The main postoperative complications in fixation of ulna shaft fractures are non-union and implant irritation using currently recommended 3.5-mm locking compression plates. An alternative approach using a combination of two smaller plates in orthogonal configuration has been proposed. The aim of this study was to compare the biomechanical properties of a single 3.5-mm locking compression plate versus double plating using one 2.5-mm and one 2.0-mm mandible plate in a human ulna shaft fracture model. Eight pairs human ulnar specimens with a standardized 10-mm fracture gap were pairwise assigned for instrumentation with either a single 3.5-mm plate placed posteriorly, or for double plating using a 2.5-mm and a 2.0-mm mandible plate placed posteriorly under the flexor muscles and laterally under the extensor muscles. All constructs were initially non-destructively biomechanically tested in axial compression, torsion, and bending, which was followed by cyclic torsional loading to failure. Interfragmentary movements were monitored by means of optical motion tracking.Introduction
Method
Tendon ruptures are a common injury and often require surgical intervention to heal. A refixation is commonly performed with high-strength suture material. However, slipping of the thread is unavoidable even at 7 knots potentially leading to reduced compression of the sutured tendon at its footprint. This study aimed to evaluate the biomechanical properties and effectiveness of a novel dynamic high-strength suture, featuring self-tightening properties. Distal biceps tendon rupture tenotomies and subsequent repairs were performed in sixteen paired human forearms using either conventional or the novel dynamic high-strength sutures in a paired design. Each tendon repair utilized an intramedullary biceps button for radial fixation. Biomechanical testing aimed to simulate an aggressive postoperative rehabilitation protocol stressing the repaired constructs. For that purpose, each specimen underwent in nine sequential days a daily mobilization over 300 cycles under 0-50 N loading, followed by a final destructive test.Introduction
Method
Distal triceps tendon rupture is related to high complication rates with up to 25% failures. Elbow stiffness is another severe complication, as the traditional approach considers prolonged immobilization to ensure tendon healing. Recently a dynamic high-strength suture tape was designed, implementing a silicone-infused core for braid shortening and preventing repair elongation during mobilization, thus maintaining constant tissue approximation. The aim of this study was to biomechanically compare the novel dynamic tape versus a conventional high-strength suture tape in a human cadaveric distal triceps tendon rupture repair model. Sixteen paired arms from eight donors were used. Distal triceps tendon rupture tenotomies and repairs were performed via the crossed transosseous locking Krackow stitch technique for anatomic footprint repair using either conventional suture tape (ST) or novel dynamic tape (DT). A postoperative protocol mimicking intense early rehabilitation was simulated, by a 9-day, 300-cycle daily mobilization under 120N pulling force followed by a final destructive test.Introduction
Method
Transosseous flexion-distraction injuries of the spine typically require surgical intervention by stabilizing the fractured vertebra during healing with a pedicle-screw-rod constructs. As healing is taking place the load shifts from the implant back to the spine. Monitoring the load-induced deflection of the rods over time would allow quantifiable postoperative assessment of healing progress without the need for radiation exposure or frequent hospital visits. This approach, previously demonstrated to be effective in assessing fracture healing in long bones and monitoring posterolateral spinal fusion in sheep, is now being investigated for its potential in evaluating lumbar vertebra transosseous fracture healing. Six human cadaveric spines were instrumented with pedicle-screws and rods spanning L3 vertebra. The spine was loaded in Flexion-Extension (FE), Lateral-Bending (LB) and Axial-Rotation (AR) with an intact L3 vertebra (representing a healed vertebra) and after transosseous disruption, creating an AO type B1 fracture. The implant load on the rod was measured using an implantable strain sensor (Monitor) on one rod and on the contralateral rod by a strain gauge to validate the Monitor's measurements. In parallel the range of motion (ROM) was assessed.Introduction
Method
