Aim. To evaluate bacterial adhesion and biofilm formation to
Ultra-high molecular weight polyethylene (UHMWPE) is the sole polymeric material currently used for weight-bearing surfaces in total joint arthroplasty. However, the wear phenomenon of UHMWPE components in knee and hip prostheses after total joint arthroplasty is one of the major restriction factors on the longevity of these implants. In order to minimize the wear of UHMWPE and to improve the longevity of artificial joints, it is necessary to clarify the factors influencing the wear mechanism of UHMWPE. In the microscopic surface observation of the virgin knee prosthesis with anatomical design, various grades of microscopic surface scratches and defects caused by machining and surface finishing processes during manufacture of the component were observed on the surface of the
Introduction. The release of
Introduction. Long-term success of the cementless acetabular component has been depends on amount of bone ingrowth around porous coated surface of the implant, which is mainly depends on primary stability, i.e. amount of micromotion at the implant-bone interface. The accurate positioning of the uncemented acetabular component and amount of interference fit (press-fit) at the rim of the acetabulum are necessary to reduce the implant-bone micromotion and that can be enhancing the bone ingrowth around the uncemented acetabular component. However, the effect of implant orientations and amount of press-fit on implant-bone micromotion around uncemented acetabular component has been relatively under investigated. The aim of the study is to identify the effect of acetabular component orientation on implant-bone relative micromotion around cementless
Testing wear durability of UHMWPE joint replacement bearings under abrasive conditions (mimicking in vivo conditions when
Biodegradable metals as orthopaedic implant materials receive substantial scientific and clinical interest. Marketed cardiovascular products confirm good biocompatibility of iron. Solid iron biodegrades slowly in vivo and has got supra-physiological mechanical properties as compared to bone and porous implants can be optimized for specific orthopaedic applications. We used Direct Metal Printing (DMP)3 to additively manufacture (AM) scaffolds of pure iron with fine-tuned bone-mimetic mechanical properties and improved degradation behavior to characterize their biocompatibility under static and dynamic 3D culture conditions using a spectrum of different cell types. Atomized iron powder was used to manufacture scaffolds with a repetitive diamond unit cell design on a ProX DMP 320 (Layerwise/3D Systems, Belgium). Mechanical characterization (Instron machine with a 10kN load cell, ISO 13314: 2011), degradation behavior under static and dynamic conditions (37ºC, 5% CO2 and 20% O2) for up of 28 days, with μCT as well as SEM/energy-dispersive X-ray spectroscopy (EDS) (SEM, JSM-IT100, JEOL) monitoring under in vivo-like conditions. Biocompatibility was comprehensively evaluated using a broader spectrum of human cells according to ISO 10993 guidelines, with topographically identical titanium (Ti-6Al-4V, Ti64) specimen as reference. Cytotoxicity was analyzed by two-way ANOVA and post-hoc Tukey's multiple comparisons test (α = 0.05). By μCT, as-built strut size (420 ± 4 μm) and porosity of 64% ± 0.2% were compared to design values (400 μm and 67%, respectively). After 28 days of biodegradation scaffolds showed a 3.1% weight reduction after cleaning, while pH-values of simulated body fluids (r-SBF) increased from 7.4 to 7.8. Mechanical properties of scaffolds (E = 1600–1800 MPa) were still within the range for trabecular bone, then. At all tested time points, close to 100% biocompatibility was shown with identically designed titanium (Ti64) controls (level 0 cytotoxicity). Iron scaffolds revealed a similar cytotoxicity with L929 cells throughout the study, but MG-63 or HUVEC cells revealed a reduced viability of 75% and 60%, respectively, already after 24h and a further decreased survival rate of 50% and 35% after 72h. Static and dynamic cultures revealed different and cell type-specific cytotoxicity profiles. Quantitative assays were confirmed by semi-quantitative cell staining in direct contact to iron and morphological differences were evident in comparison to Ti64 controls. This first report confirms that DMP allows accurate control of interconnectivity and topology of iron scaffold structures. While microstructure and chemical composition influence degradation behavior - so does topology and environmental in vitro conditions during degradation. While porous magnesium corrodes too fast to keep pace with bone remodeling rates, our porous and micro-structured design just holds tremendous potential to optimize the degradation speed of iron for application-specific orthopaedic implants. Surprisingly, the biological evaluation of pure iron scaffolds appears to largely depend on the culture model and cell type. Pure iron may not yet be an ideal surface for osteoblast- or endothelial-like cells in static cultures. We are currently studying appropriate coatings and in vivo-like dynamic culture systems to better predict in vivo biocompatibility.
