Objectives. There remains conflicting evidence regarding cortical bone strength
following bisphosphonate therapy. As part of a study to assess the
effects of bisphosphonate treatment on the healing of rat tibial
fractures, the mechanical properties and radiological density of
the uninjured contralateral tibia was assessed. Methods. Skeletally mature aged rats were used. A total of 14 rats received
1µg/kg ibandronate (iban) daily and 17 rats received 1 ml 0.9% sodium
chloride (control) daily. Stress at failure and
Introduction. In vivo, UHMWPE bearing surfaces are subject to wear and oxidation that can lead to bearing fatigue or fracture. A prior study in our laboratory of early antioxidant (AO) polyethylene retrievals, compared to gamma-sterilized and highly cross-linked (HXL) retrievals, showed them to be more effective at preventing in vivo oxidation. The current analysis expands that early study, addressing the effect of:. manufacturing-variables on as-manufactured UHMWPE;. in vivo time on these initial properties;. identifying important factors in selecting UHMWPE for the hip or knee. Methods. After our prior report, our IRB-approved retrieval laboratory received an additional 96 consecutive AO-retrievals (19 hips, 77 knees: in vivo time 0–6.7 years) of three currently-marketed AO-polyethylenes. These retrievals represented two different antioxidants (Vitamin E and Covernox) and two different delivery methods: blending-prior-to and diffusing-after irradiation cross-linking. Consecutive HXL acetabular and tibial inserts, received at retrieval, with in vivo time of 0–6.7 years (260 remelted, 170 annealed) were used for comparison with AO-retrievals. All retrievals were analyzed for oxidation and trans-vinylene index (TVI) using a Thermo-Scientific iN10 FTIR microscope. Mechanical properties were evaluated for 35 tibial inserts by uniaxial tensile testing using an INSTRON load frame. Cross-link density (n=289) was measured using a previously published gravimetric gel swell technique. Oxidation was reported as maximum ketone oxidation index (KOI) measured for each bearing. TVI was reported as the average of all scans for each material. Cross-link density and mechanical properties were evaluated as a function of both TVI and oxidation. Results. Minimal increase in oxidation was seen in these AO-retrievals, out to almost 7 years in vivo. In contrast, HXL-retrievals showed increasing KOI with time in vivo (annealed-HXL = 0.127/year, remelted-HXL = 0.036/year, p<0.001). HXL oxidation rate was higher in knees (0.091/year) than in hips (0.048/year), p<0.001. Cross-link density (XLD) correlated positively with TVI for both HXL (Pearson's correlation=0.591, p<0.001) and AO (Pearson's correlation=0.598, p<0.001) retrievals. AO-materials had higher TVI for the same or similar XLD than did HXL polyethylene. XLD correlated negatively with KOI for HXL retrievals (Pearson's correlation=−0.447, p<0.001). Mechanical properties varied by material across all materials evaluated, with tensile
Introduction. Bone fracture
Introduction. The in vivo evolution of surface material properties is important in determining the longevity of bioceramics. Fracture
Introduction. The optimum UHMWPE orthopaedic implant bearing surface must balance wear, oxidation and fatigue resistance. Antioxidant polyethylene addresses free radicals, resulting from irradiation used in cross-linking, that could oxidize and potentially lead to fatigue damage under cycles of in vivo use. Assessing the effectiveness of antioxidant (AO) polyethylene compared to conventional gamma-sterilized or remelted highly cross-linked (HXL) polyethylene is necessary to set realistic expectations of the service lifetime of AO polyethylene in the knee. This study evaluates what short-term antioxidant UHMWPE retrievals can reveal about: (1) oxidation-resistance, and (2) fatigue-resistance of these new materials. Methods. An IRB-approved retrieval laboratory received 25 AO polyethylene tibial insert retrievals from three manufacturers with in vivo time of 0–3 years. These were compared with 20 conventional gamma-inert sterilized and 30 HXL (65-kGray, remelted) tibial inserts of the same in vivo duration range. The retrievals were. (1) analyzed for oxidation and trans-vinylene index (TVI) using an FTIR microscope, and (2) inserts of sufficient size and thickness were evaluated for mechanical properties by uniaxial tensile testing using an INSTRON load frame. Oxidation was reported as maximum oxidation measured in the scan from the articular surface to the backside of each bearing. TVI was reported as the average of all scans for each material. Average ultimate tensile strength (UTS), ultimate elongation (UE), and
Introduction. Radiation cross-linked UHMWPE is preferred in total hip replacements due to its wear resistance [1]. In total knees, where stresses are higher, there is concern of fatigue damage [2]. Antioxidant stabilization of radiation cross-linked UHMWPE by blending vitamin E into the polymer powder was recently introduced [3]. Vitamin E greatly hinders radiation cross-linking in UHMWPE [4]. In contrast peroxide cross-linking of UHMWPE is less sensitive to vitamin E concentration [5]. In addition, exposing UHMWPE to around 300°C, increases its