In daily clinical practice, progression of spinal fusion is typically monitored during clinical follow-up using conventional radiography and Computed Tomography scans. However, recent research has demonstrated the potential of implant load monitoring to assess posterolateral spinal fusion in an in-vivo sheep model. The question arises to whether such a strain sensing system could be used to monitor bone fusion following lumbar interbody fusion surgery, where the intervertebral space is supported by a cage. Therefore, the aim of this study was to test human cadaveric lumbar spines in two states: after a transforaminal lumbar interbody fusion (TLIF) procedure combined with a pedicle-screw-rod-construct (PSR) and subsequently after simulating bone fusion. The study hypothesized that the load on the posterior instrumentation decreases as the segment stiffens due to simulated fusion. A TLIF procedure with PSR was performed on eight human cadaveric spines at level L4-L5. Strain sensors were attached bilaterally to the rods to derive implant load changes during unconstrained flexion-extension (FE), lateral bending (LB) and axial rotation (AR) loads up to ±7.5Nm. The specimens were retested after simulating bone fusion between vertebrae L4-L5. In addition, the range of motion (ROM) was measured during each loading mode.Introduction
Method
Tibiocalcaneal arthrodesis with a retrograde intramedullary nail is an established procedure considered as a salvage in case of severe arthritis and deformity of the ankle and subtalar joints [1]. Recently, a significant development in hindfoot arthrodesis with plates has been indicated. Therefore, the aim of this study was to compare a plate specifically developed for arthrodesis of the hindfoot with an already established nail system [2] Sixteen paired human cadaveric lower legs with removed forefoot and cut at mid-tibia were assigned to two groups for tibiocalcaneal arthrodesis using either a hindfoot arthrodesis nail or an arthrodesis plate. The specimens were tested under progressively increasing cyclic loading in dorsiflexion and plantar flexion to failure, with monitoring via motion tracking. Initial stiffness was calculated together with range of motion in dorsiflexion and plantar flexion after 200, 400, 600, 800, and 1000 cycles. Cycles to failure were evaluated based on 5° dorsiflexion failure criterionIntroduction
Method
Recently, a new dynamic high-strength round suture dynacord (DC) was introduced featuring a salt-infused silicone core attracting water in a fluid environment to preserve tissue approximation which is also available in tape form (DT). Study aims: (1) assess the influence of securing knot number on knot security of two double-stranded knot configurations (Cow-hitch and Nice-knot) tied with either dynamic (DC and DT) or conventional round sutures fiberwire (FW) and conventional suture tapes (ST), (2) compare the ultimate force and knot slippage of (a) Cow-hitch and Nice-knot and (b) DC and DT versus FW and FT at their minimal number of needed securing knots. Seven specimens of each FW, ST, DC and DT were considered for tying with Cow-hitch or Nice-knots. The base of these Cow-hitch and Nice-knots were secured with surgeons’ knots using 1-3 alternating throws. Tensile tests were conducted under physiologic conditions to evaluate knot slippage, ultimate force at rupture, and minimum number of knots ensuring 100% knot securityIntroduction
Method
Intramedullary nails (IMNs) are the current gold standard for treatment of long bone diaphyseal and selected metaphyseal fractures. Their design has undergone many revisions to improve fixation techniques, conform to the bone shape with appropriate anatomic fit, reduce operative time and radiation exposure, and extend the indication of the same implant for treatment of different fracture types with minimal soft tissue irritation. The IMNs are made or either titanium alloy or stainless steel and work as load-sharing internal splints along the long bone, usually accommodating locking elements – screws and blades, often featuring angular stability and offering different configurations for multiplanar fixation – to secure secondary fracture healing with callus formation in a relative-stability environment. Bone cement augmentation of the locking elements can modulate the construct stiffness, increase the surface area at the bone-implant interface, and prevent cut-through of the locking elements. The functional requirements of IMNs are related to maintaining fracture reduction in terms of length, alignment and rotation to enhance fracture healing. The load distribution during patient's activities is along the entire bone-nail interface, with nail length and anatomic fit being important factors to avoid stress risers.