The accumulation of proteins and bacteria on implant surfaces is a critical concern in the biomedical field, especially with respect to the potential of biofilm formation on implant surfaces. Material surface wettability is often used as a predictor of potential colonization of specific bacterial strains. Surface roughness has also been shown to have a strong relationship with biofilm formation, as rougher surfaces tend to have a stronger affinity to harbor bacterial colonies. The modification of implant surfaces to impart a biofilm resistant layer can come at the expense of increasing surface roughness however, and it is therefore important to determine how the variables of wettability and roughness are affected by any new surface coating technologies. In the current work, a novel CoBlast (C) process that impregnates alumina (A) at 50 μm grit (5) or 90 μm grit (9) sizes, with the possible addition of polytetrafluoroethylene (P) onto titanium surfaces, combined with a plasma coating process called BioDep, that coats the surface with chitosan (X) with the possible addition of vancomycin (V), were evaluated for wettability and surface roughness to determine their potential as biofilm resistant treatments on implants. N=65 titanium alloy samples (n=5 for 13 sample modification types as described above and in the figure legends below) were analyzed for surface roughness and wettability. Following cleaning in ethanol, roughness testing (Ra, Rq, Rt and Rz, Wyko NT-2000 optical profilometer @ 28.7× magnification, FOV of 164×215 μm) at 5 different surface locations per specimen, and contact angle analysis was performed (2 μL water drops, KRUSS EasyDrop). Statistical differences between groups was determined using ANOVA.Introduction
Materials and Methods
After arthroplasty, stress shielding and high shear stresses at the bone-implant interface are common problems of load bearing implants (e.g. hip prostheses). Stiff implants cause stress shielding, which is thought to contribute to bone resorption1. High shear stresses, originated by low-stiffness implants, have been related to pain and interfacial micro-movements², prohibiting adequate implant initial fixation. A non-homogeneous distribution of mechanical properties within the implant could reduce the stress shielding and interfacial shear stresses3. Such an implant is called “functionally graded implant” (FGI). FGI require porous materials with well-controlled micro-architecture, which can now be obtained with new additive manufacturing technologies (e.g. Electron Beam Melting). Finite element (FE) simulations in ANSYS-v14.5 are used to develop an optimization methodology to design a hip FGI. A coronal cut was performed on a femur model (Sawbones®) with an implanted Profemur®TL (Wright Medical Inc.) stem to obtain the 2D-geometry for FE simulations. The central part of the FGI stem was made porous, the neck and inferior tip were solid. Ti6Al4V elastic material was assumed (E=120 GPa, v=0.3). Three bone qualities were considered for the optimization: poor (E=6GPa; v=0.3); good (E=12GPa; v=0.3); excellent (E=30GPa; v=0.3). The structure of bone evolves to maintain a reasonable level of the strains. Similarly in the proposed algorithm, the strut sections of the porous material evolve to keep stresses (proportional to strains) at a reasonable level. Starting with a very small strut section, resulting in an almost zero-rigidity stem, strut sections are increased or decreased as a function of the stresses they support. This is done incrementally, until force values corresponding to normal walking of an 80 kg person (1867 N)4 are reached. Force direction was vertical and no action of the abductors was considered, to analyze the worst case scenario. The optimized FGI microstructure is defined by the strut diameter distributions. Since the distance between struts remain constant, variations in strut diameters result in variations in density. Optimized FGI porous structure was compared for the three bone qualities considered and with a solid stem in terms of bone stresses.Introduction
Methodology
Unicompartmental knee arthroplasty (UKA) has been used in the past decades to treat progressive cartilage degeneration in a single compartment. Concern has been raised over the rate of revision procedures for polyethylene wear and osteoarthritic progression into the adjacent compartment. Few studies have examined the pathology of cartilage degeneration in the setting of UKA. This study aims to investigate the viability of knee chondrocytes introduced to high and low concentrations of orthopaedic wear debris particulate. Normal human articular chondrocytes (nHAC-Kn) were expanded in DMEM/F12 containing 10% FBS, 1% Penicillin/Streptomycin (Pen/Strp), and 50 μg/mL ascorbic acid (Asc). 24 hours prior to the start of the experiment, cells were seeded on 96-well plates at a density of 3500 cells/cm2 and exposed to DMEM/F12 containing 5% FBS, 1% Pen/Strp, and 50 μg/mL Asc. Particles (equivalent circle diameter range: 0.2–7 μm) at a low dose of 100: 1 (particles: cells) and high dose 1000: 1 (particles: cells) were introduced to treatment wells (n = 6). Control wells (n = 6) contained particles with no cells. Treatment groups included high and low doses of TiAl6V4 alloy, 316L Stainless Steel, and Co-Cr-Mo alloy. At days 1, 3, 5, and 7, cells were assayed with a 3-(4,5-Dimethylthiazol-2-yl)-2,5-dyphenyltetrazolium bromide (MTT) assay for determination of cell viability. Light microscopy was performed at each timepoint to assess change in cell morphology.Introduction:
Methods:
Aims. The STRYDE nail is an evolution of the PRECICE Intramedullary Limb Lengthening System, with unique features regarding its composition. It is designed for load bearing throughout treatment in order to improve patient experience and outcomes and allow for simultaneous bilateral lower limb lengthening. The literature published to date is limited regarding outcomes and potential problems. We report on our early experience and raise awareness for the potential of adverse effects from this device. Methods. This is a retrospective review of prospective data collected on all patients treated in our institution using this implant. We report the demographics, nail accuracy, reliability, consolidation index, and cases where concerning clinical and radiological findings were encountered. There were 14 STRYDE nails implanted in nine patients (three male and six female) between June 2019 and September 2020. Mean age at surgery was 33 years (14 to 65). Five patients underwent bilateral lengthening (two femoral and three tibial) and four patients unilateral femoral lengthening for multiple aetiologies. Results. At the time of reporting, eight patients (13 implants) had completed lengthening. Osteolysis and periosteal reaction at the junction of the telescopic nail was evident in nine implants. Five patients experienced localized pain and swelling. Macroscopic appearances following retrieval were consistent with corrosion at the telescopic junction. Tissue histology was consistent with effects of focal
Aim. To evaluate the efficiency of pulse lavage combined with electrical fields to remove biofilm from a
Introduction. The vast majority of orthopaedic surgeons use C-arm fluoroscopy in the operating theatre when building a circular external fixator. In the absence of previous research in this area, we hypothesised that the surgeon who builds a circular external fixator is exposed to a greater amount of radiation purely as a result of the presence of the
Aims. This study aims to enhance understanding of clinical and radiological consequences and involved mechanisms that led to corrosion of the Precice Stryde (Stryde) intramedullary lengthening nail in the post market surveillance era of the device. Between 2018 and 2021 more than 2,000 Stryde nails have been implanted worldwide. However, the outcome of treatment with the Stryde system is insufficiently reported. Methods. This is a retrospective single-centre study analyzing outcome of 57 consecutive lengthening procedures performed with the Stryde nail at the authors’ institution from February 2019 until November 2020. Macro- and microscopic metallographic analysis of four retrieved nails was conducted. To investigate observed corrosion at telescoping junction, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) were performed. Results. Adjacent to the nail’s telescoping junction, osteolytic changes were observed in bi-planar radiographs of 20/57 segments (35%) after a mean of 9.5 months (95% confidence interval 7.2 to 11.9) after surgery. A total of 8/20 patients with osseous alterations (40%) reported rest and ambulation pain of the lengthened segment during consolidation. So far, 24 Stryde nails were retrieved and in 20 (83%) macroscopic corrosion was observed at the nail’s telescoping junction. Before implant removal 11/20 radiographs (55%) of lengthened segments with these 20 nails revealed osteolysis. Implant retrieval analysis by means of SEM showed pitting and crevice corrosion. EDX detected chromium as the main
Massive irreparable rotator cuff tears often lead to superior migration of the humeral head, which can markedly impair glenohumeral kinematics and function. Although treatments currently exist for treating such pathology, no clear choice exists for the middle-aged patient demographic. Therefore, a
Aim. The primary aim of this in vitro study was to test the efficacy of daptomycin to eradicate staphylococcal biofilms on various orthopedic implant surfaces and materials. The secondary aim was to quantitatively estimate the formation of staphylococcal biofilm on various implant materials with different surface properties. Method. We tested six clinically important biomaterials: cobalt chrome alloy, pure titanium, grid-blasted titanium, porous plasma-coated titanium with/without hydroxyapatite, and polyethylene. Two laboratory strains of bacteria commonly causing PJI were used, namely Staphylococcus aureus* and Staphylococcus epidermidis*. After overnight incubation with biofilm formation, the test samples were washed and individually exposed to increasing daptomycin concentrations (4–256 mg/l) during 24-hours. Samples were subsequently sonicated in order to detect dislodged biofilm bacteria on blood agar plates by viable growth and transferred to a microcalorimeter*** for real-time measurement of growth related heat flow during 24-h incubation. Minimal biofilm eradication concentration (MBEC) was determined as the lowest concentration of antibiotic required to eradicate the biofilm bacteria on the sample. The time to detection expressed as the heat flow >50 µW (TTD-50) indirectly quantifies the initial amount of biofilm bacteria, with a shorter TTD-50 representing a larger amount of bacteria. Results. MBEC of S. aureus biofilm on smooth
Peri-prosthetic osteolysis and subsequent aseptic
loosening is the most common reason for revising total hip replacements.
