We analysed the clinical and radiological outcomes
of a new surgical technique for the treatment of heterozygote post-axial
metatarsal-type foot synpolydactyly with HOX-D13 genetic mutations
with a mean follow-up of 30.9 months (24 to 42). A total of 57 feet
in 36 patients (mean age 6.8 years (2 to 16)) were treated with
this new technique, which transfers the distal part of the duplicated
fourth metatarsal to the proximal part of the fifth metatarsal.
Clinical and radiological assessments were undertaken pre- and post-operatively
and any complications were recorded. Final outcomes were evaluated
according to the methods described by Phelps and Grogan. Forefoot width
was reduced and the lengths of the all reconstructed toes were maintained
after surgery. Union was achieved for all the metatarsal osteotomies
without any angular deformities. Outcomes at the final assessment
were excellent in 51 feet (89%) and good in six (11%). This newly
described surgical technique provides for painless, comfortable
shoe-wearing after a single, easy-to-perform operation with good
clinical, radiological and functional outcomes. Cite this article:
Conventional amputation prostheses rely on the attachment of the socket to the stump, which may lead to soft-tissue complications. Intraosseous transcutaneous amputation prostheses (ITAPs) allow direct loading of the skeleton, but their success is limited by infection resulting from breaching of the skin at the interface with the implant. Keratinocytes provide the skin’s primary barrier function, while hemidesmosomes mediate their attachment to natural ITAP analogues. Keratinocytes must attach directly to the surface of the implant. We have assessed the proliferation, morphology and attachment of keratinocytes to four titaniumalloy surfaces in order to determine the optimal topography We have shown that the proliferation, morphology and attachment of keratinocytes are affected by the surface topography of the biomaterials used to support their growth. Smoother surfaces improved adhesion. We postulate that a smooth topography at the point of epithelium-ITAP contact could increase attachment
The treatment of osteochondral lesions and osteoarthritis
remains an ongoing clinical challenge in orthopaedics. This review
examines the current research in the fields of cartilage regeneration,
osteochondral defect treatment, and biological joint resurfacing, and
reports on the results of clinical and pre-clinical studies. We
also report on novel treatment strategies and discuss their potential
promise or pitfalls. Current focus involves the use of a scaffold
providing mechanical support with the addition of chondrocytes or mesenchymal
stem cells (MSCs), or the use of cell homing to differentiate the
organism’s own endogenous cell sources into cartilage. This method
is usually performed with scaffolds that have been coated with a
chemotactic agent or with structures that support the sustained
release of growth factors or other chondroinductive agents. We also
discuss unique methods and designs for cell homing and scaffold
production, and improvements in biological joint resurfacing. There
have been a number of exciting new studies and techniques developed
that aim to repair or restore osteochondral lesions and to treat
larger defects or the entire articular surface. The concept of a
biological total joint replacement appears to have much potential. Cite this article:
The hip joint is commonly involved in multiple epiphyseal dysplasia and patients may require total hip replacement before the age of 30 years. We retrospectively reviewed nine patients (16 hips) from four families. The diagnosis of multiple epiphyseal dysplasia was based on a family history, genetic counselling, clinical features and radiological findings. The mean age at surgery was 32 years (17 to 63), with a mean follow-up of 15.9 years (5.5 to 24). Of the 16 hips, ten required revision at a mean of 12.5 years (5 to 15) consisting of complete revision of the acetabular component in three hips and isolated exchange of the liner in seven. No femoral component has loosened or required revision during the period of follow-up. With revision for any reason, the 15-year survival was only 11.4% (95% confidence interval 1.4 to 21.4). However, when considering revision of the acetabular shell in isolation the survival at ten years was 93.7% (95% confidence interval 87.7 to 99.7), reducing to 76.7% (95% confidence interval 87.7 to 98.7) at 15 and 20 years, respectively.
Stem cells are a key component of regenerative medicine strategies. Particular areas of musculoskeletal application include cartilage and bone regeneration in arthritis and trauma. There are several types of stem cell and this article will focus on the adult derived cells. The review includes current issues and future developments.
The October 2012 Research Roundup360 looks at: whether you can escape your genes; oral prophylaxis for DVT; non-responders and the internet; metal-on-metal, mice and damaged livers; sleeping on the job; cartilage contact stress in the normal human hip; and a perfect reason to subscribe to
The purpose of this study was to compare the
diagnostic accuracy for the detection of infection between the culture of
fluid obtained by sonication (SFC) and the culture of peri-implant
tissues (PITC) in patients with early and delayed implant failure,
and those with unsuspected and suspected septic failure. It was
hypothesised that SFC increases the diagnostic accuracy for infection
in delayed, but not early, implant failure, and in unsuspected septic
failure. The diagnostic accuracy for infection of all consecutive
implants (hardware or prostheses) that were removed for failure was
compared between SFC and PITC. This prospective study included 317
patients with a mean age of 62.7 years (9 to 97). The sensitivity
for detection of infection using SFC was higher than using PITC
in an overall comparison (89.9% Sonication is mainly recommended when there is implant failure
with no clear signs of infection and in patients with delayed implant
failure. In early failure, SFC is not superior to PITC for the diagnosis
of infection and, therefore, is not recommended as a routine diagnostic
test in these patients. Cite this article:
Cite this article:
Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 × 107 AdIGF-1 modified chondrocytes and the contralateral joint received 2 × 107 naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months. Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model. The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.