Recently, a new generation of superior clavicle plates was developed featuring the variable-angle locking technology for enhanced screw positioning and optimized plate-to-bone fit design. On the other hand, mini-fragment plates used in dual plating mode have demonstrated promising clinical results. However, these two bone-implant constructs have not been investigated biomechanically in a human cadaveric model. Therefore, the aim of the current study was to compare the biomechanical competence of single superior plating using the new generation plate versus dual plating with low-profile mini-fragment plates. Sixteen paired human cadaveric clavicles were assigned pairwise to two groups for instrumentation with either a 2.7 mm Variable Angle Locking Compression Plate placed superiorly (Group 1), or with one 2.5 mm anterior plate combined with one 2.0 mm superior matrix mandible plate (Group 2). An unstable clavicle shaft fracture AO/OTA15.2C was simulated by means of a 5 mm osteotomy gap. All specimens were cyclically tested to failure under craniocaudal cantilever bending, superimposed with bidirectional torsion around the shaft axis and monitored via motion tracking. Initial stiffness was significantly higher in Group 2 (9.28±4.40 N/mm) compared to Group 1 (3.68±1.08 N/mm), p=0.003. The amplitudes of interfragmentary motions in terms of craniocaudal and shear displacement, fracture gap opening and torsion were significantly bigger over the course of 12500 cycles in Group 1 compared to Group 2; p≤0.038. Cycles to 2 mm shear displacement were significantly lower in Group 1 (22792±4346) compared to Group 2 (27437±1877), p=0.047. From a biomechanical perspective, low-profile 2.5/2.0 dual plates demonstrated significantly higher initial stiffness, less interfragmentary movements, and higher resistance to failure compared to 2.7 single superior variable-angle locking plates and can therefore be considered as a useful alternative for diaphyseal clavicle fracture fixation especially in unstable fracture configurations.
In absence of available quantitative measures, the assessment of fracture healing based on clinical examination and X-rays remains a subjective matter. Lacking reliable information on the state of healing, rehabilitation is hardly individualized and mostly follows non evidence-based protocols building on common guidelines and personal experience. Measurement of fracture stiffness has been demonstrated as a valid outcome measure for the maturity of the repair tissue but so far has not found its way to clinical application outside the research space. However, with the recent technological advancements and trends towards digital health care, this seems about to change with new generations of instrumented implants – often unfortunately termed “smart implants” – being developed as medical devices. The AO Fracture Monitor is a novel, active, implantable sensor system designed to provide an objective measure for the assessment of fracture healing progression (1). It consists of an implantable sensor that is attached to conventional locking plates and continuously measures implant load during physiological weight bearing. Data is recorded and processed in real-time on the implant, from where it is wirelessly transmitted to a cloud application via the patient's smartphone. Thus, the system allows for timely, remote and X-ray free provision of feedback upon the mechanical competence of the repair tissue to support therapeutic decision making and individualized aftercare. The device has been developed according to medical device standards and underwent extensive verification and validation, including an in-vivo study in an ovine tibial osteotomy model, that confirmed the device's capability to depict the course of fracture healing as well as its long-term technical performance. Currently a multi-center clinical investigation is underway to demonstrate clinical safety of the novel implant system. Rendering the progression of bone fracture healing assessable, the AO Fracture Monitor carries potential to enhance today's postoperative care of fracture patients.