INTRODUCTION. Ceramics are excellently suited for applications in arthroplasty, mainly total hip, knee and shoulder replacement. As the most prominent representative of this demanding type of material, BIOLOX. ®. delta is widely used and very successful in the market for more than 10 years. The ability of zirconia phase transformation (t-ZrO. 2. →m-ZrO. 2. ) in zirconia-platelet toughened alumina (ZPTA) ceramics is an indispensable prerequisite for their excellent mechanical properties. The degree of stabilization of the zirconia tetragonal phase at body temperature is essential for the desired toughening mechanism. Y. 2. O. 3. is the most widely used t-ZrO. 2. chemical stabilizer; also microstructure and grain size contribute to t-ZrO. 2. phase stabilization. Stabilization must be achieved such that no material degradation will occur in body environment, i.e. in aqueous liquid (synovia), which is known to potentially trigger phase transformation at the surface of ceramic components. In this study, it is shown how phase stabilization in BIOLOX. ®. delta as a reference material is excellently balanced by means of optimal mechanical performance and environmental stability. OBJECTIVES. To assess the influence of t-ZrO. 2. chemical stabilization on ZPTA properties, in terms of fracture
Today, hip prostheses are validated with Standards for fatigue testing: The Standard ISO 7206-4 requires to test 6 components at 230daN during 5 × 10. 6. cycles without crack. For the neck region of stemmed femoral components, the Standard ISO 7206-6 requires 6 tests at 534daN during 10 × 10. 6. cycles without crack. But these tests don't provide provide any indication on reliability level for an implantation in population. At the same time, the number of hip prosthesis implantation is growing, patients are implanted younger and younger and they want to be able to maintain a “normal” life. This way the average “loading spectrum” is getting
Introduction:. Concerns remain regarding both the
Patients undergoing revision surgery of a primary total hip arthroplasty often exhibit bone loss and poor bone quality, which make achieving stable fixation and osseointegration challenging. Implant components coated in porous metals are used clinically to improve mechanical stability and encourage bone in-growth. We compared ultra-porous titanium coatings, known commercially as Gription and Porocoat, in an intra-articular model by press-fitting coated cylindrical implants into ovine femoral condyles and evaluating bone in-growth and fixation strength 4, 8 and 16 weeks post-operatively. Bilateral surgery using a mini-arthrotomy approach was performed on twenty-four Dorset-Rideau Arcott rams (3.4 ± 0.8 years old, 84.8 ± 9.3 kg) with Institutional Animal Care Committee approval in accordance with the Canadian Council on Animal Care. Cylindrical implants, 6.2 mm in diameter by 10 mm in length with surface radius of curvature of 35 mm, were composed of a titanium substrate coated in either Porocoat or Gription and press-fit into 6 mm diameter recipient holes in the weight-bearing regions of the medial (MFC) and lateral (LFC) femoral condyles. Each sheep received 4 implants; two Gription in one stifle (knee) and two Porocoat in the contralateral joint. Biomechanical push-out tests (Instron ElectroPuls E10000) were performed on LFCs, where implants were pushed out relative to the condyle at a rate of 2 mm/min. Force and displacement data were used to calculate force and displacement at failure, stiffness, energy, stress, strain, elastic modulus, and
The development of more wear resistant biomaterials and better locking mechanisms for the polyethylene into the tibial base has significantly reduced polyethylene wear as a reason for revision TKA. Aseptic loosening is now the primary cause for revision TKA. Loosening can be caused by multifactorial operative issues: 1] patient selection, 2] implant alignment, 3] cementing technique. Furthermore, aseptic loosening occurs at a consistent rate over time. Increased cement penetration is important to counter bone resorption. Increasing penetration also improves cement mantle
The development of more wear resistant biomaterials and better locking mechanisms for the polyethylene into the tibial base has significantly reduced polyethylene wear as a reason for revision TKA. Aseptic loosening is now the primary cause for revision TKA. Loosening can be caused by multifactorial operative issues: 1] patient selection, 2] implant alignment, 3] cementing technique. Furthermore, aseptic loosening occurs at a consistent rate over time. Increased cement penetration is important to counter bone resorption. Increasing penetration also improves cement mantle
