 3D-printed instruments, the logistics of delivery, and the economic aspects, require further study. Cite this article: Bone Joint J 2019;101-B(7 Supple C):115–120


Bone & Joint Research
Vol. 8, Issue 2 | Pages 101 - 106
1 Feb 2019
Filardo G Petretta M Cavallo C Roseti L Durante S Albisinni U Grigolo B

Objectives. Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology. Methods. A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability. Results. This study involved the realization of a human cell-laden collagen meniscus using 3D bioprinting. The meniscus prototype showed the biological potential of this technology to provide an anatomically shaped, patient-specific construct with viable cells on a biocompatible material. Conclusion. This paper reports the preliminary findings of the production of a custom-made, cell-laden, collagen-based human meniscus. The prototype described could act as the starting point for future developments of this collagen-based, tissue-engineered structure, which could aid the optimization of implants designed to replace damaged menisci. Cite this article: G. Filardo, M. Petretta, C. Cavallo, L. Roseti, S. Durante, U. Albisinni, B. Grigolo. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Joint Res 2019;8:101–106. DOI: 10.1302/2046-3758.82.BJR-2018-0134.R1


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims

Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury.

Methods

A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 14 - 17
1 Jan 2016
Sentuerk U von Roth P Perka C

The leading indication for revision total hip arthroplasty (THA) remains aseptic loosening owing to wear. The younger, more active patients currently undergoing THA present unprecedented demands on the bearings. Ceramic-on-ceramic (CoC) bearings have consistently shown the lowest rates of wear. The recent advances, especially involving alumina/zirconia composite ceramic, have led to substantial improvements and good results in vitro. Alumina/zirconia composite ceramics are extremely hard, scratch resistant and biocompatible. They offer a low co-efficient of friction and superior lubrication and lower rates of wear compared with other bearings. The major disadvantage is the risk of fracture of the ceramic. The new composite ceramic has reduced the risk of fracture of the femoral head to 0.002%. The risk of fracture of the liner is slightly higher (0.02%). Assuming that the components are introduced without impingement, CoC bearings have major advantages over other bearings. Owing to the superior hardness, they produce less third body wear and are less vulnerable to intra-operative damage. The improved tribology means that CoC bearings are an excellent choice for young, active patients requiring THA. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):14–17


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims

Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration.

Methods

A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims

Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models.

Methods

Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.


Bone & Joint Research
Vol. 12, Issue 5 | Pages 311 - 312
5 May 2023
Xu C Liu Y

Cite this article: Bone Joint Res 2023;12(5):311–312.


Bone & Joint 360
Vol. 12, Issue 6 | Pages 17 - 20
1 Dec 2023

The December 2023 Hip & Pelvis Roundup360 looks at: Early hip fracture surgery is safe for patients on direct oral anticoagulants; Time to return to work by occupational class after total hip or knee arthroplasty; Is there a consensus on air travel following hip and knee arthroplasty?; Predicting whether patients will achieve minimal clinically important differences following hip or knee arthroplasty; High-dose dual-antibiotic-loaded cement for hip hemiarthroplasty in the UK (WHiTE 8): a randomized controlled trial; Vitamin E – a positive thing in your poly?; Hydroxapatite-coated femoral stems: is there a difference in fixation?


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 864 - 871
1 Aug 2023
Tyas B Marsh M de Steiger R Lorimer M Petheram TG Inman DS Reed MR Jameson SS

Aims

Several different designs of hemiarthroplasty are used to treat intracapsular fractures of the proximal femur, with large variations in costs. No clinical benefit of modular over monoblock designs has been reported in the literature. Long-term data are lacking. The aim of this study was to report the ten-year implant survival of commonly used designs of hemiarthroplasty.

Methods

Patients recorded by the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) between 1 September 1999 and 31 December 2020 who underwent hemiarthroplasty for the treatment of a hip fracture with the following implants were included: a cemented monoblock Exeter Trauma Stem (ETS), cemented Exeter V40 with a bipolar head, a monoblock Thompsons prosthesis (Cobalt/Chromium or Titanium), and an Exeter V40 with a Unitrax head. Overall and age-defined cumulative revision rates were compared over the ten years following surgery.


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 40 - 46
1 May 2024
Massè A Giachino M Audisio A Donis A Giai Via R Secco DC Limone B Turchetto L Aprato A

Aims

Ganz’s studies made it possible to address joint deformities on both the femoral and acetabular side brought about by Perthes’ disease. Femoral head reduction osteotomy (FHRO) was developed to improve joint congruency, along with periacetabular osteotomy (PAO), which may enhance coverage and containment. The purpose of this study is to show the clinical and morphological outcomes of the technique and the use of an implemented planning approach.

Methods

From September 2015 to December 2021, 13 FHROs were performed on 11 patients for Perthes’ disease in two centres. Of these, 11 hips had an associated PAO. A specific CT- and MRI-based protocol for virtual simulation of the corrections was developed. Outcomes were assessed with radiological parameters (sphericity index, extrusion index, integrity of the Shenton’s line, lateral centre-edge angle (LCEA), Tönnis angle), and clinical parameters (range of motion, visual analogue scale (VAS) for pain, Merle d'Aubigné-Postel score, modified Harris Hip Score (mHHS), and EuroQol five-dimension five-level health questionnaire (EQ-5D-5L)). Early and late complications were reported.


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 88 - 96
1 Jan 2023
Vogt B Rupp C Gosheger G Eveslage M Laufer A Toporowski G Roedl R Frommer A

Aims

Distraction osteogenesis with intramedullary lengthening devices has undergone rapid development in the past decade with implant enhancement. In this first single-centre matched-pair analysis we focus on the comparison of treatment with the PRECICE and STRYDE intramedullary lengthening devices and aim to clarify any clinical and radiological differences.

Methods

A single-centre 2:1 matched-pair retrospective analysis of 42 patients treated with the STRYDE and 82 patients treated with the PRECICE nail between May 2013 and November 2020 was conducted. Clinical and lengthening parameters were compared while focusing radiological assessment on osseous alterations related to the nail’s telescopic junction and locking bolts at four different stages.


Bone & Joint Open
Vol. 3, Issue 8 | Pages 648 - 655
1 Aug 2022
Yeung CM Bhashyam AR Groot OQ Merchan N Newman ET Raskin KA Lozano-Calderón SA

Aims

Due to their radiolucency and favourable mechanical properties, carbon fibre nails may be a preferable alternative to titanium nails for oncology patients. We aim to compare the surgical characteristics and short-term results of patients who underwent intramedullary fixation with either a titanium or carbon fibre nail for pathological long-bone fracture.

Methods

This single tertiary-institutional, retrospectively matched case-control study included 72 patients who underwent prophylactic or therapeutic fixation for pathological fracture of the humerus, femur, or tibia with either a titanium (control group, n = 36) or carbon fibre (case group, n = 36) intramedullary nail between 2016 to 2020. Patients were excluded if intramedullary fixation was combined with any other surgical procedure/fixation method. Outcomes included operating time, blood loss, fluoroscopic time, and complications. Fisher’s exact test and Mann-Whitney U test were used for categorical and continuous outcomes, respectively.


Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 787 - 802
1 Nov 2022
Sebastian S Tandberg F Liu Y Raina DB Tägil M Collin M Lidgren L

Aims

There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in vitro study evaluated a clinically used biphasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN).

Methods

The CaS/HA composites containing RIF/GEN/VAN, either alone or in combination, were first prepared and their injectability, setting time, and antibiotic elution profiles were assessed. Using a continuous disk diffusion assay, the antibacterial behaviour of the material was tested on both planktonic and biofilm-embedded forms of standard and clinical strains of Staphylococcus aureus for 28 days. Development of bacterial resistance to RIF was determined by exposing the biofilm-embedded bacteria continuously to released fractions of antibiotics from CaS/HA-antibiotic composites.