Osteosynthesis aims to maintain fracture reduction until bone healing occurs, which is not achieved in case of mechanical fixation failure. One form of failure is plastic plate bending due to overloading, occurring in up to 17% of midshaft fracture cases and often necessitating reoperation. This study aimed to replicate in-vivo conditions in a cadaveric experiment and to validate a finite element (FE) simulation to predict plastic plate bending. Six cadaveric bones were used to replicate an established ovine tibial osteotomy model with locking plates in-vitro with two implant materials (titanium, steel) and three fracture gap sizes (30, 60, 80 mm). The constructs were tested monotonically until plastic plate deformation under axial compression. Specimen-specific FE models were created from CT images. Implant material properties were determined using uniaxial tensile testing of dog bone shaped samples. The experimental tests were replicated in the simulations. Stiffness, yield, and maximum loads were compared between the experiment and FE models. Implant material properties (Young's modulus and yield stress) for steel and titanium were 184 GPa and 875 MPa, and 105 GPa and 761 MPa, respectively. Yield and maximum loads of constructs ranged between 469–491 N and 652–683 N, and 759–995 N and 1252–1600 N for steel and titanium fixations, respectively. FE models accurately and quantitatively correctly predicted experimental results for stiffness (R2=0.96), yield (R2=0.97), and ultimate load (R2=0.97). FE simulations accurately predicted plastic plate bending in osteosynthesis constructs. Construct behavior was predominantly driven by the implant itself, highlighting the importance of modelling correct material properties of metal. The validated FE models could predict subject-specific load bearing capacity of osteosyntheses
Freehand distal interlocking of intramedullary nails remains a challenging task. If not performed correctly it can be a time consuming and radiation expensive procedure. Recently, the AO Research Institute developed a new training device for Digitally Enhanced Hands-on Surgical Training (DEHST) that features practical skills training augmented with digital technologies, potentially improving surgical skills needed for distal interlocking. Aim of the study: To evaluate weather training with DEHST enhances the performance of novices without surgical experience in free-hand distal nail interlocking compared to a non-trained group of novices. 20 novices were assigned in two groups and performed distal interlocking of a tibia nail in an artificial bone model. Group 1: DEHST trained novices (virtual locking of five nail holes during one hour of training). Group 2: untrained novices without DEHST training. Time, number of x-rays, nail hole roundness, critical events and success rates were compared between the groups. Time to complete the task (sec.) and x-ray exposure (µGcm2) were significantly lower in Group1 414.7 (290–615) and 17.8 (9.8–26.4) compared to Group2 623.4 (339–1215) and 32.6 (16.1–55.3); p=0.041 and 0.003. Perfect circle roundness (%) was 95.0 (91.1–98.0) in Group 1 and 80.8 (70.1–88.9) in Group 2; p<0.001. In Group 1 90% of the participants achieved successful completion of the task (hit the nail with the drill), whereas only 60% of the participants in group 2 achieved this; p=0.121. Training with DEHST significantly enhances the performance of novices without surgical experience in distal interlocking of intramedullary nails. Besides radiation exposure and operation time the com-plication rate during the operation can be significantly reduced.
Stand-alone anterior lumbar interbody fusion (ALIF) provides the opportunity to avoid supplemental posterior fixation. This may reduce morbidity and complication rate, which is of special interest in patients with reduced bone mineral density (BMD). This study aims to assess immediate biomechanical stability and radiographic outcome of a stand-alone ALIF device with integrated screws in specimens of low BMD. Eight human cadaveric spines (L4-sacrum) were instrumented with SynFix-LR™ (DePuy Synthes) at L5/S1. Quantitative computed tomography was used to measure BMD of L5 in AMIRA. Threshold values proposed by the American Society of Radiology 80 and 120 mg CaHa/mL were used to differentiate between Osteoporosis, Osteopenia, and normal BMD. Segmental lordosis, anterior and posterior disc height were analysed on pre- and postoperative radiographs (Fig 1). Specimens were tested intact and following instrumentation using a flexibility protocol consisting of three loading cycles to ±7.5 Nm in flexion-extension, lateral bending, and axial rotation. The ranges of motion (ROM) of the index level were assessed using an optoelectronic system. BMD ranged 58–181mg CaHA/mL. Comparison of pre- and postoperative radiographs revealed significant increase of L5/S1 segmental lordosis (mean 14.6°, SD 5.1, p < 0.001) and anterior disc height (mean 5.8mm, SD 1.8, p < 0.001), but not posterior disc height. ROM of 6 specimens was reduced compared to the intact state. Two specimens showed destructive failure in extension. Mean decrease was most distinct in axial rotation up to 83% followed by flexion-extension. ALIF device with integrated screws at L5/S1 significantly increases segmental lordosis and anterior disc height without correlation to BMD. Primary stability in the immediate postoperative situation is mostly warranted in axial rotation. The risk of failure might be increased in extension for some patients with reduced lumbar BMD, therefore additional posterior stabilization could be considered. For any figures or tables, please contact the authors directly.