Introduction. While advances in joint-replacement technology have made total ankle arthroplasty a viable treatment for end-stage arthritis, revision rates for ankle replacements are higher than in hip or knee replacements [1]. The questions asked in this study were (1) what retrieved ankle devices demonstrate about ankle arthroplasty failures, and (2) how do these failures compare to those seen in the hip and the knee?. Materials and Methods. An IRB-approved retrieval laboratory received retrieved polyethylene inserts and surgeon-supplied reason for revision from 70 total-ankles (7 designs, including five currently-marketed designs) from 2002 to the present. All retrievals were rated for clinical damage. Polyethylene inserts received six months or less after retrieval (n=45) were analyzed for oxidation using Fourier Transform Infrared (FTIR) spectroscopy, reported as maximum ketone oxidation index [2]. Insert sterilization method was verified using trans-vinylene index [3]. Oxidation measured in the 45 ankle inserts versus their time in vivo was compared to oxidation rates previously published for gamma-sterilized hip and knee polyethylene retrievals [6]. Statistical analysis was performed using IBM SPSS v.22. Results. The ankle devices were retrieved most commonly for loosening (n=22) followed by polyethylene fracture (n=9). These failure modes occurred after statistically different in vivo time (loosening: mean=4.4±3.6 years; polyethylene insert fracture: mean=9.5±4.1 years; p=0.002). Presence of clinical fatigue (cracking and/or delamination) was identified in 24 of the 70 retrieved inserts, and its presence correlated with in vivo time (Spearman's rho =0.449, p<0.001). Thirteen of these fatigued inserts were analyzed by FTIR. TVI analysis confirmed the sterilization method of the fatigued inserts: 12 gamma, 1 non-gamma sterilized. All 13 fatigued inserts had maximum ketone oxidation index (KOI) of 1.2 or higher. Presence of fatigue correlated with measured oxidation (Spearman's rho =0.685, p<0.001). Six of the 9 inserts that fractured in vivo were analyzed by FTIR. All were gamma-sterilized, and all had oxidation of 1.2 or higher. Oxidation rate determined for most of the 45 ankle inserts was at or above oxidation rates previously published for gamma-sterilized hip and knee polyethylene retrievals [6]. Discussion. This retrieval study concurs with the ankle arthroplasty literature that loosening is the most common reason for ankle revision [4]. Ankle inserts retrieved as a result of implant loosening had lower oxidation and no fatigue damage resulting from their shorter in vivo time. Fatigued and/or fractured inserts were in vivo for longer times, allowing more oxidation to occur. The effect of oxidation on polyethylene tensile strength and ductility has been reported for tibial inserts [5]. Oxidation above the critical value [5] has a dramatic effect on the ability of the polyethylene to resist fatigue damage and fracture, since the
Contemporary polyethylene liners for total hip replacements were introduced in the late 1990's to address osteolysis associated with wear of conventional polyethylene. Every major device manufacturer introduced an “enhanced polyethylene”. In the ensuing decade plus, every major arthroplasty meeting had presentations and debates about the wear resistance and mechanical properties of these new polymers. The results have been remarkable and now with 17 to 18 years of use in patients, we have yet to see clinically significant osteolysis in our patients regardless age or activity level. The results can be summarised as follows: All currently commercially available highly crosslinked polyethylenes produced by major device companies have demonstrated a reduction in wear and osteolysis. At the 2016 Closed Meeting of The Hip Society, none of the surgeons attending had seen a clinically significant case of osteolysis associated with highly crosslinked polyethylene. Registry data demonstrates the superiority of the highly crosslinked materials over conventional polyethylenes. Historical concerns over a reduction in mechanical properties have not been borne out in clinical studies. Although highly crosslinked polyethylene liner fractures have been reported, they are rare and probably related to specific designs or surgical technique issues. It is important to remember that there were rare cases of fracture of conventional polyethylene as well. With currently reported wear rates of the enhanced polyethylenes, polyethylene thickness is unlikely to be a factor in long-term durability with well-designed sockets. Bench data has demonstrated that polyethylene thickness is not a risk factor for wear or fracture if well supported by the metal shell. Thin unsupported polyethylene is at risk for fracture. Although the new anti-oxidant polyethylenes (eg. Vitamin E) have performed well in wear studies, there is no clinically available evidence to support their use based on enhanced fracture
