Objectives. This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in bone fracture healing. Methods. Blood samples were obtained from patients with hand fracture or intra-articular calcaneal fracture and from healthy controls (HCs). Expression of miR-214-5p was monitored by qRT-PCR at day 7, 14 and 21 post-surgery. Mouse osteoblastic MC3T3-E1 cells were transfected with antisense oligonucleotides (ASO)-miR-214-5p, collagen type IV alpha 1 (COL4A1) vector or their controls; thereafter, cell viability, apoptotic rate, and the expression of collagen type I alpha 1 (COL1A1), type II collagen (COL-II), and type X collagen (COL-X) were determined. Luciferase reporter assay, qRT-PCR, and Western blot were performed to ascertain whether COL4A1 was a target of miR-214-5p. Results. Plasma miR-214-5p was highly expressed in patients with bone fracture compared with HCs after fracture (p < 0.05 or p < 0.01). Inhibition of miR-214-5p increased the viability of MC3T3-E1 cells and the expressions of COL1A1 and COL-X, but decreased the apoptotic rate and COL-II expression (p < 0.05 or p < 0.01). COL4A1 was a target of miR-214-5p, and was negatively regulated by miR-214-5p (p < 0.05 or p < 0.01). Overexpression of COL4A1 showed a similar impact on cell viability, apoptotic rate, and COL1A1, COL-II, and COL-X expressions inhibiting miR-214-5p (p < 0.01). Conclusion. Inhibition of miR-214-5p promotes cell
This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.Aims
Methods
Objectives. The role of mechanical stress and transforming growth factor beta 1 (TGF-β1) is important in the initiation and progression of osteoarthritis (OA). However, the underlying molecular mechanisms are not clearly known. Methods. In this study, TGF-β1 from osteoclasts and knee joints were analyzed using a co-cultured cell model and an OA rat model, respectively. Five patients with a femoral neck fracture (four female and one male, mean 73.4 years (68 to 79)) were recruited between January 2015 and December 2015. Results showed that TGF-β1 was significantly upregulated in osteoclasts by cyclic loading in a time- and dose-dependent mode. The osteoclasts were subjected to cyclic loading before being co-cultured with chondrocytes for 24 hours. Results. A significant decrease in the
Second-generation metal-on-metal (MoM) articulations in total hip arthroplasty (THA) were introduced in order to reduce wear-related complications. The current study reports on the serum cobalt levels and the clinical outcome at a minimum of 20 years following THA with a MoM (Metasul) or a ceramic-on-polyethylene (CoP) bearing. The present study provides an update of a previously published prospective randomized controlled study, evaluating the serum cobalt levels of a consecutive cohort of 100 patients following THA with a MoM or a CoP articulation. A total of 31 patients were available for clinical and radiological follow-up examination. After exclusion of 11 patients because of other cobalt-containing implants, 20 patients (MoM (n = 11); CoP (n = 9)) with a mean age of 69 years (42 to 97) were analyzed. Serum cobalt levels were compared to serum cobalt levels five years out of surgery.Aims
Methods
Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology. A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability.Objectives
Methods
The aim of this study was to investigate the role of miR-126 in the development of osteoarthritis, as well as the potential molecular mechanisms involved, in order to provide a theoretical basis for osteoarthritis treatment and a novel perspective for clinical therapy. Human chondrocyte cell line CHON-001 was administrated by different doses of interleukin (IL)-1β to simulate inflammation. Cell viability, migration, apoptosis, IL-6, IL-8, and tumour necrosis factor (TNF)-α expression, as well as expression of apoptosis-related factors, were measured to assess inflammation. miR-126 expression was measured by quantitative polymerase chain reaction (qPCR). Cells were then transfected with miR-126 inhibitor to assess the effect of miR-126 on IL-1β-injured CHON-001 cells. Expression of B-cell lymphoma 2 (Bcl-2) and the activity of mitogen-activated protein kinase (MAPK) / Jun N-terminal kinase (JNK) signaling pathway were measured by Western blot to explore the underlying mechanism through which miR-126 affects IL-1β-induced inflammation.Objectives
Methods
Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co2+) during wear of MOM hip implants, but the toxic mechanism is not clear. To evaluate the protective effect of zinc ions (Zn2+), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn2+ for four hours. The cells were then exposed to different concentrations of CoNPs and Co2+ for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured.Objectives
Methods
Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect.
Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Objectives
Methods
Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in
Recent studies have shown that systemic injection of rapamycin can prevent the development of osteoarthritis (OA)-like changes in human chondrocytes and reduce the severity of experimental OA. However, the systemic injection of rapamycin leads to many side effects. The purpose of this study was to determine the effects of intra-articular injection of Torin 1, which as a specific inhibitor of mTOR which can cause induction of autophagy, is similar to rapamycin, on articular cartilage degeneration in a rabbit osteoarthritis model and to investigate the mechanism of Torin 1’s effects on experimental OA. Collagenase (type II) was injected twice into both knees of three-month-old rabbits to induce OA, combined with two intra–articular injections of Torin 1 (400 nM). Degeneration of articular cartilage was evaluated by histology using the Mankin scoring system at eight weeks after injection. Chondrocyte degeneration and autophagosomes were observed by transmission electron microscopy. Matrix metallopeptidase-13 (MMP-13) and vascular endothelial growth factor (VEGF) expression were analysed by quantitative RT-PCR (qPCR).Beclin-1 and light chain 3 (LC3) expression were examined by Western blotting.Objectives
Methods
Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics. Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair.Objectives
Methods
To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed Objectives
Methods
Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage. Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1.Objectives
Materials and Methods
Venous thromboembolism (VTE) is a major potential complication following orthopaedic surgery. Subcutaneously administered enoxaparin has been used as the benchmark to reduce the incidence of VTE. However, concerns have been raised regarding the long-term administration of enoxaparin and its possible negative effects on bone healing and bone density with an increase of the risk of osteoporotic fractures. New oral anticoagulants such as rivaroxaban have recently been introduced, however, there is a lack of information regarding how these drugs affect bone metabolism and post-operative bone healing. We measured the migration and proliferation capacity of mesenchymal stem cells (MSCs) under enoxaparin or rivaroxaban treatment for three consecutive weeks, and evaluated effects on MSC mRNA expression of markers for stress and osteogenic differentiation.Objectives
Methods
Resveratrol is a polyphenolic compound commonly found in the
skins of red grapes. Sirtuin 1 (SIRT1) is a human gene that is activated
by resveratrol and has been shown to promote longevity and boost
mitochondrial metabolism. We examined the effect of resveratrol
on normal and osteoarthritic (OA) human chondrocytes. Normal and OA chondrocytes were incubated with various concentrations
of resveratrol (1 µM, 10 µM, 25 µM and 50 µM) and cultured for 24,
48 or 72 hours or for six weeks. Cell proliferation, gene expression,
and senescence were evaluated.Background
Methods
The aim of this experimental study on New Zealand’s white rabbits
was to investigate the transplantation of autogenous growth plate
cells in order to treat the injured growth plate. They were assessed
in terms of measurements of radiological tibial varus and histological
characteristics. An experimental model of plate growth medial partial resection
of the tibia in 14 New Zealand white rabbits was created. During
this surgical procedure the plate growth cells were collected and
cultured. While the second surgery was being performed, the autologous
cultured growth plate cells were grafted at the right tibia, whereas
the left tibia was used as a control group. Objectives
Methods
In order to ensure safety of the cell-based therapy for bone
regeneration, we examined BM cells obtained from a total of 13 Sprague-Dawley (SD) green
fluorescent protein transgenic (GFP-Tg) rats were culture-expanded
in an osteogenic differentiation medium for three weeks. Osteoblast-like
cells were then locally transplanted with collagen scaffolds to
the rat model of segmental bone defect. Donor cells were also intravenously infused
to the normal Sprague-Dawley (SD) rats for systemic biodistribution.
The flow cytometric and histological analyses were performed for
cellular tracking after transplantation.Objectives
Methods
The period of post-operative treatment before surgical wounds
are completely closed remains a key window, during which one can
apply new technologies that can minimise complications. One such
technology is the use of negative pressure wound therapy to manage
and accelerate healing of the closed incisional wound (incisional
NPWT). We undertook a literature review of this emerging indication
to identify evidence within orthopaedic surgery and other surgical
disciplines. Literature that supports our current understanding
of the mechanisms of action was also reviewed in detail. Objectives
Methods