Treatment of both simple and complex patella fractures is a challenging clinical problem. The aim of this study was to investigate the biomechanical performance of recently developed lateral rim variable angle locking plates versus tension band wiring used for fixation of simple and complex patella fractures. Twelve pairs of human anatomical knees were used to simulate either two-part transverse simple AO/OTA 34C1 or five-part complex AO/OTA 34C3 patella fractures by means of osteotomies, with each fracture model created in six pairs. The complex fracture pattern was characterized by a medial and a lateral proximal fragment, together with an inferomedial, an inferolateral, and an inferior fragment mimicking comminution around the distal patellar pole. The specimens with simple fractures were pairwise assigned for fixation with either tension band wiring through two parallel cannulated screws, or a lateral rim variable angle locking plate. The knees with complex fractures were pairwise treated with either tension band wiring through two parallel cannulated screws plus circumferential cerclage wiring, or a lateral rim variable angle locking plate. Each specimen was tested over 5000 cycles by pulling on the quadriceps tendon, simulating active knee extension and passive knee flexion within the range of 90° flexion to full knee extension. Interfragmentary movements were captured via motion tracking. For both fracture types, the longitudinal and shear articular displacements measured between the proximal and distal fragments at the central patella aspect between 1000 and 5000 cycles, together with the relative rotations of these fragments around the mediolateral axis were all significantly smaller following the lateral rim variable angle locked plating compared with tension band wiring, p<0.01. Lateral rim locked plating of both simple and complex patella fractures provides superior construct stability versus tension band wiring under dynamic loading.
Secondary bone healing is impacted by the extent of interfragmentary motion at the fracture site. It provides mechanical stimulus that is required for the formation of fracture callus. In clinical settings, interfragmentary motion is induced by physiological loading of the broken bone – for example, by weight-bearing. However, there is no consensus about when mechanical stimuli should be applied to achieve fast and robust healing response. Therefore, this study aims to identify the effect of the immediate and delayed application of mechanical stimuli on secondary bone healing. A partial tibial osteotomy was created in twelve Swiss White Alpine sheep and stabilized using an active external fixator that induced well-controlled interfragmentary motion in form of a strain gradient. Animals were randomly assigned into two groups which mimicked early (immediate group) and late (delayed group) weight-bearing. The immediate group received daily stimulation (1000 cycles/day) from the first day post-op and the delayed group from the 22nd day post-op. Healing progression was evaluated by measurements of the stiffness of the repair tissue during mechanical stimulation and by quantifying callus area on weekly radiographs. At the end of the five weeks period, callus volume was measured on the post-mortem high-resolution computer tomography (HRCT) scan. Stiffness of the repair tissue (p<0.05) and callus progression (p<0.01) on weekly radiographs were significantly larger for the immediate group compared to the delayed group. The callus volume measured on the HRCT was nearly 3.2 times larger for the immediate group than for the delayed group (p<0.01). This study demonstrates that the absence of immediate mechanical stimuli delays callus formation, and that mechanical stimulation already applied in the early post-op phase promotes bone healing.