Bone & Joint 360
Vol. 11, Issue 3 | Pages 9 - 11
1 Jun 2022
Foxall-Smith M


The Bone & Joint Journal
Vol. 97-B, Issue 9 | Pages 1183 - 1191
1 Sep 2015
Briggs TWR Hanna SA Kayani B Tai S Pollock RC Cannon SR Blunn GW Carrington RWJ

The long term biological effects of wear products following total hip arthroplasty (THA) are unclear. However, the indications for THA are expanding, with increasingly younger patients undergoing the procedure. This prospective, randomised study compared two groups of patients undergoing THA after being randomised to receive one of two different bearing surfaces: metal-on-polyethylene (MoP) n = 22 and metal-on-metal (MoM) n = 23. We investigated the relationship between three variables: bearing surface (MoP vs MoM), whole blood levels of chromium (Cr) and cobalt (Co) and chromosomal aberrations in peripheral lymphocyte pre-operatively and at one, two and five years post-surgery. Our results demonstrated significantly higher mean cobalt and chromium (Co and Cr) blood levels in the MoM group at all follow-up points following surgery (p < 0.01), but there were no significant differences in the chromosomal aberration indices between MoM and MoP at two or five years (two years: p = 0.56, p = 0.08, p = 0.91, p = 0.51 and five years: p = 0.086, p = 0.73, p = 0.06, p = 0.34) for translocations, breaks, loss and gain of chromosomes respectively. Regression analysis showed a strong linear relationship between Cr levels and the total chromosomal aberration indices in the MoM group (R. 2.  = 0.90016), but this was not as strong for Co (R. 2. = 0.68991). In the MoP group, the analysis revealed a poor relationship between Cr levels and the total chromosomal aberration indices (R. 2. = 0.23908) but a slightly stronger relationship for Co (R. 2. = 0.64292). Across both groups, Spearman’s correlation detected no overall association between Co and Cr levels and each of the studied chromosomal aberrations. There remains no clear indication which THA bearing couple is the most biocompatible, especially in young active patients. While THA continues to be very successful at alleviating pain and restoring function, the long-term biological implications of the procedure still require further scrutiny. Cite this article: Bone Joint J 2015;97-B:1183–91


Bone & Joint Research
Vol. 11, Issue 6 | Pages 349 - 361
9 Jun 2022
Jun Z Yuping W Yanran H Ziming L Yuwan L Xizhong Z Zhilin W Xiaoji L

Aims

The purpose of this study was to explore a simple and effective method of preparing human acellular amniotic membrane (HAAM) scaffolds, and explore the effect of HAAM scaffolds with juvenile cartilage fragments (JCFs) on osteochondral defects.

Methods

HAAM scaffolds were constructed via trypsinization from fresh human amniotic membrane (HAM). The characteristics of the HAAM scaffolds were evaluated by haematoxylin and eosin (H&E) staining, picrosirius red staining, type II collagen immunostaining, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Human amniotic mesenchymal stem cells (hAMSCs) were isolated, and stemness was verified by multilineage differentiation. Then, third-generation (P3) hAMSCs were seeded on the HAAM scaffolds, and phalloidin staining and SEM were used to detect the growth of hAMSCs on the HAAM scaffolds. Osteochondral defects (diameter: 3.5 mm; depth: 3 mm) were created in the right patellar grooves of 20 New Zealand White rabbits. The rabbits were randomly divided into four groups: the control group (n = 5), the HAAM scaffolds group (n = 5), the JCFs group (n = 5), and the HAAM + JCFs group (n = 5). Macroscopic and histological assessments of the regenerated tissue were evaluated to validate the treatment results at 12 weeks.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 192 - 199
1 Mar 2000
Engelbrecht E von Foerster G Delling G

Glass ionomer cement (Ionocem) was developed for use in bone surgery and is reported to be notably biocompatible. Between 1991 and 1994 we performed revision operations for aseptic loosening of arthroplasties of the hip on 45 patients using this material in its granulate form (Ionogran) mixed with homologous bone as a bone substitute. Of these 45 patients, 42 were followed up for a mean of 42 months. Early reloosening of the acetabular component has occurred in ten after a mean of 30 months. Histological examination showed large deposits of aluminium in the adjacent connective tissue and bone. Osteoblastic function and bone mineralisation were clearly inhibited. The serum levels of aluminium were also increased. The toxic damage at the bone interface caused by high local levels of aluminium must be seen as an important factor in the high rate of early reloosening. Our findings cast doubt on the biocompatibility of this material and we do not recommend continuation of its further use in orthopaedic surgery


Bone & Joint Research
Vol. 10, Issue 7 | Pages 411 - 424
14 Jul 2021
Zhao D Ren B Wang H Zhang X Yu M Cheng L Sang Y Cao S Thieringer FM Zhang D Wan Y Liu C

Aims

The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration.

Methods

IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 828 - 831
1 Jun 2006
Oakley J Kuiper JH

The role of bone-graft extenders in impaction revision surgery is becoming increasingly important. Tricalcium phosphate and hydroxyapatite have been shown to be both biocompatible and osteoconductive, yet many surgeons remain reluctant to use them. The difficulty in handling bone-graft extenders can be partly alleviated by using porous particles and adding clotted blood. In an in vitro model we measured the cohesive properties of various impaction graft mixes. Several factors were evaluated including the use of pure bone graft compared with mixes with extender, washing the bone and the addition of clotted blood. Our findings showed that pure allograft bone particles had significantly higher cohesion than when mixed with extender (p < 0.001). Washing had no effect on cohesion. The addition of clotted blood significantly increased the cohesion of both pure bone (p < 0.019) and mixes with pure bone and with porous graft extender (p < 0.044)


Bone & Joint Open
Vol. 2, Issue 10 | Pages 785 - 795
1 Oct 2021
Matar HE Porter PJ Porter ML

Aims

Metal allergy in knee arthroplasty patients is a controversial topic. We aimed to conduct a scoping review to clarify the management of metal allergy in primary and revision total knee arthroplasty (TKA).

Methods

Studies were identified by searching electronic databases: Cochrane Central Register of Controlled Trials, Ovid MEDLINE, and Embase, from their inception to November 2020, for studies evaluating TKA patients with metal hypersensitivity/allergy. All studies reporting on diagnosing or managing metal hypersensitivity in TKA were included. Data were extracted and summarized based on study design, study population, interventions and outcomes. A practical guide is then formulated based on the available evidence.


Bone & Joint 360
Vol. 10, Issue 6 | Pages 41 - 44
1 Dec 2021


Bone & Joint Research
Vol. 10, Issue 7 | Pages 370 - 379
30 Jun 2021
Binder H Hoffman L Zak L Tiefenboeck T Aldrian S Albrecht C

Aims

The aim of this retrospective study was to determine if there are differences in short-term clinical outcomes among four different types of matrix-associated autologous chondrocyte transplantation (MACT).

Methods

A total of 88 patients (mean age 34 years (SD 10.03), mean BMI 25 kg/m2 (SD 3.51)) with full-thickness chondral lesions of the tibiofemoral joint who underwent MACT were included in this study. Clinical examinations were performed preoperatively and 24 months after transplantation. Clinical outcomes were evaluated using the International Knee Documentation Committee (IKDC) Subjective Knee Form, the Brittberg score, the Tegner Activity Scale, and the visual analogue scale (VAS) for pain. The Kruskal-Wallis test by ranks was used to compare the clinical scores of the different transplant types.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 103 - 108
1 Nov 2013
Abolghasemian M Tangsataporn S Sternheim A Backstein DJ Safir OA Gross AE

The conventional method for reconstructing acetabular bone loss at revision surgery includes using structural bone allograft. The disadvantages of this technique promoted the advent of metallic but biocompatible porous implants to fill bone defects enhancing initial and long-term stability of the acetabular component. This paper presents the indications, surgical technique and the outcome of using porous metal acetabular augments for reconstructing acetabular defects. . Cite this article: Bone Joint J 2013;95-B, Supple A:103–8


Bone & Joint Open
Vol. 2, Issue 8 | Pages 599 - 610
1 Aug 2021
Hothi H Bergiers S Henckel J Iliadis AD Goodier WD Wright J Skinner J Calder P Hart AJ

Aims

The aim of this study was to present the first retrieval analysis findings of PRECICE STRYDE intermedullary nails removed from patients, providing useful information in the post-market surveillance of these recently introduced devices.

Methods

We collected ten nails removed from six patients, together with patient clinical data and plain radiograph imaging. We performed macro- and microscopic analysis of all surfaces and graded the presence of corrosion using validated semiquantitative scoring methods. We determined the elemental composition of surface debris using energy dispersive x-ray spectroscopy (EDS) and used metrology analysis to characterize the surface adjacent to the extendable junctions.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 601 - 612
1 Sep 2020
Rajagopal K Ramesh S Walter NM Arora A Katti DS Madhuri V

Aims

Extracellular matrix (ECM) and its architecture have a vital role in articular cartilage (AC) structure and function. We hypothesized that a multi-layered chitosan-gelatin (CG) scaffold that resembles ECM, as well as native collagen architecture of AC, will achieve superior chondrogenesis and AC regeneration. We also compared its in vitro and in vivo outcomes with randomly aligned CG scaffold.

