header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

RADIATION DOSE WITH CIRCULAR EXTERNAL FIXATION: DOES THE SURGEON GET A DOUBLE WHAMMY?

The British Limb Reconstruction Society (BLRS) Annual Meeting 2023, Belfast, Northern Ireland, 23–24 March 2023.



Abstract

Introduction

The vast majority of orthopaedic surgeons use C-arm fluoroscopy in the operating theatre when building a circular external fixator. In the absence of previous research in this area, we hypothesised that the surgeon who builds a circular external fixator is exposed to a greater amount of radiation purely as a result of the presence of the metallic fixator in the x-ray beam. The aim of our study therefore was to investigate how the presence of a circular external fixator affects the radiation dose to the surgeon and the surgical assistant.

Materials & Methods

A simulated environment was created using a radiolucent operating table, an acrylic lower limb phantom (below knee segment), various configurations of metalic circular external fixation, and a standard size C-arm image intensifier.

The variables investigated were 1. the amount of metal in the beam 2. the orientation of the beam (PA vertical vs lateral) 3. the horizonal distance of the person from the beam (surgeon vs assistant) and 4. the vertical distance of the various body parts from the beam (e.g. thyroid, groin).

In terms of radiation dose, we recorded two things : 1. the dose produced by the image intensifier 2. the dose rate at standardised positions in the operating theatre. The latter was done using a solid-state survey sensor. These positions represented both where the surgeon and surgical assistant typically stand plus the heights of their various body regions relative to the operating table..

Results

The effect of the presence of the circular external fixator : all frame constructs tested resulted in a statistically significant greater radiation dose both produced by the image intensifier and received by the surgical team.

The effect of the beam orientation : the PA (vertical) orientation resulted in a statistically significant greater radiation dose for the surgeon than did the lateral orientation, but made no difference for the assistant.

The effect of horizontal distance from the beam : unsurprisingly, the surgeon (who was closer to the beam) received a statistically significant greater radiation dose than the assistant. The effect of vertical distance from the beam : for the surgeon, the dose received was highest at the level of the phantom leg / frame, whilst for the assistant there was no statistically significant difference for any level.

Conclusions

To our knowledge, this is the first study investigating the radiation dose rate to the orthopaedic surgeon when building a circular external fixator. We found that the surgeon does indeed receive a ‘double whammy’ because the image intensifier puts out a greater amount of radiation plus the metalic frame scatters more of the x-ray beam. Whilst the amounts are relatively small, we think that it's important to quantify doses that orthopaedic surgeons receive to ensure optimal radiation practices.