The number of seven needed knots to provide secure hold of high strength sutures was previously reported. New technologies like tape sutures and sutures with a salt infused silicon core have been developed, potentially reducing the number of needed knots. Study aims: To investigate the influence of (1) throw number and (2) different ambient conditions on knot security in two different high-strength sutures, and (3) to compare their biomechanical competence. Two sutures (SutureTape (FT); n=56 and DynaTape (DT); n=56) were assigned for knot tying. Specimens were exposed to different media during tying, namely air, saline solution, and fat. A monotonic tensile ramp was applied. For each suture and ambient condition, seven specimens with 3 to 7 throws each were tested (n=7), evaluating their slippage and ultimate force to failure. The minimum number of throws preventing suture unraveling was determined in each suture and condition. For each suture type and condition failure occurred via rupturing in all specimens for the following minimum number of throws: FT: dry–6, wet–6, fatty-wet–6; DT: dry–6; wet–4; fatty-wet–5. No significant differences were found comparing ultimate load to rupture of the two groups with minimum number of needed throws in each media. (FT dry-6 vs. DT dry-6; p<0.07); (FT wet-6 vs. DT wet-4; p<0.20); (FT fat-6 vs. DT fat-5; p<0.58). Knot slippage of DT was significantly higher in wet and fatty conditions compared to ST p<0.001 and p<0.004. In fatty-wet conditions DT requires 5 throws to achieve a secure knot. In wet conditions this number can be reduced to 4 throws. FT needs 6 throws to provide a stable knot in all conditions. The biomechanical competence of both sutures in terms of knot slippage and peak force are comparable.
The quest for optimal treatment of acute distal tibiofibular syndesmotic disruptions is still in progress. Using suture-button repair devices is one of the dynamic stabilization options, however, they may not be always appropriate for stabilization of length-unstable syndesmotic injuries. Recently, a novel screw-suture repair system was developed to address such issues. The aim of this study was to investigate the performance of the novel screw-suture repair system in comparison to a suture-button stabilization of unstable syndesmotic injuries. Eight pairs of human cadaveric lower legs were CT scanned under 700 N single-leg axial loading in five foot positions – neutral, 15° external/internal rotation and 20° dorsi-/plantarflexion – in 3 different states: (1) pre-injured (intact); (2) injured, characterized by complete syndesmosis and deltoid ligaments cuts simulating pronation-eversion injury types III and IV as well as supination-eversion injury type IV according to Lauge-Hansen; (3) reconstructed, using a screw-suture (FIBULINK, Group 1) or a suture-button (TightRope, Group 2) implants for syndesmotic stabilization, placed 20 mm proximal to the tibia plafond. Following, all specimens were: (1) biomechanically tested over 5000 cycles under combined 1400 N axial and ±15° torsional loading; (2) rescanned. Clear space (diastasis), anterior tibiofibular distance, talar dome angle and fibular shortening were measured radiologically from CT scans. Anteroposterior (AP), axial, mediolateral and torsional movements at the distal tibiofibular joint level were evaluated biomechanically via motion tracking. In each group clear space increased significantly after injury (p ≤ 0.004) and became significantly smaller in reconstructed compared with both pre-injured and injured states (p ≤ 0.041). In addition, after reconstruction it was significantly smaller in Group 1 compared to Group 2 (p < 0.001). AP and axial movements were significantly smaller in Group 1 compared with Group 2 (p < 0.001). No further significant differences were identified/detected between the groups (p ≥ 0.113). Although both implant systems demonstrate ability for stabilization of unstable syndesmotic injuries, the screw-suture reconstruction provides better anteroposterior translation and axial stability of the tibiofibular joint and maintains it over time under dynamic loading. Therefore, it could be considered as a valid option for treatment of syndesmotic disruptions.
The aim of this study was to investigate the effect of different loading scenarios and foot positions on the configuration of the distal tibiofibular joint (DTFJ). Fourteen paired human cadaveric lower legs were mounted in a loading frame. Computed tomography scans were obtained in unloaded state (75 N) and single-leg loaded stand (700 N) of each specimen in five foot positions: neutral, 15° external rotation, 15° internal rotation, 20° dorsiflexion, and 20° plantarflexion. An automated three-dimensional measurement protocol was used to assess clear space (diastasis), translational angle (rotation), and vertical offset (fibular shortening) in each foot position and loading condition. Foot positions had a significant effect on the configuration of DTFJ. Largest effects were related to clear space increase by 0.46 mm (SD 0.21 mm) in loaded dorsal flexion and translation angle of 2.36° (SD 1.03°) in loaded external rotation, both versus loaded neutral position. Loading had no effect on clear space and vertical offset in any position. Translation angle was significantly influenced under loading by −0.81° (SD 0.69°) in internal rotation only. Foot positioning noticeably influences the measurement when evaluating the configuration of DTFJ. The influence of the weightbearing seems to have no relevant effect on native ankles in neutral position.