Methods

Rabbit bone marrow mesenchymal stem cells (MSCs) were differentiated into the chondrogenic lineage on scaffolds. Quality of in vitro regenerated cartilage was assessed by cell viability, growth, matrix synthesis, and differentiation. Bilateral osteochondral defects were created in 15 four-month-old male New Zealand white rabbits and segregated into three treatment groups with five in each. The groups were: 1) untreated and allogeneic chondrocytes; 2) multi-layered scaffold with and without cells; and 3) randomly aligned scaffold with and without cells. After four months of follow-up, the outcome was assessed using histology and immunostaining.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 425 - 436
16 Jul 2021
Frommer A Roedl R Gosheger G Hasselmann J Fuest C Toporowski G Laufer A Tretow H Schulze M Vogt B

Aims

This study aims to enhance understanding of clinical and radiological consequences and involved mechanisms that led to corrosion of the Precice Stryde (Stryde) intramedullary lengthening nail in the post market surveillance era of the device. Between 2018 and 2021 more than 2,000 Stryde nails have been implanted worldwide. However, the outcome of treatment with the Stryde system is insufficiently reported.

Methods

This is a retrospective single-centre study analyzing outcome of 57 consecutive lengthening procedures performed with the Stryde nail at the authors’ institution from February 2019 until November 2020. Macro- and microscopic metallographic analysis of four retrieved nails was conducted. To investigate observed corrosion at telescoping junction, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) were performed.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 421 - 422
1 Mar 2021
Perry DC Porter DW Haddad FS


Bone & Joint Research
Vol. 10, Issue 4 | Pages 277 - 284
1 Apr 2021
Funk GA Menuey EM Ensminger WP Kilway KV McIff TE

Aims

Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading.

Methods

For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing. Antibiotic elution into phosphate-buffered saline was measured over 14 days. Compressive strength and modulus of all cement pellets were tested over 14 days.


Bone & Joint Research
Vol. 10, Issue 2 | Pages 122 - 133
1 Feb 2021
He CP Jiang XC Chen C Zhang HB Cao WD Wu Q Ma C

Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment.

Cite this article: Bone Joint Res 2021;10(2):122–133.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 920 - 930
1 Aug 2002
Liagre B Moalic S Vergne P Charissoux JL Bernache-Assollant D Beneytout JL

We describe a model which can be used for in vitro biocompatibility assays of biomaterials. We studied the in vitro response of human osteoarthritis or rheumatoid arthritis fibroblast-like synoviocytes to Al. 2. O. 3. or ZrO. 2. particles by analyzing the production of interleukin-1 (IL-1) and interleukin-6 (IL-6) and the metabolism of arachidonic acid via lipoxygenase and cyclo-oxygenase pathways. Our results show that, in these cells and under our experimental conditions, Al. 2. O. 3. and ZrO. 2. did not significantly modify the synthesis of IL-1 and IL-6 or the metabolism of arachidonic acid


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 4 | Pages 586 - 591
1 Jul 1990
Ali M French T Hastings G Rae T Rushton N Ross E Wynn-Jones C

We compared the mechanical properties of carbon fibre composite bone plates with those of stainless steel and titanium. The composite plates have less stiffness with good fatigue properties. Tissue culture and small animal implantation confirmed the biocompatibility of the material. We also present a preliminary report on the use of the carbon fibre composite plates in 40 forearm fractures. All fractures united, 67% of them showing radiological remodelling within six months. There were no refractures or mechanical failures, but five fractures showed an unexpected reaction; this is discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 4 | Pages 647 - 651
1 Jul 1996
Arens S Schlegel U Printzen G Ziegler WJ Perren SM Hansis M

Resistance to infection may be influenced by foreign bodies such as devices for fracture fixation. It is known that stainless steel and commercially-pure titanium have different biocompatibilities. We have investigated susceptibility to infection after a local bacterial challenge using standard 2.0 dynamic compression plates of either stainless steel or titanium in rabbit tibiae. After the wounds had been closed, various concentrations of a strain of Staphylococcus aureus were inoculated percutaneously. Under otherwise identical experimental conditions the rate of infection for steel plates (75%) was significantly higher than that for titanium plates (35%) (p < 0.05)


Aims

Vitamin E-infused highly crosslinked polyethylene (VEPE) has been introduced into total hip arthroplasty (THA) with the aim of further improving the wear characteristics of moderately and highly crosslinked polyethylenes (ModXLPE and HXLPE). There are few studies analyzing the outcomes of vitamin E-infused components in cemented arthroplasty, though early acetabular component migration has been reported. The aim of this study was to measure five-year polyethylene wear and acetabular component stability of a cemented VEPE acetabular component compared with a ModXLPE cemented acetabular component.

Methods

In a prospective randomized controlled trial (RCT), we assessed polyethylene wear and acetabular component stability (primary outcome) with radiostereometric analysis (RSA) in 68 patients with reverse hybrid THA at five years follow-up. Patients were randomized to either a VEPE or a ModXLPE cemented acetabular component.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 4 | Pages 614 - 618
1 May 2000
Fujita H Iida H Ido K Matsuda Y Oka M Nakamura T

We evaluated the efficacy and biocompatibility of porous apatite-wollastonite glass ceramic (AW-GC) as an intramedullary plug in total hip replacement (THR) for up to two years in 22 adult beagle dogs. Cylindrical porous AW-GC rods (70% porosity, mean pore size 200 3m) were prepared. Four dogs were killed at 1, 3, 6 and 12 months each and six at 24 months after implantation. Radiological evaluation confirmed the efficacy of porous AW-CG as an intramedullary plug. Histological evaluation showed osteoconduction at one month and resorption of the porous AW-GC, which was replaced by newly-formed bone, at 24 months. Our findings indicate that porous AW-GC can be used clinically as an intramedullary plug in THR


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 4 | Pages 628 - 634
1 Aug 1988
Amis A Kempson S Campbell Miller J

The anterior cruciate ligament was replaced in rabbits, using implants of carbon or polyester filaments with known mechanical properties. The biocompatibility of the implants was assessed in detail using light microscopy, and scanning and transmission electron microscopy. Mechanical tests were made of stability, in comparison with normal joints and controls after excision of the ligament. Some carbon fibre implants broke down in vivo, allowing instability; the fragments caused chronic inflammation. Intact carbon implants did not induce the formation of neoligaments; they were covered by tissue, but there was no ingrowth. Polyester did not degrade mechanically and supported early collagenous ingrowth within the implant, even in the mid-joint space. It was concluded that there was no justification for the use of carbon fibres as anterior cruciate replacements; polyester appeared to be suitable


Bone & Joint Research
Vol. 9, Issue 10 | Pages 645 - 652
5 Oct 2020
Chao C Chen Y Lin J

Aims

To determine whether half-threaded screw holes in a new titanium locking plate design can substantially decrease the notch effects of the threads and increase the plate fatigue life.

Methods

Three types (I to III) of titanium locking plates were fabricated to simulate plates used in the femur, tibia, and forearm. Two copies of each were fabricated using full- and half-threaded screw holes (called A and B, respectively). The mechanical strengths of the plates were evaluated according to the American Society for Testing and Materials (ASTM) F382-14, and the screw stability was assessed by measuring the screw removal torque and bending strength.


Bone & Joint 360
Vol. 8, Issue 5 | Pages 14 - 16
1 Oct 2019


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 290 - 296
1 Mar 2000
Sovak G Weiss A Gotman I

Coating titanium alloy implants with titanium nitride (TiN) by the method of Powder Immersion Reaction Assisted Coating (PIRAC) produces a stable layer on their surface. We have examined the ability of the new TiN coating to undergo osseointegration. We implanted TiN-coated and uncoated Ti6Al4V alloy pins into the femora of six-month-old female Wistar rats. SEM after two months showed a bone collar around both TiN-coated and uncoated implants. Morphometrical analysis revealed no significant differences between the percentage of the implant-bone contact and the area and volume of the bone around TiN-coated compared with uncoated implants. Electron-probe microanalysis indicated the presence of calcium and phosphorus at the implant-bone interface. Mineralisation around the implants was also confirmed by labelling with oxytetracycline. Strong activity of alkaline phosphatase and weak activity of tartrate-resistant acid phosphatase were shown histochemically. Very few macrophages were detected by the non-specific esterase reaction at the site of implantation. Our findings indicate good biocompatibility and bone-bonding properties of the new PIRAC TiN coatings which are comparable to those of uncoated Ti6Al4V alloy implants


Bone & Joint Research
Vol. 9, Issue 8 | Pages 477 - 483
1 Aug 2020
Holweg P Herber V Ornig M Hohenberger G Donohue N Puchwein P Leithner A Seibert F

Aims

This study is a prospective, non-randomized trial for the treatment of fractures of the medial malleolus using lean, bioabsorbable, rare-earth element (REE)-free, magnesium (Mg)-based biodegradable screws in the adult skeleton.

