Ultra-high-molecular-weight polyethylene sterilised in the absence of air and highly cross-linked polyethylene have been used to avoid osteolysis and loosening in total hip replacement. Our prospective randomised study has assessed the results using two different polyethylenes associated with the same prosthetic design. We assessed 45 Allofit acetabular components with a Sulene-polyethylene liner of conventional polyethylene gamma sterilised with nitrogen and 45 Allofit acetabular components with a Durasul-polyethylene liner sterilised in ethylene oxide, both matched with an Alloclassic stem with a 28 mm modular femoral head. The prostheses were implanted between May 1999 and December 2001. The mean follow-up was for 66.3 months (60 to 92). The linear penetration of the femoral head was estimated at 6 weeks, at 6 and 12 months and annually thereafter from standardised digitised radiographs using image-analysis software. There was no loosening of any prosthetic component. There were no radiolucent lines or osteolysis. The mean rate of penetration calculated from regression analysis during the first five years was 38 μm/year (
Systemic mastocytosis is a rare condition that often involves the bone marrow. We report the case of a patient with systemic mastocytosis who underwent total hip replacement. Technical difficulties encountered during the procedure included a narrow medullary canal and abnormally hard bone, later confirmed by laboratory measurements. Follow-up at five years showed a good clinical and radiological outcome.
The aim of this study was to determine whether subchondral bone influences in situ chondrocyte survival. Bovine explants were cultured in serum-free media over seven days with subchondral bone excised from articular cartilage (group A), subchondral bone left attached to articular cartilage (group B), and subchondral bone excised but co-cultured with articular cartilage (group C). Using confocal laser scanning microscopy, fluorescent probes and biochemical assays, in situ chondrocyte viability and relevant biophysical parameters (cartilage thickness, cell density, culture medium composition) were quantified over time (2.5 hours vs seven days). There was a significant increase in chondrocyte death over seven days, primarily within the superficial zone, for group A, but not for groups B or C (p <
0.05). There was no significant difference in cartilage thickness or cell density between groups A, B and C (p >
0.05). Increases in the protein content of the culture media for groups B and C, but not for group A, suggested that the release of soluble factors from subchondral bone may have influenced chondrocyte survival. In conclusion, subchondral bone significantly influenced chondrocyte survival in articular cartilage during explant culture. The extrapolation of bone-cartilage interactions in vitro to the clinical situation must be made with caution, but the findings from these experiments suggest that future investigation into in vivo mechanisms of articular cartilage survival and degradation must consider the interactions of cartilage with subchondral bone.
This study aimed to investigate time-dependent gene expression
of injured human anterior cruciate ligament (ACL), and to evaluate
the histological changes of the ACL remnant in terms of cellular
characterisation. Injured human ACL tissues were harvested from 105 patients undergoing
primary ACL reconstruction and divided into four phases based on
the period from injury to surgery. Phase I was <
three weeks,
phase II was three to eight weeks, phase III was eight to 20 weeks,
and phase IV was ≥ 21 weeks. Gene expressions of these tissues were
analysed in each phase by quantitative real-time polymerase chain
reaction using selected markers (collagen types 1 and 3, biglycan,
decorin, α-smooth muscle actin, IL-6, TGF-β1, MMP-1, MMP-2 and TIMP-1).
Immunohistochemical staining was also performed using primary antibodies
against CD68, CD55, Stat3 and phosphorylated-Stat3 (P-Stat3). Objectives
Methods
Stems improve the mechanical stability of tibial
components in total knee replacement (TKR), but come at a cost of stress
shielding along their length. Their advantages include resistance
to shear, reduced tibial lift-off and increased stability by reducing
micromotion. Longer stems may have disadvantages including stress
shielding along the length of the stem with associated reduction
in bone density and a theoretical risk of subsidence and loosening, peri-prosthetic
fracture and end-of-stem pain. These features make long stems unattractive
in the primary TKR setting, but often desirable in revision surgery
with bone loss and instability. In the revision scenario, stems
are beneficial in order to convey structural stability to the construct
and protect the reconstruction of bony defects. Cemented and uncemented
long stemmed implants have different roles depending on the nature
of the bone loss involved. This review discusses the biomechanics of the design of tibial
components and stems to inform the selection of the component and
the technique of implantation.