Cartilage diseases have a significant impact on the patient's quality of life and are a heavy burden for the healthcare system. Better understanding, early detection and proper follow-up could improve quality of life and reduce healthcare related costs. Therefore, the aim of this study was to evaluate if difference between osteoarthritic (OA) and non-osteoarthritic (non-OA) knees can be detected quantitatively on cartilage and subchondral bone levels with advanced but clinical available imaging techniques. Two OA (mean age = 88.3 years) and three non-OA (mean age = 51.0 years) human cadaveric knees were scanned two times. A high-resolution peripheral quantitative computed tomography (HR-pQCT) scan (XtremeCT, Scanco Medical AG, Switzerland) was performed to quantify the bone microstructure. A contrast-enhanced clinical CT scan (GE Revolution Evo, GE Medical Systems AG, Switzerland) was acquired with the contrast agent Visipaque 320 (60 ml) to measure cartilage. Subregions dividing the condyle in four parts were identified semi-automatically and the images were segmented using adaptive thresholding. Microstructural parameters of subchondral bone and cartilage thickness were quantified. The overall cartilage thickness was reduced by 0.27 mm between the OA and non-OA knees and the subchondral bone quality decreased accordingly (reduction of 33.52 % in BV/TV in the layer from 3 to 8 mm below the cartilage) for the femoral medial condyle. The largest differences were observed at the medial part of the femoral medial condyle both for cartilage and for bone parameters, corresponding to clinical observations. Subchondral bone microstructural parameters and cartilage thickness were quantified using in vivo available imaging and apparent differences between the OA and non-OA knees were detected. Those results may improve OA follow-up and diagnosis and could lead to a better understanding of OA. However, further in vivo studies are needed to validate these methods in clinical practice.
Reorientating pelvic osteotomies are performed to improve femoral head coverage and secondary degenerative arthritis. A rectangular triple pelvic innominate osteotomy (3PIO) is performed in symptomatic cases. However, deciding optimal screw fixation type to avoid complications is questionable. Therefore, this study aimed to investigate the biomechanical behavior of two different acetabular screw configurations used for rectangular 3PIO osteosynthesis. It was hypothesized that bi-directional screw fixation would be biomechanically superior to mono-axial screw fixation technique. A rectangular 3PIO was performed in twelve right-side artificial Hemi-pelvises. Group 1 (G1) had two axial and one transversal screw in a bi-directional orientation. Group 2 (G2) had three screws in the axial direction through the iliac crest. Acetabular fragment was reoriented to 10.5° inclination in coronal plane, and 10.0° increased anteversion along axial plane. Specimens were biomechanically tested until failure under progressively increasing cyclic loading at 2Hz, starting at 50N peak compression, increasing 0.05N/cycle. Stiffness was calculated from machine data. Acetabular anteversion, inclination and medialization were evaluated from motion tracking data from 250-2500 at 250 cycle increments. Failure cycles and load were evaluated for 5° change in anteversion. Stiffness was higher in G1 (56.46±19.45N/mm) versus G2 (39.02±10.93N/mm) but not significantly, p=0.31. Acetabular fragment anteversion, inclination and medialization increased significantly each group (p≤0.02) and remained non-significantly different between the groups (p≥0.69). Cycles to failure and failure load were not significantly different between G1 (4406±882, 270.30±44.10N) and G2 (5059±682, 302.95±34.10N), p=0.78. From a biomechanical perspective, the present study demonstrates that a bi-directional screw orientation does not necessarily advantageous versus mono-axial alignment when the latter has all three screws evenly distributed over the osteotomy geometry. Moreover, the 3PIO fixation is susceptible to changes in anteversion, inclination and medialization of the acetabular fragment until the bone is healed. Therefore, cautious rehabilitation with partial weight-bearing is recommended.