Methods

A total of 20 patients with isolated, bimalleolar, or trimalleolar ankle fractures were recruited between July 2018 and October 2019. Fracture reduction was achieved through bioabsorbable Mg-based screws composed of pure Mg alloyed with zinc (Zn) and calcium (Ca) ( Mg-Zn0.45-Ca0.45, in wt.%; ZX00). Visual analogue scale (VAS) and the presence of complications (adverse events) during follow-up (12 weeks) were used to evaluate the clinical outcomes. The functional outcomes were analyzed through the range of motion (ROM) of the ankle joint and the American Orthopaedic Foot and Ankle Society (AOFAS) score. Fracture reduction and gas formation were assessed using several plane radiographs.


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 4 | Pages 600 - 604
1 Jul 1992
Shinto Y Uchida A Korkusuz F Araki N Ono K

Porous blocks of calcium hydroxyapatite ceramic were evaluated as delivery systems for the sustained release of antibiotics. We tested gentamicin sulphate, cefoperazone sodium, and flomoxef sodium in powder form placed in a cylindrical cavity in calcium hydroxyapatite blocks, using in vitro studies of elution and in vivo studies in rats. Gentamicin sulphate gave a maximum concentration within the first week, which gradually decreased but was still effective at 12 weeks, when 70% of the antibiotic had been released. Even at this stage the antibiotic concentration from a 75 mg dose was five times the minimum inhibitory concentration for staphylococci. In the in vivo studies the release of gentamicin sulphate into the normal bone of rats was at similar rates and levels. The bacteriocidal activity of the drugs was not affected by packing into calcium hydroxyapatite ceramic and the blocks were completely biocompatible on histology. This new system overcomes the disadvantages of other drug delivery systems, avoiding thermal damage to the antibiotics and a second operation for the removal of the carrier. Some mechanical strength is provided by the ceramic and healing may be accelerated by bone ingrowth into its micropores


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1238 - 1247
1 Oct 2019
Soreide E Denbeigh JM Lewallen EA Thaler R Xu W Berglund L Yao JJ Martinez A Nordsletten L van Wijnen AJ Kakar S

Aims

Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function.

Materials and Methods

A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6).


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 719 - 724
1 Jul 1999
Louisia S Stromboni M Meunier A Sedel L Petite H

Limited success in regenerating large bone defects has been achieved by bridging them with osteoconductive materials. These substitutes lack the osteogenic and osteoinductive properties of bone autograft. A direct approach would be to stimulate osteogenesis in these biomaterials by the addition of fresh bone-marrow cells (BMC). We therefore created osteoperiosteal gaps 2 cm wide in the ulna of adult rabbits and either bridged them with coral alone (CC), coral supplemented with BMC, or left them empty. Coral was chosen as a scaffold because of its good biocompatibility and resorbability. In osteoperiosteal gaps bridged with coral only, the coral was invaded chiefly by fibrous tissue. It was insufficient to produce union after two months. In defects filled with coral and BMC an increase in osteogenesis was observed and the bone surface area was significantly higher compared with defects filled with coral alone. Bony union occurred in six out of six defects filled with coral and BMC after two months. An increase in the resorption of coral was also observed, suggesting that resorbing cells or their progenitors were present in bone marrow and survived the grafting procedure. Our findings have shown that supplementation of coral with BMC increased both the resorption of material and osteogenesis in defects of a clinical significance


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 133 - 141
1 Jan 2003
Kraft CN Diedrich O Burian B Schmitt O Wimmer MA

Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials. Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 116 - 121
1 Jul 2020
Heise G Black CM Smith R Morrow BR Mihalko WM

Aims

This study aimed to determine if macrophages can attach and directly affect the oxide layers of 316L stainless steel, titanium alloy (Ti6Al4V), and cobalt-chromium-molybdenum alloy (CoCrMo) by releasing components of these alloys.

Methods

Murine peritoneal macrophages were cultured and placed on stainless steel, CoCrMo, and Ti6Al4V discs into a 96-well plate. Cells were activated with interferon gamma and lipopolysaccharide. Macrophages on stainless steel discs produced significantly more nitric oxide (NO) compared to their control counterparts after eight to ten days and remained elevated for the duration of the experiment.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 311 - 315
1 Mar 1997
Rogers SD Howie DW Graves SE Pearcy MJ Haynes DR

Our aim was to determine whether in vitro studies would detect differences in the cellular response to wear particles of two titanium alloys commonly used in the manufacture of joint replacement prostheses. Particles were of the order of 1 μm in diameter representative of those found adjacent to failed prostheses. Exposure of human monocytes to titanium 6-aluminium 4- vanadium (TiAlV) at concentrations of 4 x 10. 7. particles/ml produced a mean prostaglandin E. 2. release of 2627.6 pM; this was significantly higher than the 317.4 pM induced by titanium 6-aluminium 7-niobium alloy (TiAlNb) particles (p = 0.006). Commercially-pure titanium particles induced a release of 347.8 pM. In addition, TiAlV stimulated significantly more release of the other cell mediators, interleukin-1, tumour necrosis factor and interleukin-6. At lower concentrations of particles there was less mediator release and less obvious differences between materials. None of the materials caused significant toxicity. The levels of inflammatory mediators released by phagocytic cells in response to wear particles may influence the amount of periprosthetic bone loss. Our findings have shown that in vitro studies can detect differences in cellular response induced by particles of similar titanium alloys in common clinical use, although in vivo studies have shown little difference. While in vitro studies should not be used as the only form of assessment, they must be considered when assessing the relative biocompatibility of different implant materials


Bone & Joint Research
Vol. 9, Issue 7 | Pages 394 - 401
1 Jul 2020
Blirup-Plum SA Bjarnsholt T Jensen HE Kragh KN Aalbæk B Gottlieb H Bue M Jensen LK

Aims

CERAMENT|G is an absorbable gentamicin-loaded biocomposite used as an on-site vehicle of antimicrobials for the treatment of chronic osteomyelitis. The purpose of the present study was to investigate the sole effect of CERAMENT|G, i.e. without additional systemic antimicrobial therapy, in relation to a limited or extensive debridement of osteomyelitis lesions in a porcine model.

Methods

Osteomyelitis was induced in nine pigs by inoculation of 104 colony-forming units (CFUs) of Staphylococcus aureus into a drill hole in the right tibia. After one week, the pigs were allocated into three groups. Group A (n = 3) received no treatment during the study period (19 days). Groups B (n = 3) and C (n = 3) received limited or extensive debridement seven days postinoculation, respectively, followed by injection of CERAMENT|G into the bone voids. The pigs were euthanized ten (Group C) and 12 (Group B) days after the intervention.


Bone & Joint 360
Vol. 8, Issue 3 | Pages 3 - 7
1 Jun 2019
Patel NG Waterson HB Phillips JRA Toms AD


Bone & Joint Research
Vol. 8, Issue 11 | Pages 518 - 525
1 Nov 2019
Whitaker S Edwards JH Guy S Ingham E Herbert A

Objectives

This study investigated the biomechanical performance of decellularized porcine superflexor tendon (pSFT) grafts of varying diameters when utilized in conjunction with contemporary ACL graft fixation systems. This aimed to produce a range of ‘off-the-shelf’ products with predictable mechanical performance, depending on the individual requirements of the patient.

Methods

Decellularized pSFTs were prepared to create double-bundle grafts of 7 mm, 8 mm, and 9 mm diameter. Femoral and tibial fixation systems were simulated utilizing Arthrex suspension devices and interference screws in bovine bone, respectively. Dynamic stiffness and creep were measured, followed by ramp to failure from which linear stiffness and load at failure were measured. The mechanisms of failure were also recorded.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 46 - 57
1 Jan 2018
Zhou J Zhou XG Wang JW Zhou H Dong J

Objective

In the present study, we aimed to assess whether gelatin/β-tricalcium phosphate (β-TCP) composite porous scaffolds could be used as a local controlled release system for vancomycin. We also investigated the efficiency of the scaffolds in eliminating infections and repairing osteomyelitis defects in rabbits.