We have evaluated the effect of the short-term administration of low therapeutic doses of modern COX-2 inhibitors on the healing of fractures. A total of 40 adult male New Zealand rabbits were divided into five groups. A mid-diaphyseal osteotomy of the right ulna was performed and either normal saline, prednisolone, indometacin, meloxicam or rofecoxib was administered for five days. Radiological, biomechanical and histomorphometric evaluation was performed at six weeks. In the group in which the highly selective anti-COX-2 agent, rofecoxib, was used the incidence of radiologically-incomplete union was similar to that in the control group. All the biomechanical parameters were statistically significantly lower in both the prednisolone and indometacin (p = 0.01) and in the meloxicam (p = 0.04) groups compared with the control group. Only the fracture load values were found to be statistically significantly lower (p = 0.05) in the rofecoxib group. Histomorphometric parameters were adversely affected in all groups with the specimens of the rofecoxib group showing the least negative effect. Our findings indicated that the short-term administration of low therapeutic doses of a highly selective COX-2 inhibitor had a minor negative effect on bone healing.
Despite advances in the prevention and treatment of osteoporotic fractures, their prevalence continues to increase. Their operative treatment remains a challenge for the surgeon, often with unpredictable outcomes. This review highlights the current aspects of management of these fractures and focuses on advances in implant design and surgical technique.
There are no recent studies comparing cable with
wire for the fixation of osteotomies or fractures in total hip replacement
(THR). Our objective was to evaluate the five-year clinical and
radiological outcomes and complication rates of the two techniques.
We undertook a review including all primary and revision THRs performed
in one hospital between 1996 and 2005 using cable or wire fixation.
Clinical and radiological evaluation was performed five years post-operatively.
Cables were used in 51 THRs and wires in 126, and of these, 36 THRs
with cable (71%) and 101 with wire (80%) were evaluated at follow-up.
The five-year radiographs available for 33 cable and 91 wire THRs
revealed rates of breakage of fixation of 12 of 33 (36%) and 42
of 91 (46%), respectively. With cable there was a significantly
higher risk of metal debris (68% In conclusion, we found a higher incidence of complications and
a trend towards increased infection and foreign-body reaction with
the use of cables.
Recent studies have shown that modulating inflammation-related
lipid signalling after a bone fracture can accelerate healing in
animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity
during fracture healing increases cyclooxygenase-2 (COX-2) expression
in the fracture callus, accelerates chondrogenesis and decreases
healing time. In this study, we test the hypothesis that 5-LO inhibition
will increase direct osteogenesis. Bilateral, unicortical femoral defects were used in rats to measure
the effects of local 5-LO inhibition on direct osteogenesis. The
defect sites were filled with a polycaprolactone (PCL) scaffold
containing 5-LO inhibitor (A-79175) at three dose levels, scaffold
with drug carrier, or scaffold only. Drug release was assessed Objectives
Methods
Small animal models of fracture repair primarily investigate
indirect fracture healing via external callus formation. We present
the first described rat model of direct fracture healing. A rat tibial osteotomy was created and fixed with compression
plating similar to that used in patients. The procedure was evaluated
in 15 cadaver rats and then Objectives
Methods
This review briefly summarises some of the definitive
studies of articular cartilage by microscopic MRI (µMRI) that were
conducted with the highest spatial resolutions. The article has
four major sections. The first section introduces the cartilage
tissue, MRI and µMRI, and the concept of image contrast in MRI.
The second section describes the characteristic profiles of three
relaxation times (T1, T2 and T1ρ)
and self-diffusion in healthy articular cartilage. The third section
discusses several factors that can influence the visualisation of
articular cartilage and the detection of cartilage lesion by MRI
and µMRI. These factors include image resolution, image analysis
strategies, visualisation of the total tissue, topographical variations
of the tissue properties, surface fibril ambiguity, deformation
of the articular cartilage, and cartilage lesion. The final section
justifies the values of multidisciplinary imaging that correlates
MRI with other technical modalities, such as optical imaging. Rather
than an exhaustive review to capture all activities in the literature,
the studies cited in this review are merely illustrative.
Bone allografts can be used in any kind of surgery involving bone from minor defects to major bone loss after tumour resection. This review describes the various types of bone grafts and the current knowledge on bone allografts, from procurement and preparation to implantation. The surgical conditions for optimising the incorporation of bone are outlined, and surgeon expectations from a bone allograft discussed.