The gelatin-based haemostyptic compound Spongostan was tested as a three-dimensional (3D) chondrocyte matrix in an in vitro model for autologous chondrocyte transplantation using cells harvested from bovine knees. In a control experiment of monolayer cultures, the proliferation or de-differentiation of bovine chondrocytes was either not or only marginally influenced by the presence of Spongostan (0.3 mg/ml). In monolayers and 3-D Minusheet culture chambers, the cartilage-specific differentiation markers aggrecan and type-II collagen were ubiquitously present in a cell-associated fashion and in the pericellular matrix. The Minusheet cultures usually showed a markedly higher mRNA expression than monolayer cultures irrespective of whether Spongostan had been present or not during culture. Although the de-differentiation marker type-I collagen was also present, the ratio of type-I to type-II collagen or aggrecan to type-I collagen remained higher in Minusheet 3-D cultures than in monolayer cultures irrespective of whether Spongostan had been included in or excluded from the monolayer cultures. The concentration of GAG in Minusheet cultures reached its maximum after 14 days with a mean of 0.83 ± 0.8 μg/106 cells; mean ±, Our results suggest that Spongostan is in principle suitable as a 3-D chondrocyte matrix, as demonstrated in Minusheet chambers, in particular for a culture period of 14 days. Clinically, differentiating effects on chondrocytes, simple handling and optimal formability may render Spongostan an attractive 3-D scaffold for autologous chondrocyte transplantation.
Matrix-assisted autologous chondrocyte transplantation (MACT)
has been developed and applied in the clinical practice in the last
decade to overcome most of the disadvantages of the first generation
procedures. The purpose of this systematic review is to document
and analyse the available literature on the results of MACT in the
treatment of chondral and osteochondral lesions of the knee. All studies published in English addressing MACT procedures were
identified, including those that fulfilled the following criteria:
1) level I-IV evidence, 2) measures of functional or clinical outcome,
3) outcome related to cartilage lesions of the knee cartilage.Objectives
Methods
The June 2012 Research Roundup360 looks at: platelet-rich plasma; ageing, bone and mesenchymal stem cells; cytokines and the herniated intervertebral disc; ulcerative colitis, Crohn’s disease and anti-inflammatories; the effect of NSAIDs on bone healing; osteoporosis of the fractured hip; herbal medicine and recovery after acute muscle injury; and ultrasound and the time to fracture union.
We report a variant of tibial hemimelia in a six-year-old boy that did not comply with recognised classification systems. The femur and knee were normal, but the fibula was displaced proximally and there was severe diastasis of the proximal and distal tibiofibular joints to the extent that a grossly deformed foot articulated with the fibula and there was separate soft-tissue cover for the distal tibia and fibula. Although it would have been preferable to create a one-bone leg, amputate the foot and use the fibula as the stump for a below-knee prosthesis, local circumstances resulted in the choice of a disarticulation through the knee. This was undertaken without complications, and six months post-operatively the child was walking comfortably with a prosthesis.
Giant cell tumours (GCT) of the synovium and
tendon sheath can be classified into two forms: localised (giant
cell tumour of the tendon sheath, or nodular tenosynovitis) and
diffuse (diffuse-type giant cell tumour or pigmented villonodular
synovitis). The former principally affects the small joints. It
presents as a solitary slow-growing tumour with a characteristic
appearance on MRI and is treated by surgical excision. There is
a significant risk of multiple recurrences with aggressive diffuse
disease. A multidisciplinary approach with dedicated MRI, histological assessment
and planned surgery with either adjuvant radiotherapy or systemic
targeted therapy is required to improve outcomes in recurrent and
refractory diffuse-type GCT. Although arthroscopic synovectomy through several portals has
been advocated as an alternative to arthrotomy, there is a significant
risk of inadequate excision and recurrence, particularly in the
posterior compartment of the knee. For local disease partial arthroscopic
synovectomy may be sufficient, at the risk of recurrence. For both
local and diffuse intra-articular disease open surgery is advised
for recurrent disease. Marginal excision with focal disease will
suffice, not dissimilar to the treatment of GCT of tendon sheath.
For recurrent and extra-articular soft-tissue disease adjuvant therapy,
including intra-articular radioactive colloid or moderate-dose external
beam radiotherapy, should be considered.
The pathogenesis of rotator cuff disease (RCD) is complex and
not fully understood. This systematic review set out to summarise
the histological and molecular changes that occur throughout the
spectrum of RCD. We conducted a systematic review of the scientific literature
with specific inclusion and exclusion criteria.Introduction
Methods
We used demineralised bone matrix (DBM) to augment re-attachment of tendon to a metal prosthesis in an A significant increase of 23.5% was observed in functional weight-bearing at six weeks in the DBM-augmented group compared with non-augmented controls (p = 0.004). By 12 weeks augmentation with DBM resulted in regeneration of a more direct-type enthesis, with regions of fibrocartilage, mineralised fibrocartilage and bone. In the controls the interface was predominantly indirect, with the tendon attached to the bone graft-hydroxyapatite base plate by perforating collagen fibres.