Advertisement for orthosearch.org.uk
Results 241 - 260 of 281
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 929 - 934
1 Jul 2013
Sahin O Kuru I Akgun RC Sahin BS Canbeyli ID Tuncay IC

We analysed the clinical and radiological outcomes of a new surgical technique for the treatment of heterozygote post-axial metatarsal-type foot synpolydactyly with HOX-D13 genetic mutations with a mean follow-up of 30.9 months (24 to 42). A total of 57 feet in 36 patients (mean age 6.8 years (2 to 16)) were treated with this new technique, which transfers the distal part of the duplicated fourth metatarsal to the proximal part of the fifth metatarsal. Clinical and radiological assessments were undertaken pre- and post-operatively and any complications were recorded. Final outcomes were evaluated according to the methods described by Phelps and Grogan. Forefoot width was reduced and the lengths of the all reconstructed toes were maintained after surgery. Union was achieved for all the metatarsal osteotomies without any angular deformities. Outcomes at the final assessment were excellent in 51 feet (89%) and good in six (11%). This newly described surgical technique provides for painless, comfortable shoe-wearing after a single, easy-to-perform operation with good clinical, radiological and functional outcomes.

Cite this article: Bone Joint J 2013;95-B:929–34.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 1 | Pages 114 - 121
1 Jan 2008
Pendegrass CJ Gordon D Middleton CA Sun SNM Blunn GW

Conventional amputation prostheses rely on the attachment of the socket to the stump, which may lead to soft-tissue complications. Intraosseous transcutaneous amputation prostheses (ITAPs) allow direct loading of the skeleton, but their success is limited by infection resulting from breaching of the skin at the interface with the implant. Keratinocytes provide the skin’s primary barrier function, while hemidesmosomes mediate their attachment to natural ITAP analogues. Keratinocytes must attach directly to the surface of the implant. We have assessed the proliferation, morphology and attachment of keratinocytes to four titaniumalloy surfaces in order to determine the optimal topography in vitro. We used immunolocalisation of adhesion complex components, scanning electron microscopy and transmission electron microscopy to assess cell parameters.

We have shown that the proliferation, morphology and attachment of keratinocytes are affected by the surface topography of the biomaterials used to support their growth. Smoother surfaces improved adhesion. We postulate that a smooth topography at the point of epithelium-ITAP contact could increase attachment in vivo, producing an effective barrier of infection.


Bone & Joint Research
Vol. 2, Issue 9 | Pages 193 - 199
1 Sep 2013
Myers KR Sgaglione NA Grande DA

The treatment of osteochondral lesions and osteoarthritis remains an ongoing clinical challenge in orthopaedics. This review examines the current research in the fields of cartilage regeneration, osteochondral defect treatment, and biological joint resurfacing, and reports on the results of clinical and pre-clinical studies. We also report on novel treatment strategies and discuss their potential promise or pitfalls. Current focus involves the use of a scaffold providing mechanical support with the addition of chondrocytes or mesenchymal stem cells (MSCs), or the use of cell homing to differentiate the organism’s own endogenous cell sources into cartilage. This method is usually performed with scaffolds that have been coated with a chemotactic agent or with structures that support the sustained release of growth factors or other chondroinductive agents. We also discuss unique methods and designs for cell homing and scaffold production, and improvements in biological joint resurfacing. There have been a number of exciting new studies and techniques developed that aim to repair or restore osteochondral lesions and to treat larger defects or the entire articular surface. The concept of a biological total joint replacement appears to have much potential.

Cite this article: Bone Joint Res 2013;2:193–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 489 - 495
1 Apr 2010
Ramaswamy R Kosashvili Y Cameron H

The hip joint is commonly involved in multiple epiphyseal dysplasia and patients may require total hip replacement before the age of 30 years.

We retrospectively reviewed nine patients (16 hips) from four families. The diagnosis of multiple epiphyseal dysplasia was based on a family history, genetic counselling, clinical features and radiological findings. The mean age at surgery was 32 years (17 to 63), with a mean follow-up of 15.9 years (5.5 to 24).

Of the 16 hips, ten required revision at a mean of 12.5 years (5 to 15) consisting of complete revision of the acetabular component in three hips and isolated exchange of the liner in seven. No femoral component has loosened or required revision during the period of follow-up.

With revision for any reason, the 15-year survival was only 11.4% (95% confidence interval 1.4 to 21.4). However, when considering revision of the acetabular shell in isolation the survival at ten years was 93.7% (95% confidence interval 87.7 to 99.7), reducing to 76.7% (95% confidence interval 87.7 to 98.7) at 15 and 20 years, respectively.