Introduction. Radiation cross-linking of ultrahigh molecular weight polyethylene (UHMWPE) has reduced the in vivo wear and osteolysis associated with bearing surface wear (1), significantly reducing revisions associated with this complication (2). Currently, one of the major and most morbid complications of joint arthroplasty is peri-prosthetic infection (3). In this presentation, we will present the guiding principles in using the UHMWPE bearing surface as a delivery device for therapeutic agents and specifically antibiotics. We will also demonstrate efficacy in a clinically relevant intra-articular model. Materials and Methods. Medical grade UHMWPE was molded together with vancomycin at 2, 4, 6, 8, 10 and 14 wt%. Tensile mechanical testing and impact testing were performed to determine the effect of drug content on mechanical properties. Elution of the drug was performed in phosphate buffered saline (PBS) for up to 8 weeks and the detection of the drug in PBS was done by UV-Vis spectroscopy. A combination of vancomycin and rifampin in UHMWPE was developed to address chronic infection and layered construct containing 1 mm-thick drug-containing UHMWPE in the non-load bearing regions was developed for delivery. In a lapine (rabbit) intra-articular model (n=6 each), two plug of the layered UHMWPE construct were placed in the trochlear grove of the rabbit femoral surface and a porous titanium rod with a pre-grown biofilm of bioluminescent S. Aureus was implanted in the tibia. Bioluminescent imaging was employed to visualize and quantify the presence of the bacteria up to 3 weeks. Results and Discussion. Increasing drug content decreased both the ultimate tensile strength (UTS) and the impact
Since its introduction in total hip replacements in the 1960's, Ultra High Molecular Weight Polyethylene (UHMWPE) has played a major role as a bearing component material for joint arthroplasty. Concerns were raised when issues of wear resistance became apparent, and therefore Highly Crosslinked Polyethylenes were introduced. Such materials undergo a thermal treatment to quench the free radicals and reduce progressive oxidation. However, said thermal treatment weakens the material mechanical properties and hence the use of antioxidants has been proposed and implemented in clinical use, mainly Vitamin-E. This can be added to the material before or after irradiation. If it is done before, part of the anti-oxydant is consumed during irradiation and so will not be available for its main purpose, and part reacts before irradiation with the free radicals thus reducing the crosslinking effect. If it is added after irradiation, high temperatures are required in order to diffuse it in the bulk material, and anyway the surface will be mainly rich in antioxidant. However, Vitamin-E tends to neutralize the free radicals on the oxidized lipid chain present in our body fluids and so in direct contact with the prosthetic components: such mechanism reduces the Vitamin-E quantity available for anti-oxidation purposes in the long run. A UHMWPE doped with Hindered Amine Light Stabilizer (HALS) has been developed and tested for applications in large joint replacements where highest resistance to wear and
Introduction. The continued improvement of ceramic materials for total hip arthroplasty led to the development of Zirconia and Zirconia toughened Alumina materials such as BIOLOX® delta. Zirconia exists in a tetragonal phase in new ceramic heads and can transform to a monoclinic phase in response to loading giving the material improved fracture
Introduction. Silicon nitride (Si3N4) is a ceramic material presently implanted during spine surgery. It has a fortunate combination of material properties such as high strength and fracture
INTRODUCTION. The reported revision rate for THA is below 10% at 10 years. Major factors for revision are aseptic loosening or dislocation of the articulating components. CoC bearings in total hip arthroplasty (THA) have demonstrated very low wear rates. Due to producing the least number of wear particles of any articular bearing used for THA, osteolysis is very rarely observed. Zirconia-platelet toughened alumina (ZPTA) has improved
The leading cause for total hip arthroplasty (THA) revision remains aseptic loosening due to bearing wear. The younger and more active patients currently undergoing arthroplasty present unprecedented demands on THA-bearings. Ceramic-on-ceramic (CoC) bearings have consistently shown the lowest wear rates. The recent advances, especially in alumina CoC bearings, have solved many past problems and produced preferable results in vitro. Alumina ceramics are extremely hard, scratch resistant, biocompatible, offer a low coefficient of friction, superior lubrication and lower wear rates in comparison to other bearings in THA. The major disadvantage of ceramics used to be fracture. The new generation of alumina ceramics, has reduced the risk of ball fracture to 0.03–0.05%. The risk for liner fracture is even lower. Assuming an impingement-free component implantation, CoC bearings have major advantages over other bearing combinations. Due to the superior hardness, CoC bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A complication specific to CoC bearings is squeaking. Squeaking occurs if the friction in the joint articulation is sufficient to excite vibrations to audible magnitudes (due to loss of lubrication). The high range of reported squeaking (0.45% to 10.7%) highlights the importance of correct implant position. If a correct implant position can be guaranteed, then squeaking is rare and without clinical significance. The improved tribology and presumable resulting implant longevity make CoC the bearing of choice for young and active patients. Especially the alumina matrix (Biolox delta) offers increased burst strength and greater fracture