Methods

The gelatin scaffolds containing differing amounts of of β-TCP (0%, 10%, 30% and 50%) were prepared for controlled release of vancomycin and were labelled G-TCP0, G-TCP1, G-TCP3 and G-TCP5, respectively. The Kirby-Bauer method was used to examine the release profile. Chronic osteomyelitis models of rabbits were established. After thorough debridement, the osteomyelitis defects were implanted with the scaffolds. Radiographs and histological examinations were carried out to investigate the efficiency of eliminating infections and repairing bone defects.


Bone & Joint Research
Vol. 7, Issue 3 | Pages 232 - 243
1 Mar 2018
Winkler T Sass FA Duda GN Schmidt-Bleek K

Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration.

Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018;7:232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.


Objectives

Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo.

Methods

ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry.


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 960 - 969
1 Aug 2019
Odgaard A Laursen MB Gromov K Troelsen A Kristensen PW Schrøder H Madsen F Overgaard S

Aims

The aim of this study was to give estimates of the incidence of component incompatibility in hip and knee arthroplasty and to test the effect of an online, real-time compatibility check.

Materials and Methods

Intraoperative barcode registration of arthroplasty implants was introduced in Denmark in 2013. We developed a compatibility database and, from May 2017, real-time compatibility checking was implemented and became part of the registration. We defined four classes of component incompatibility: A-I, A-II, B-I, and B-II, depending on an assessment of the level of risk to the patient (A/B), and on whether incompatibility was knowingly accepted (I/II).


Bone & Joint Research
Vol. 7, Issue 4 | Pages 318 - 324
1 Apr 2018
González-Quevedo D Martínez-Medina I Campos A Campos F Carriel V

Objectives

Recently, the field of tissue engineering has made numerous advances towards achieving artificial tendon substitutes with excellent mechanical and histological properties, and has had some promising experimental results. The purpose of this systematic review is to assess the efficacy of tissue engineering in the treatment of tendon injuries.

Methods

We searched MEDLINE, Embase, and the Cochrane Library for the time period 1999 to 2016 for trials investigating tissue engineering used to improve tendon healing in animal models. The studies were screened for inclusion based on randomization, controls, and reported measurable outcomes. The RevMan software package was used for the meta-analysis.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 108 - 112
1 Feb 2017
Itabashi T Narita K Ono A Wada K Tanaka T Kumagai G Yamauchi R Nakane A Ishibashi Y

Objectives

The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and antimicrobial effects of treating Ti and Ti6Al4V with UV irradiation of a lower and briefer dose than previously reported, for applications in implant surgery.

Materials and Methods

Ti and Ti6Al4V disks were prepared. To evaluate the bactericidal effect of UV irradiation, Staphylococcus aureus 834 suspension was seeded onto the disks, which were then exposed to UV light for 15 minutes at a dose of 9 J/cm2. To evaluate the antimicrobial activity of UV irradiation, bacterial suspensions were seeded onto the disks 0, 0.5, one, six, 24 and 48 hours, and three and seven days after UV irradiation as described above. In both experiments, the bacteria were then harvested, cultured, and the number of colonies were counted.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 403 - 411
1 Sep 2016
Mrosek EH Chung H Fitzsimmons JS O’Driscoll SW Reinholz GG Schagemann JC

Objectives

We sought to determine if a durable bilayer implant composed of trabecular metal with autologous periosteum on top would be suitable to reconstitute large osteochondral defects. This design would allow for secure implant fixation, subsequent integration and remodeling.

Materials and Methods

Adult sheep were randomly assigned to one of three groups (n = 8/group): 1. trabecular metal/periosteal graft (TMPG), 2. trabecular metal (TM), 3. empty defect (ED). Cartilage and bone healing were assessed macroscopically, biochemically (type II collagen, sulfated glycosaminoglycan (sGAG) and double-stranded DNA (dsDNA) content) and histologically.


Bone & Joint Research
Vol. 7, Issue 10 | Pages 548 - 560
1 Oct 2018
Qayoom I Raina DB Širka A Tarasevičius Š Tägil M Kumar A Lidgren L

During the last decades, several research groups have used bisphosphonates for local application to counteract secondary bone resorption after bone grafting, to improve implant fixation or to control bone resorption caused by bone morphogenetic proteins (BMPs). We focused on zoledronate (a bisphosphonate) due to its greater antiresorptive potential over other bisphosphonates. Recently, it has become obvious that the carrier is of importance to modulate the concentration and elution profile of the zoledronic acid locally. Incorporating one fifth of the recommended systemic dose of zoledronate with different apatite matrices and types of bone defects has been shown to enhance bone regeneration significantly in vivo. We expect the local delivery of zoledronate to overcome the limitations and side effects associated with systemic usage; however, we need to know more about the bioavailability and the biological effects. The local use of BMP-2 and zoledronate as a combination has a proven additional effect on bone regeneration. This review focuses primarily on the local use of zoledronate alone, or in combination with bone anabolic factors, in various preclinical models mimicking different orthopaedic conditions.

Cite this article: I. Qayoom, D. B. Raina, A. Širka, Š. Tarasevičius, M. Tägil, A. Kumar, L. Lidgren. Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review. Bone Joint Res 2018;7:548–560. DOI: 10.1302/2046-3758.710.BJR-2018-0015.R2.


Bone & Joint Research
Vol. 7, Issue 8 | Pages 524 - 538
1 Aug 2018
Zhao S Arnold M Ma S Abel RL Cobb JP Hansen U Boughton O

Objectives

The ability to determine human bone stiffness is of clinical relevance in many fields, including bone quality assessment and orthopaedic prosthesis design. Stiffness can be measured using compression testing, an experimental technique commonly used to test bone specimens in vitro. This systematic review aims to determine how best to perform compression testing of human bone.

Methods

A keyword search of all English language articles up until December 2017 of compression testing of bone was undertaken in Medline, Embase, PubMed, and Scopus databases. Studies using bulk tissue, animal tissue, whole bone, or testing techniques other than compression testing were excluded.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 187 - 195
1 Feb 2018
Ziebart J Fan S Schulze C Kämmerer PW Bader R Jonitz-Heincke A

Objectives

Enhanced micromotions between the implant and surrounding bone can impair osseointegration, resulting in fibrous encapsulation and aseptic loosening of the implant. Since the effect of micromotions on human bone cells is sparsely investigated, an in vitro system, which allows application of micromotions on bone cells and subsequent investigation of bone cell activity, was developed.

Methods

Micromotions ranging from 25 µm to 100 µm were applied as sine or triangle signal with 1 Hz frequency to human osteoblasts seeded on collagen scaffolds. Micromotions were applied for six hours per day over three days. During the micromotions, a static pressure of 527 Pa was exerted on the cells by Ti6Al4V cylinders. Osteoblasts loaded with Ti6Al4V cylinders and unloaded osteoblasts without micromotions served as controls. Subsequently, cell viability, expression of the osteogenic markers collagen type I, alkaline phosphatase, and osteocalcin, as well as gene expression of osteoprotegerin, receptor activator of NF-κB ligand, matrix metalloproteinase-1, and tissue inhibitor of metalloproteinase-1, were investigated.


The Bone & Joint Journal
Vol. 100-B, Issue 1_Supple_A | Pages 9 - 16
1 Jan 2018
Su EP Justin DF Pratt CR Sarin VK Nguyen VS Oh S Jin S

The development and pre-clinical evaluation of nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated with titanium dioxide (TiO2) nanotube arrays is reviewed. In vitro and in vivo evaluations show that TiO2 nanotubes on Ti surfaces positively affect the osseointegration, cell differentiation, mineralisation, and anti-microbial properties. This surface treatment can be superimposed onto existing macro and micro porous Ti implants creating a surface texture that also interacts with cells at the nano level. Histology and mechanical pull-out testing of specimens in rabbits indicate that TiO2 nanotubes improves bone bonding nine-fold (p = 0.008). The rate of mineralisation associated with TiO2 nanotube surfaces is about three times that of non-treated Ti surfaces. In addition to improved osseointegration properties, TiO2 nanotubes reduce the initial adhesion and colonisation of Staphylococcus epidermidis. Collectively, the properties of Ti implant surfaces enhanced with TiO2 nanotubes show great promise.

Cite this article: Bone Joint J 2018;100-B(1 Supple A):9–16.