The re-establishment of vascularity is an early event in fracture healing; upregulation of angiogenesis may therefore promote the formation of bone. We have investigated the capacity of vascular endothelial growth factor (VEGF) to stimulate the formation of bone in an experimental atrophic nonunion model. Three groups of eight rabbits underwent a standard nonunion operation. This was followed by interfragmentary deposition of 100 μg VEGF, carrier alone or autograft. After seven weeks, torsional failure tests and callus size confirmed that VEGF-treated osteotomies had united whereas the carrier-treated osteotomies failed to unite. The biomechanical properties of the groups treated with VEGF and autograft were identical. There was no difference in bone blood flow. We considered that VEGF stimulated the formation of competent bone in an environment deprived of its normal vascularisation and osteoprogenitor cell supply. It could be used to enhance the healing of fractures predisposed to nonunion.
Congenital pseudarthrosis of the tibia remains one of the most difficult orthopaedic problems. We describe early excision and the use of the Masquelet technique to reconstruct the bone defect in a child aged 14 months. Consolidation sufficient for complete weight-bearing was achieved by seven weeks. After two and a half years, the child was asymptomatic with a fully reconstructed tibia and no leg-length discrepancy.
The pathogenesis of rotator cuff disease (RCD) is complex and
not fully understood. This systematic review set out to summarise
the histological and molecular changes that occur throughout the
spectrum of RCD. We conducted a systematic review of the scientific literature
with specific inclusion and exclusion criteria.Introduction
Methods
The introduction of a trabecular tantalum rod
has been proposed for the management of early-stage osteonecrosis of
the femoral head but serves as a single-point of support of the
necrotic lesion. We describe a technique using two or three 4.2
mm (or later 4.7 mm) tantalum pegs for the prevention of collapse
of the necrotic lesion. We prospectively studied 21 patients (26
hips) with non-traumatic osteonecrosis of the femoral head treated
in this manner. Of these, 21 patients (24 hips) were available for
radiological and clinical evaluation at a mean follow-up of 46 months
(18 to 67). Radiological assessment showed that only eight hips
deteriorated according to the Association Research Circulation Osseous
classification, and four hips according to the Classification of
the Japanese Investigation Committee of Health and Welfare. Functional
improvement was obtained with an improvement in the mean Harris
hip score from 65.2 (33.67 to 95) to 88.1 (51.72 to 100), the mean
Merle D’Aubigné-Postel score from 13 (6 to 18) to 16 (11 to 18),
a mean visual analogue score for pain from 5.2 (0 to 9.5) to 2.6
(0 to 7), and the mean Short-Form 36 score from 80.4 (56.8 to 107.1)
to 92.4 (67.5 to 115.7). Of these 24 hips followed for a minimum
of 18 months, three were considered as failures at the final follow-up,
having required total hip replacement. One of the hips without full
follow-up was also considered to be a failure. In more than two-thirds
of the surviving hips a satisfactory clinical outcome was achieved
with promising radiological findings. The estimated mean implant
survival was 60 months (95% confidence interval 53.7 to 66.3).
This study aims to assess the correlation of CT-based structural
rigidity analysis with mechanically determined axial rigidity in
normal and metabolically diseased rat bone. A total of 30 rats were divided equally into normal, ovariectomized,
and partially nephrectomized groups. Cortical and trabecular bone
segments from each animal underwent micro-CT to assess their average
and minimum axial rigidities using structural rigidity analysis.
Following imaging, all specimens were subjected to uniaxial compression
and assessment of mechanically-derived axial rigidity.Objectives
Methods
Bovine and human articular chondrocytes were seeded in 2% alginate constructs and cultured for up to 19 days in a rotating-wall-vessel (RWV) and under static conditions. Culture within the RWV enhanced DNA levels for bovine chondrocyte-seeded constructs when compared with static conditions but did not produce enhancement for human cells. There was a significant enhancement of glycosaminoglycans and hydroxyproline synthesis for both bovine and human chondrocytes. In all cases, histological analysis revealed enhanced Safranin-O staining in the peripheral regions of the constructs compared with the central region. There was an overall increase in staining intensity after culture within the RWV compared with static conditions. Type-II collagen was produced by both bovine and human chondrocytes in the peripheral and central regions of the constructs and the staining intensity was enhanced by culture within the RWV. A capsule of flattened cells containing type-I collagen developed around the constructs maintained under static conditions when seeded with either bovine or human chondrocytes, but not when cultured within the RWV bioreactor.