Wear particles originating from the prosthetic components interact
with multiple cell types in the peri-prosthetic region resulting
in an inflammatory process that ultimately leads to peri-prosthetic
bone loss. These cells include macrophages, osteoclasts, osteoblasts
and fibroblasts. The majority of research in peri-prosthetic osteolysis
has concentrated on the role played by osteoclasts and macrophages.
The purpose of this review is to assess the role of the osteoblast
in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts
and contribute to the osteolytic process by two mechanisms. First,
particles and
The effects of metal ion release and wear particle debris in metal-on-metal articulation warrants an investigation of alternative material, like ceramics, as a low-wear bearing couple [1]. Short-stem resurfacing femoral implant, with a stem-tip located at the centre of the femoral head, appears to provide a better physiological load transfer within the femoral head and therefore seems to be a promising alternative to the long-stem design [2]. The objective of this study was to investigate the effect of evolutionary bone adaptation on load transfer and interfacial failure in cemented
Introduction. The STRYDE nail is an evolution of the PRECICE Intramedullary Limb Lengthening System, with unique features regarding its composition. It is designed for load bearing throughout treatment in order to improve patient experience and outcomes and allow for simultaneous bilateral lower limb lengthening. The literature published to date is limited with regards to both outcomes and potential issues. In this paper we report on our early experience and raise awareness for the potential of adverse effects from this device. Materials and Methods. This is a review of all patients treated in our institution using this implant. Data were prospectively recorded. We report on demographics, nail accuracy, reliability, consolidation index and cases where concerning clinical and radiological findings were encountered. Results. 14 Stryde nails were implanted in nine patients (three males and six females) between June 2019 and September 2020. Mean age at surgery was 33 years old (14–65 years old). Five patients underwent bilateral lengthening (two femoral and three tibial) and four patients unilateral femoral lengthening for multiple aetiologies. By the time of this report eight patients (13 implants) had completed lengthening. Osteolysis and periosteal reaction at the junction of the telescopic nail was evident in nine implants. Five patients experienced localised pain and swelling. Macroscopic appearances following retrieval were consistent with corrosion at the telescopic junction. Tissue histology was consistent with effects of focal
Severe glenoid bone loss in patients with osteoarthritis with intact rotator cuff is associated with posterior glenoid bone loss and posterior humeral subluxation. Management of severe glenoid bone loss during shoulder arthroplasty is controversial and technically challenging and options range from humeral hemiarthroplasty, anatomic shoulder replacement with glenoid bone grafting or augmented glenoid component implantation, to reverse replacement with reaming to correct version or structural bone grafting or
Optimal alignment of the acetabular cup component is crucial for good outcome of total hip arthroplasty [THA]. Increased accuracy of implant positioning may improve clinical outcome. To achieve this, patient specific instrumentation was developed. A patient-specific guide manufactured by 3D printing was designed to aid in positioning of the cup component with a pre-operatively defined anteversion and inclination angle. The guide fits perfectly on the acetabular rim. An alignment K-wire in a pre-operatively planned orientation is used as visual reference during cup implantation. Accuracy of the device was tested on 6 cadaveric specimens. During the experiment, cadavers were positioned for a THA procedure using a posterolateral approach. A normal-sized incision was made and approach used as in the conventional surgical procedure. The PSI was subsequently fitted onto the acetabular rim and secured into its unique position due to its patient specific design. The