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1126 - 1131
1 Aug 2016
Shiels SM Cobb RR Bedigrew KM Ritter G Kirk JF Kimbler A Finger Baker I Wenke JC

Aims

Demineralised bone matrix (DBM) is rarely used for the local delivery of prophylactic antibiotics. Our aim, in this study, was to show that a graft with a bioactive glass and DBM combination, which is currently available for clinical use, can be loaded with tobramycin and release levels of antibiotic greater than the minimum inhibitory concentration for Staphylococcus aureus without interfering with the bone healing properties of the graft, thus protecting the graft and surrounding tissues from infection.

Materials and Methods

Antibiotic was loaded into a graft and subsequently evaluated for drug elution kinetics and the inhibition of bacterial growth. A rat femoral condylar plug model was used to determine the effect of the graft, loaded with antibiotic, on bone healing.


Bone & Joint Research
Vol. 4, Issue 4 | Pages 56 - 64
1 Apr 2015
Lv YM Yu QS

Objectives

The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility.

Methods

The bone–cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid–hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated.


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 582 - 589
1 May 2015
Brennan SA Ní Fhoghlú C Devitt BM O’Mahony FJ Brabazon D Walsh A

Implant-associated infection is a major source of morbidity in orthopaedic surgery. There has been extensive research into the development of materials that prevent biofilm formation, and hence, reduce the risk of infection. Silver nanoparticle technology is receiving much interest in the field of orthopaedics for its antimicrobial properties, and the results of studies to date are encouraging. Antimicrobial effects have been seen when silver nanoparticles are used in trauma implants, tumour prostheses, bone cement, and also when combined with hydroxyapatite coatings. Although there are promising results with in vitro and in vivo studies, the number of clinical studies remains small. Future studies will be required to explore further the possible side effects associated with silver nanoparticles, to ensure their use in an effective and biocompatible manner. Here we present a review of the current literature relating to the production of nanosilver for medical use, and its orthopaedic applications.

Cite this article: Bone Joint J 2015; 97-B:582–9.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 331 - 336
1 May 2017
Yamauchi R Itabashi T Wada K Tanaka T Kumagai G Ishibashi Y

Objectives

Ultraviolet (UV) light-mediated photofunctionalisation is known to improve osseointegration of pure titanium (Ti). However, histological examination of titanium alloy (Ti6Al4V), which is frequently applied in orthopaedic and dental surgery, has not yet been performed. This study examined the osseointegration of photofunctionalised Ti6Al4V implants.

Methods

Ti and Ti6Al4V implants were treated with UV light, and the chemical composition and contact angle on the surfaces were evaluated to confirm photofunctionalisation. The implants were inserted into femurs in rats, and the rats were killed two or four weeks after the surgery. For histomorphometric analysis, both the bone–implant contact (BIC) ratio and the bone volume (BV) ratio were calculated from histological analysis and microcomputed tomography data.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 345 - 350
1 May 2017
Di Laura A Hothi H Henckel J Swiatkowska I Liow MHL Kwon Y Skinner JA Hart AJ

Objectives

The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design.

Methods

This retrieval study involved 48 total hip arthroplasties (THAs) with CoCr V40 trunnions paired with either CoCr (n = 21) or ceramic (n = 27) heads. The taper junction of all hips was evaluated for fretting/corrosion damage and volumetric material loss using a roundness-measuring machine. We used linear regression analysis to investigate taper damage differences after adjusting for potential confounding variables.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 208 - 215
1 Apr 2017
Decambron A Manassero M Bensidhoum M Lecuelle B Logeart-Avramoglou D Petite H Viateau V

Objectives

To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects.

Materials and Methods

Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation.


Bone & Joint 360
Vol. 5, Issue 5 | Pages 22 - 25
1 Oct 2016


Bone & Joint 360
Vol. 5, Issue 5 | Pages 10 - 13
1 Oct 2016


Bone & Joint Research
Vol. 5, Issue 11 | Pages 569 - 576
1 Nov 2016
Akahane M Shimizu T Kira T Onishi T Uchihara Y Imamura T Tanaka Y

Objectives

To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone.

Methods

Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats.


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 678 - 682
1 May 2013
Holinka J Pilz M Kubista B Presterl E Windhager R

The aim of this study was to evaluate whether coating titanium discs with selenium in the form of sodium selenite decreased bacterial adhesion of Staphylococcus aureus and Staph. epidermidis and impeded osteoblastic cell growth.

In order to evaluate bacterial adhesion, sterile titanium discs were coated with increasing concentrations of selenium and incubated with bacterial solutions of Staph. aureus (ATCC 29213) and Staph. epidermidis (DSM 3269) and stained with Safranin-O. The effect of selenium on osteoblastic cell growth was also observed. The adherence of MG-63 cells on the coated discs was detected by staining with Safranin-O. The proportion of covered area was calculated with imaging software.

The tested Staph. aureus strain showed a significantly reduced attachment on titanium discs with 0.5% (p = 0.011) and 0.2% (p = 0.02) selenium coating. Our test strain from Staph. epidermidis showed a highly significant reduction in bacterial adherence on discs coated with 0.5% (p = 0.0099) and 0.2% (p = 0.002) selenium solution. There was no inhibitory effect of the selenium coating on the osteoblastic cell growth.

Selenium coating is a promising method to reduce bacterial attachment on prosthetic material.

Cite this article: Bone Joint J 2013;95-B:678–82.


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 952 - 960
1 Jul 2016
Muderis MA Tetsworth K Khemka A Wilmot S Bosley B Lord SJ Glatt V

Aims

This study describes the Osseointegration Group of Australia’s Accelerated Protocol two-stage strategy (OGAAP-1) for the osseointegrated reconstruction of amputated limbs.

Patients and Methods

We report clinical outcomes in 50 unilateral trans-femoral amputees with a mean age of 49.4 years (24 to 73), with a minimum one-year follow-up. Outcome measures included the Questionnaire for persons with a Trans-Femoral Amputation, the health assessment questionnaire Short-Form-36 Health Survey, the Amputation Mobility Predictor scores presented as K-levels, 6 Minute Walk Test and timed up and go tests. Adverse events included soft-tissue problems, infection, fractures and failure of the implant.


Bone & Joint Research
Vol. 5, Issue 5 | Pages 191 - 197
1 May 2016
Kienast B Kowald B Seide K Aljudaibi M Faschingbauer M Juergens C Gille J

Objectives

The monitoring of fracture healing is a complex process. Typically, successive radiographs are performed and an emerging calcification of the fracture area is evaluated. The aim of this study was to investigate whether different bone healing patterns can be distinguished using a telemetric instrumented femoral internal plate fixator.

Materials and Methods

An electronic telemetric system was developed to assess bone healing mechanically. The system consists of a telemetry module which is applied to an internal locking plate fixator, an external reader device, a sensor for measuring externally applied load and a laptop computer with processing software. By correlation between externally applied load and load measured in the implant, the elasticity of the osteosynthesis is calculated. The elasticity decreases with ongoing consolidation of a fracture or nonunion and is an appropriate parameter for the course of bone healing. At our centre, clinical application has been performed in 56 patients suffering nonunion or fracture of the femur.


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 867 - 873
1 Jul 2016
Dalury DF

As the number of younger and more active patients treated with total knee arthroplasty (TKA) continues to increase, consideration of better fixation as a means of improving implant longevity is required. Cemented TKA remains the reference standard with the largest body of evidence and the longest follow-up to support its use. However, cementless TKA, may offer the opportunity of a more bone-sparing procedure with long lasting biological fixation to the bone. We undertook a review of the literature examining advances of cementless TKA and the reported results.

Cite this article: Bone Joint J 2016;98-B:867–73.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 500 - 511
1 Oct 2016
Raina DB Gupta A Petersen MM Hettwer W McNally M Tägil M Zheng M Kumar A Lidgren L

Objectives

We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells.

Materials and Methods

We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy.


Bone & Joint 360
Vol. 4, Issue 4 | Pages 33 - 35
1 Aug 2015

The August 2015 Research Roundup360 looks at: Lightbulbs, bleeding and procedure durations; Infection and rheumatoid agents; Infection rates and ‘bundles of care’ revisited; ACI: new application for a proven technology?; Hydrogel coating given the thumbs up; Hydroxyapatite as a smart coating?


