Anatomical total knee arthroplasty alignment
The use of robotics in arthroplasty surgery is expanding rapidly as improvements in the technology evolve. This article examines current evidence to justify the usage of robotics, as well as the future potential in this emerging field.
Ankle replacements have improved significantly since the first reported attempt at resurfacing of the talar dome in 1962. We are now at a stage where ankle replacement offers a viable option in the treatment of end-stage ankle arthritis. As the procedure becomes more successful, it is important to reflect and review the current surgical outcomes. This allows us to guide our patients in the treatment of end-stage ankle arthritis. What is the better surgical treatment – arthrodesis or replacement?
This review examines the future of total hip arthroplasty, aiming to avoid past mistakes
This is the second of a series of reviews of registries. This review looks specifically at worldwide registry data that have been collected on knee arthroplasty, what we have learned from their reports, and what the limitations are as to what we currently know.
Mechanical alignment has been a fundamental tenet of total knee arthroplasty (TKA) since modern knee replacement surgery was developed in the 1970s. The objective of mechanical alignment was to infer the greatest biomechanical advantage to the implant to prevent early loosening and failure. Over the last 40 years a great deal of innovation in TKA technology has been focusing on how to more accurately achieve mechanical alignment. Recently the concept of mechanical alignment has been challenged, and other alignment philosophies are being explored with the intention of trying to improve patient outcomes following TKA. This article examines the evolution of the mechanical alignment concept and whether there are any viable alternatives.
Arthroscopy has become a routine surgical procedure, used as a diagnostic and therapeutic tool for the treatment of joint problems. This article discusses its origins and looks at how it is currently used.
In a global environment of rising costs and limited funds, robotic and computer-assisted orthopaedic technologies could provide the means to drive a necessary revolution in arthroplasty productivity. Robots have been used to operate on humans for 20 years, but the adoption of the technology has lagged behind that of the manufacturing industry. The use of robots in surgery should enable cost savings by reducing
The need to demonstrate probity and fair market competition has increased scrutiny of the relationships between orthopaedic surgeons and the industry that supplies them with their tools and devices. Investigations and judgements from the US Department of Justice and the introduction of the AdvaMed and Eucomed codes have defined new boundaries for interactions between these groups. This article summarises the current interplay between orthopaedic surgeons and industry, and provides recommendations for the future.
Richard Carey Smith is an orthopaedic oncology surgeon with fellowship training in the UK, USA, Australia and Canada, and has worked in Zambia, Zimbabwe and Papa New Guinea. David Wood is head of the University Department of Orthopaedics in Perth, Western Australia. He did his masters in Africa, and first experienced Papa New Guinea on his medical elective, starting a lifelong commitment to medical aid work there.