Bone & Joint 360
Vol. 2, Issue 1 | Pages 2 - 5
1 Feb 2013
Khan M Roberts S Richardson JB McCaskie A

Stem cells are a key component of regenerative medicine strategies. Particular areas of musculoskeletal application include cartilage and bone regeneration in arthritis and trauma. There are several types of stem cell and this article will focus on the adult derived cells. The review includes current issues and future developments.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 841 - 851
1 Jul 2006
Lee EH Hui JHP


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1309 - 1319
1 Oct 2005
Hall S


Bone & Joint 360
Vol. 1, Issue 5 | Pages 30 - 32
1 Oct 2012

The October 2012 Research Roundup360 looks at: whether you can escape your genes; oral prophylaxis for DVT; non-responders and the internet; metal-on-metal, mice and damaged livers; sleeping on the job; cartilage contact stress in the normal human hip; and a perfect reason to subscribe to 360.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 244 - 249
1 Feb 2013
Puig-Verdié L Alentorn-Geli E González-Cuevas A Sorlí L Salvadó M Alier A Pelfort X Portillo ME Horcajada JP

The purpose of this study was to compare the diagnostic accuracy for the detection of infection between the culture of fluid obtained by sonication (SFC) and the culture of peri-implant tissues (PITC) in patients with early and delayed implant failure, and those with unsuspected and suspected septic failure. It was hypothesised that SFC increases the diagnostic accuracy for infection in delayed, but not early, implant failure, and in unsuspected septic failure. The diagnostic accuracy for infection of all consecutive implants (hardware or prostheses) that were removed for failure was compared between SFC and PITC. This prospective study included 317 patients with a mean age of 62.7 years (9 to 97). The sensitivity for detection of infection using SFC was higher than using PITC in an overall comparison (89.9% versus 67%, respectively; p < 0.001), in unsuspected septic failure (100% versus 48.5%, respectively; p < 0.001), and in delayed implant failure (88% versus 58%, respectively; p < 0.001). PITC sensitivity dropped significantly in unsuspected compared with suspected septic failure (p = 0.007), and in delayed compared with early failure (p = 0.013). There were no differences in specificity.

Sonication is mainly recommended when there is implant failure with no clear signs of infection and in patients with delayed implant failure. In early failure, SFC is not superior to PITC for the diagnosis of infection and, therefore, is not recommended as a routine diagnostic test in these patients.

Cite this article: Bone Joint J 2013;95-B:244–9.


The Bone & Joint Journal
Vol. 95-B, Issue 1 | Pages 4 - 9
1 Jan 2013
Goyal N Miller A Tripathi M Parvizi J

Staphylococcus aureus is one of the leading causes of surgical site infection (SSI). Over the past decade there has been an increase in methicillin-resistant S. aureus (MRSA). This is a subpopulation of the bacterium with unique resistance and virulence characteristics. Nasal colonisation with either S. aureus or MRSA has been demonstrated to be an important independent risk factor associated with the increasing incidence and severity of SSI after orthopaedic surgery. Furthermore, there is an economic burden related to SSI following orthopaedic surgery, with MRSA-associated SSI leading to longer hospital stays and increased hospital costs. Although there is some controversy about the effectiveness of screening and eradication programmes, the literature suggests that patients should be screened and MRSA-positive patients treated before surgical admission in order to reduce the risk of SSI.

Cite this article: Bone Joint J 2013;95-B:4–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 672 - 685
1 May 2007
Goodrich LR Hidaka C Robbins PD Evans CH Nixon AJ

Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model.

A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 × 107 AdIGF-1 modified chondrocytes and the contralateral joint received 2 × 107 naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated.

Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months.

Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model.

The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 409 - 416
1 Mar 2009
Anders JO Mollenhauer J Beberhold A Kinne RW Venbrocks RA

The gelatin-based haemostyptic compound Spongostan was tested as a three-dimensional (3D) chondrocyte matrix in an in vitro model for autologous chondrocyte transplantation using cells harvested from bovine knees. In a control experiment of monolayer cultures, the proliferation or de-differentiation of bovine chondrocytes was either not or only marginally influenced by the presence of Spongostan (0.3 mg/ml).

In monolayers and 3-D Minusheet culture chambers, the cartilage-specific differentiation markers aggrecan and type-II collagen were ubiquitously present in a cell-associated fashion and in the pericellular matrix. The Minusheet cultures usually showed a markedly higher mRNA expression than monolayer cultures irrespective of whether Spongostan had been present or not during culture. Although the de-differentiation marker type-I collagen was also present, the ratio of type-I to type-II collagen or aggrecan to type-I collagen remained higher in Minusheet 3-D cultures than in monolayer cultures irrespective of whether Spongostan had been included in or excluded from the monolayer cultures. The concentration of GAG in Minusheet cultures reached its maximum after 14 days with a mean of 0.83 ± 0.8 μg/106 cells; mean ±, sem, but remained considerably lower than in monolayer cultures with/without Spongostan.

Our results suggest that Spongostan is in principle suitable as a 3-D chondrocyte matrix, as demonstrated in Minusheet chambers, in particular for a culture period of 14 days. Clinically, differentiating effects on chondrocytes, simple handling and optimal formability may render Spongostan an attractive 3-D scaffold for autologous chondrocyte transplantation.