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 583 - 597
1 May 2013
Kurien T Pearson RG Scammell BE

We reviewed 59 bone graft substitutes marketed by 17 companies currently available for implantation in the United Kingdom, with the aim of assessing the peer-reviewed literature to facilitate informed decision-making regarding their use in clinical practice. After critical analysis of the literature, only 22 products (37%) had any clinical data. Norian SRS (Synthes), Vitoss (Orthovita), Cortoss (Orthovita) and Alpha-BSM (Etex) had Level I evidence. We question the need for so many different products, especially with limited published clinical evidence for their efficacy, and conclude that there is a considerable need for further prospective randomised trials to facilitate informed decision-making with regard to the use of current and future bone graft substitutes in clinical practice.

Cite this article: Bone Joint J 2013;95-B:583–97.


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 147 - 149
1 Feb 2015
Morgan-Jones R Oussedik SIS Graichen H Haddad FS

Revision knee arthroplasty presents a number of challenges, not least of which is obtaining solid primary fixation of implants into host bone. Three anatomical zones exist within both femur and tibia which can be used to support revision implants. These consist of the joint surface or epiphysis, the metaphysis and the diaphysis. The methods by which fixation in each zone can be obtained are discussed. The authors suggest that solid fixation should be obtained in at least two of the three zones and emphasise the importance of pre-operative planning and implant selection.

Cite this article: Bone Joint J 2015;97-B:147–9.


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 252 - 257
1 Feb 2015
Wafa H Grimer RJ Reddy K Jeys L Abudu A Carter SR Tillman RM

We conducted a case-control study to examine the merit of silver-coated tumour prostheses. We reviewed 85 patients with Agluna-treated (silver-coated) tumour implants treated between 2006 and 2011 and matched them with 85 control patients treated between 2001 and 2011 with identical, but uncoated, tumour prostheses.

In all, 106 men and 64 women with a mean age of 42.2 years (18.4 to 90.4) were included in the study. There were 50 primary reconstructions (29.4%); 79 one-stage revisions (46.5%) and 41 two-stage revisions for infection (24.1%).

The overall post-operative infection rate of the silver-coated group was 11.8% compared with 22.4% for the control group (p = 0.033, chi-square test). A total of seven of the ten infected prostheses in the silver-coated group were treated successfully with debridement, antibiotics, and implant retention compared with only six of the 19 patients (31.6%) in the control group (p = 0.048, chi-square test). Three patients in the silver-coated group (3.5%) and 13 controls (15.3%) had chronic periprosthetic infection (p = 0.009, chi-square test).

The overall success rates in controlling infection by two-stage revision in the silver-coated group was 85% (17/20) compared with 57.1% (12/21) in the control group (p = 0.05, chi-square test). The Agluna-treated endoprostheses were associated with a lower rate of early periprosthetic infection. These silver-treated implants were particularly useful in two-stage revisions for infection and in those patients with incidental positive cultures at the time of implantation of the prosthesis.

Debridement with antibiotic treatment and retention of the implant appeared to be more successful with silver-coated implants.

Cite this article: Bone Joint J 2015;97-B:252–7.


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 427 - 431
1 Mar 2015
Wu C Hsieh P Fan Jiang J Shih H Chen C Hu C

Fresh-frozen allograft bone is frequently used in orthopaedic surgery. We investigated the incidence of allograft-related infection and analysed the outcomes of recipients of bacterial culture-positive allografts from our single-institute bone bank during bone transplantation. The fresh-frozen allografts were harvested in a strict sterile environment during total joint arthroplasty surgery and immediately stored in a freezer at -78º to -68º C after packing. Between January 2007 and December 2012, 2024 patients received 2083 allografts with a minimum of 12 months of follow-up. The overall allograft-associated infection rate was 1.2% (24/2024). Swab cultures of 2083 allografts taken before implantation revealed 21 (1.0%) positive findings. The 21 recipients were given various antibiotics at the individual orthopaedic surgeon’s discretion. At the latest follow-up, none of these 21 recipients displayed clinical signs of infection following treatment. Based on these findings, we conclude that an incidental positive culture finding for allografts does not correlate with subsequent surgical site infection. Additional prolonged post-operative antibiotic therapy may not be necessary for recipients of fresh-frozen bone allograft with positive culture findings.

Cite this article: Bone Joint J 2015;97-B:427–31.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 565 - 576
1 May 2009
Getgood A Brooks R Fortier L Rushton N

Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.


Bone & Joint Research
Vol. 3, Issue 7 | Pages 223 - 229
1 Jul 2014
Fleiter N Walter G Bösebeck H Vogt S Büchner H Hirschberger W Hoffmann R

Objective

A clinical investigation into a new bone void filler is giving first data on systemic and local exposure to the anti-infective substance after implantation.

Method

A total of 20 patients with post-traumatic/post-operative bone infections were enrolled in this open-label, prospective study. After radical surgical debridement, the bone cavity was filled with this material. The 21-day hospitalisation phase included determination of gentamicin concentrations in plasma, urine and wound exudate, assessment of wound healing, infection parameters, implant resorption, laboratory parameters, and adverse event monitoring. The follow-up period was six months.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 151 - 157
1 Feb 2011
El-Husseiny M Patel S MacFarlane RJ Haddad FS

Bacterial infection in orthopaedic surgery can be devastating, and is associated with significant morbidity and poor functional outcomes, which may be improved if high concentrations of antibiotics can be delivered locally over a prolonged period of time. The two most widely used methods of doing this involve antibiotic-loaded polymethylmethacrylate or collagen fleece. The former is not biodegradable and is a surface upon which secondary bacterial infection may occur. Consequently, it has to be removed once treatment has finished. The latter has been used successfully as an adjunct to systemic antibiotics, but cannot effect a sustained release that would allow it to be used on its own, thereby avoiding systemic toxicity.

This review explores the newer biodegradable carrier systems which are currently in the experimental phase of development and which may prove to be more effective in the treatment of osteomyelitis.


The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 497 - 501
1 Apr 2014
Banche G Allizond V Bracco P Bistolfi A Boffano M Cimino A Brach del Prever EM Cuffini AM

We have assessed the different adhesive properties of some of the most common bacteria associated with periprosthetic joint infection on various types of ultra high molecular Weight Polyethylene (UHMWPE). Quantitative in vitro analysis of the adhesion of biofilm producing strains of Staphylococcus aureus and Escherichia coli to physically and chemically characterised standard UHMWPE (PE), vitamin E blended UHMWPE (VE-PE) and oxidised UHMWPE (OX-PE) was performed using a sonication protocol. A significant decreased bacterial adhesion was registered for both strains on VE-PE, in comparison with that observed on PE, within 48 hours of observation (S. aureus p = 0.024 and E. coli p = 0.008). Since Vitamin E reduces bacterial adhesive ability, VE-stabilised UHMWPE could be valuable in joint replacement by presenting excellent mechanical properties, while reducing bacterial adhesiveness.

Cite this article: Bone Joint J 2014;96-B:497–501.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 320 - 325
1 Feb 2010
Wang G Yang H Li M Lu S Chen X Cai X

In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study.

The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute.


Bone & Joint 360
Vol. 1, Issue 6 | Pages 21 - 23
1 Dec 2012

The December 2012 Spine Roundup360 looks at: the Japanese neck disability index; adjacent segment degeneration; sacroiliac loads determined by limb length discrepancy; whether epidural steroids improve outcome in lumbar disc herniation; spondylodiscitis in infancy; total pedicle screws; and iliac crest autograft complications.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 166 - 172
1 Feb 2013
Abolghasemian M Tangsataporn S Sternheim A Backstein D Safir O Gross AE

Trabecular metal (TM) augments are a relatively new option for reconstructing segmental bone loss during acetabular revision. We studied 34 failed hip replacements in 34 patients that were revised between October 2003 and March 2010 using a TM acetabular shell and one or two augments. The mean age of the patients at the time of surgery was 69.3 years (46 to 86) and the mean follow-up was 64.5 months (27 to 107). In all, 18 patients had a minor column defect, 14 had a major column defect, and two were associated with pelvic discontinuity. The hip centre of rotation was restored in 27 patients (79.4%). The Oxford hip score increased from a mean of 15.4 points (6 to 25) before revision to a mean of 37.7 (29 to 47) at the final follow-up. There were three aseptic loosenings of the construct, two of them in the patients with pelvic discontinuity. One septic loosening also occurred in a patient who had previously had an infected hip replacement. The augments remained stable in two of the failed hips. Whenever there was a loose acetabular component in contact with a stable augment, progressive metal debris shedding was evident on the serial radiographs. Complications included another deep infection treated without revision surgery. Good clinical and radiological results can be expected for bone-deficient acetabula treated by a TM cup and augment, but for pelvic discontinuities this might not be a reliable option.

Cite this article: Bone Joint J 2013;95-B:166–72.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 37 - 42
1 Jan 2012
Affatato S Traina F De Fine M Carmignato S Toni A

Alumina–alumina bearings are among the most resistant to wear in total hip replacement. Examination of their surfaces is one way of comparing damage caused by wear of hip joints simulated in vitro to that seen in explanted bearings. The aim of this study was to determine whether second-generation ceramic bearings exhibited a better pattern of wear than those reported in the literature for first-generation bearings. We considered both macro- and microscopic findings.

We found that long-term alumina wear in association with a loose acetabular component could be categorised into three groups. Of 20 specimens, four had ‘low wear’, eight ‘crescent wear’ and eight ‘severe wear’, which was characterised by a change in the physical shape of the bearing and a loss of volume. This suggests that the wear in alumina–alumina bearings in association with a loose acetabular component may be variable in pattern, and may explain, in part, why the wear of a ceramic head in vivo may be greater than that seen after in vitro testing.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 3 | Pages 398 - 404
1 Mar 2012
Seide K Aljudaibi M Weinrich N Kowald B Jürgens C Müller J Faschingbauer M

In an interdisciplinary project involving electronic engineers and clinicians, a telemetric system was developed to measure the bending load in a titanium internal femoral fixator. As this was a new device, the main question posed was: what clinically relevant information could be drawn from its application? As a first clinical investigation, 27 patients (24 men, three women) with a mean age of 38.4 years (19 to 66) with femoral nonunions were treated using the system. The mean duration of the nonunion was 15.4 months (5 to 69). The elasticity of the plate-callus system was measured telemetrically until union. Conventional radiographs and a CT scan at 12 weeks were performed routinely, and healing was staged according to the CT scans. All nonunions healed at a mean of 21.5 weeks (13 to 37). Well before any radiological signs of healing could be detected, a substantial decrease in elasticity was recorded. The relative elasticity decreased to 50% at a mean of 7.8 weeks (3.5 to 13) and to 10% at a mean of 19.3 weeks (4.5 to 37). At 12 weeks the mean relative elasticity was 28.1% (0% to 56%). The relative elasticity was significantly different between the different healing stages as determined by the CT scans.

Incorporating load measuring electronics into implants is a promising option for the assessment of bone healing. Future application might lead to a reduction in the need for exposure to ionising radiation to monitor fracture healing.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1427 - 1430
1 Oct 2011
Lindgren JU Brismar BH Wikstrom AC

A 70-year-old man with an uncemented metal-on-polyethylene total hip prosthesis underwent revision arthroplasty 33 months later because of pain, swelling and recurrent dislocation. There appeared to be corrosion and metal release from the prosthetic head, resulting in pseudotumour formation and severe local soft-tissue destruction. The corrosion occurred at the junction between the titanium-molybdenum-zirconium-iron taper and the cobalt-chrome-molybdenum head, but the mechanism was unproven.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 173 - 178
1 Feb 2012
Malizos KN Papasoulis E Dailiana ZH Papatheodorou LK Varitimidis SE

The introduction of a trabecular tantalum rod has been proposed for the management of early-stage osteonecrosis of the femoral head but serves as a single-point of support of the necrotic lesion. We describe a technique using two or three 4.2 mm (or later 4.7 mm) tantalum pegs for the prevention of collapse of the necrotic lesion. We prospectively studied 21 patients (26 hips) with non-traumatic osteonecrosis of the femoral head treated in this manner. Of these, 21 patients (24 hips) were available for radiological and clinical evaluation at a mean follow-up of 46 months (18 to 67). Radiological assessment showed that only eight hips deteriorated according to the Association Research Circulation Osseous classification, and four hips according to the Classification of the Japanese Investigation Committee of Health and Welfare. Functional improvement was obtained with an improvement in the mean Harris hip score from 65.2 (33.67 to 95) to 88.1 (51.72 to 100), the mean Merle D’Aubigné-Postel score from 13 (6 to 18) to 16 (11 to 18), a mean visual analogue score for pain from 5.2 (0 to 9.5) to 2.6 (0 to 7), and the mean Short-Form 36 score from 80.4 (56.8 to 107.1) to 92.4 (67.5 to 115.7). Of these 24 hips followed for a minimum of 18 months, three were considered as failures at the final follow-up, having required total hip replacement. One of the hips without full follow-up was also considered to be a failure. In more than two-thirds of the surviving hips a satisfactory clinical outcome was achieved with promising radiological findings. The estimated mean implant survival was 60 months (95% confidence interval 53.7 to 66.3).


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 639 - 643
1 May 2011
Burghardt RD Herzenberg JE Specht SC Paley D

Between October 2001 and September 2009 we lengthened 242 lower-limb segments in 180 patients using the Intramedullary Skeletal Kinetic Distractor (ISKD). Mechanical failure was defined either as breakage of the ISKD or failure of the internal mechanism to activate. Retrieved nails which failed mechanically were examined by the manufacturer for defects. In all, 15 ISKDs in 12 patients (13 limbs) failed mechanically representing an overall failure rate of 6.2%, with fracture of the device occurring in ten of the 15 failures. Two nails in one patient failed to lengthen and had to be replaced. The manufacturer detected an error in the assembly of the nail, which prompted a wide recall. One nail jammed after being forcefully inserted, and two nails failed to lengthen fully. Lengthening was achieved in all 12 patients, although three required a second operation to exchange a defective nail for a new, functioning device.

The ISKD is a complex mechanical device which lengthens by the oscillation of two telescopic sections connected by a threaded rod. The junction between these sections is surrounded by a keyring collar. This keyring collar is the weakest part of the device.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 644 - 649
1 May 2011
Yonekura Y Miyamoto H Shimazaki T Ando Y Noda I Mawatari M Hotokebuchi T

A silver-containing hydroxyapatite (Ag-HA) coating has been developed using thermal spraying technology. We evaluated the osteoconductivity of this coating on titanium (Ti) implants in rat tibiae in relation to bacterial infection in joint replacement.

At 12 weeks, the mean affinity indices of bone formation of a Ti, an HA, a 3%Ag-HA and a 50%Ag-HA coating were 97.3%, 84.9%, 81.0% and 40.5%, respectively. The mean affinity indices of bone contact of these four coatings were 18.8%, 83.7%, 77.2% and 40.5%, respectively. The indices of bone formation and bone contact around the implant of the 3%Ag-HA coating were similar to those of the HA coating, and no significant differences were found between them (bone formation, p = 0.99; bone contact, p = 0.957). However, inhibition of bone formation was observed with the 50%Ag-HA coating.

These results indicate that the 3%Ag-HA coating has low toxicity and good osteoconductivity, and that the effect of silver toxicity on osteoconductivity depends on the dose.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 510 - 516
1 Apr 2011
Sugata Y Sotome S Yuasa M Hirano M Shinomiya K Okawa A

Several bisphosphonates are now available for the treatment of osteoporosis. Porous hydroxyapatite/collagen (HA/Col) composite is an osteoconductive bone substitute which is resorbed by osteoclasts. The effects of the bisphosphonate alendronate on the formation of bone in porous HA/Col and its resorption by osteoclasts were evaluated using a rabbit model. Porous HA/Col cylinders measuring 6 mm in diameter and 8 mm in length, with a pore size of 100 μm to 500 μm and 95% porosity, were inserted into a defect produced in the lateral femoral condyles of 72 rabbits. The rabbits were divided into four groups based on the protocol of alendronate administration: the control group did not receive any alendronate, the pre group had alendronate treatment for three weeks prior to the implantation of the HA/Col, the post group had alendronate treatment following implantation until euthanasia, and the pre+post group had continuous alendronate treatment from three weeks prior to surgery until euthanasia. All rabbits were injected intravenously with either saline or alendronate (7.5 μg/kg) once a week. Each group had 18 rabbits, six in each group being killed at three, six and 12 weeks post-operatively. Alendronate administration suppressed the resorption of the implants. Additionally, the mineral densities of newly formed bone in the alendronate-treated groups were lower than those in the control group at 12 weeks post-operatively. Interestingly, the number of osteoclasts attached to the implant correlated with the extent of bone formation at three weeks.

In conclusion, the systemic administration of alendronate in our rabbit model at a dose-for-weight equivalent to the clinical dose used in the treatment of osteoporosis in Japan affected the mineral density and remodelling of bone tissue in implanted porous HA/Col composites.