Bone & Joint Research
Vol. 2, Issue 2 | Pages 18 - 25
1 Feb 2013
Kon E Filardo G Di Matteo B Perdisa F Marcacci M

Objectives

Matrix-assisted autologous chondrocyte transplantation (MACT) has been developed and applied in the clinical practice in the last decade to overcome most of the disadvantages of the first generation procedures. The purpose of this systematic review is to document and analyse the available literature on the results of MACT in the treatment of chondral and osteochondral lesions of the knee.

Methods

All studies published in English addressing MACT procedures were identified, including those that fulfilled the following criteria: 1) level I-IV evidence, 2) measures of functional or clinical outcome, 3) outcome related to cartilage lesions of the knee cartilage.


Bone & Joint 360
Vol. 1, Issue 1 | Pages 24 - 26
1 Feb 2012


Bone & Joint 360
Vol. 1, Issue 3 | Pages 30 - 33
1 Jun 2012

The June 2012 Research Roundup360 looks at: platelet-rich plasma; ageing, bone and mesenchymal stem cells; cytokines and the herniated intervertebral disc; ulcerative colitis, Crohn’s disease and anti-inflammatories; the effect of NSAIDs on bone healing; osteoporosis of the fractured hip; herbal medicine and recovery after acute muscle injury; and ultrasound and the time to fracture union.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 990 - 991
1 Jul 2011
Mirzatolooei F

We report a variant of tibial hemimelia in a six-year-old boy that did not comply with recognised classification systems. The femur and knee were normal, but the fibula was displaced proximally and there was severe diastasis of the proximal and distal tibiofibular joints to the extent that a grossly deformed foot articulated with the fibula and there was separate soft-tissue cover for the distal tibia and fibula. Although it would have been preferable to create a one-bone leg, amputate the foot and use the fibula as the stump for a below-knee prosthesis, local circumstances resulted in the choice of a disarticulation through the knee.

This was undertaken without complications, and six months post-operatively the child was walking comfortably with a prosthesis.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 882 - 888
1 Jul 2012
van der Heijden L Gibbons CLMH Dijkstra PDS Kroep JR van Rijswijk CSP Nout RA Bradley KM Athanasou NA Hogendoorn PCW van de Sande MAJ

Giant cell tumours (GCT) of the synovium and tendon sheath can be classified into two forms: localised (giant cell tumour of the tendon sheath, or nodular tenosynovitis) and diffuse (diffuse-type giant cell tumour or pigmented villonodular synovitis). The former principally affects the small joints. It presents as a solitary slow-growing tumour with a characteristic appearance on MRI and is treated by surgical excision. There is a significant risk of multiple recurrences with aggressive diffuse disease. A multidisciplinary approach with dedicated MRI, histological assessment and planned surgery with either adjuvant radiotherapy or systemic targeted therapy is required to improve outcomes in recurrent and refractory diffuse-type GCT.

Although arthroscopic synovectomy through several portals has been advocated as an alternative to arthrotomy, there is a significant risk of inadequate excision and recurrence, particularly in the posterior compartment of the knee. For local disease partial arthroscopic synovectomy may be sufficient, at the risk of recurrence. For both local and diffuse intra-articular disease open surgery is advised for recurrent disease. Marginal excision with focal disease will suffice, not dissimilar to the treatment of GCT of tendon sheath. For recurrent and extra-articular soft-tissue disease adjuvant therapy, including intra-articular radioactive colloid or moderate-dose external beam radiotherapy, should be considered.


Bone & Joint Research
Vol. 1, Issue 7 | Pages 158 - 166
1 Jul 2012
Dean BJF Franklin SL Carr AJ

Introduction

The pathogenesis of rotator cuff disease (RCD) is complex and not fully understood. This systematic review set out to summarise the histological and molecular changes that occur throughout the spectrum of RCD.

Methods

We conducted a systematic review of the scientific literature with specific inclusion and exclusion criteria.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 896 - 902
1 Jul 2005
Hernigou P Poignard A Manicom O Mathieu G Rouard H


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1257 - 1262
1 Sep 2009
Sundar S Pendegrass CJ Oddy MJ Blunn GW

We used demineralised bone matrix (DBM) to augment re-attachment of tendon to a metal prosthesis in an in vivo ovine model of reconstruction of the extensor mechanism at the knee. We hypothesised that augmentation of the tendon-implant interface with DBM would enhance the functional and histological outcomes as compared with previously reported control reconstructions without DBM. Function was assessed at six and 12 weeks postoperatively, and histological examination was undertaken at 12 weeks.

A significant increase of 23.5% was observed in functional weight-bearing at six weeks in the DBM-augmented group compared with non-augmented controls (p = 0.004). By 12 weeks augmentation with DBM resulted in regeneration of a more direct-type enthesis, with regions of fibrocartilage, mineralised fibrocartilage and bone. In the controls the interface was predominantly indirect, with the tendon attached to the bone graft-hydroxyapatite base plate by perforating collagen fibres.