A concern of metal on metal hip resurfacing arthroplasty is long term exposure to Cobalt (Co) and Chromium (CR) wear debris from the bearing. This study compares whole blood
Introduction. Systemic metal ion monitoring (Co;Cr) has proven to be a useful screening tool for implant performance to detect failure at an early stage in metal-on-metal hip arthroplasty. Several clinical studies have reported elevated
Introduction. The use of metal-on-metal (MOM) and modular total hip arthroplasty (THA) is associated with potentially serious complications including elevated serum
Background. Modularity in total hip replacement(THR) enables precise recreation of native hip biomechanics. However, there have been concerns about raised
Introduction. Higher concentrations of
Background. Recent clinical studies have suggested that systemic
Background:. The Rejuvenate modular neck stem (Stryker, Mahwah, NJ) was recently recalled due to corrosion at the neck-stem junction. The purpose of this study was to investigate the rate of corrosion related failures and survivorship of this implant, and analyze the correlation between the implant and patient factors with serum
The search for the ideal bearing surface in Total Hip Replacements continues. The current ‘best’ materials are felt to be combinations of metal, ceramics and cross-linked polyethylene. Laboratory studies suggest that ceramic-on-metal articulations may provide distinct advantages. This study aims to identify the best bearing surface combination with the lowest adverse side effect profile. Between February 2004 and September 2007, 164 hips were replaced in 142 patients. 39% were male and 69% were female. The average age at surgery was 53 years (17-72 years). Follow-up assessment included radiographs, the Harris Hip Score and whole blood samples for
Purpose. Total shoulder arthroplasty (TSA) has become a successful treatment option for degenerative shoulder disease. With the increasing incidence in primary TSA procedures during the last decades, strategies to improve implant longevity become more relevant. Implant failure is mainly associated with mechanical or biological causes. Chronic inflammation as a response to wear particle exposure is regarded as a main biological mechanism leading to implant failure. Metal ions released by fretting and corrosion at modular taper connections of orthopedic implants can cause cell-mediated hypersensitivity reactions and might lead to aseptic loosening. Modularity is also commonly used in total shoulder replacement. However, little is known about metal ion exposure in patients following TSA. The objective of this study was to determine in-vivo blood
Introduction. Complication and revision rates have shown to be high for all metal-on-metal (MoM) bearings, especially for the ASR Hip System (ASR hip resurfacing arthroplasty (HRA) and ASR XL total hip arthroplasty (THA)). This prompted the global recall of the ASR Hip System in 2010. Many studies have previously explored the association between female gender and revision surgery MoM HRA implants; yet less research has been dedicated to exploring this relationship in MoM THA. The first purpose of this study was to assess the associations between gender and implant survival, as well as adverse local tissue reaction (ALTR), in patients with MoM THA. Secondly, we sought to report the differences between genders in
Introduction. Metal-on-metal hip resurfacings (MoMHRAs) have a characteristic wear pattern initially characterised by a run-in period, followed by a lower-wear steady-state. The use of metal ions as surrogate markers of in-vivo wear is now recommended as a screening tool for the in-vivo performance of MoMHRAs. The aims of this retrospective study were to measure ion levels in MoMHRAs at different stages during the steady-state in order to study the evolution of wear at minimum 10 years postoperatively and describe factors that affect it. Materials and methods. A retrospective study was conducted to investigate the minimum 10-year survivorship of a single-surgeon Birmingham Hip Resurfacing (BHR) series, and the evolution of
Metal-on-metal (MOM) hip arthroplasty has been associated with a variety of new failure modes that may be unfamiliar to surgeons who traditionally perform metal-on-polyethylene THR. These failure modes include adverse local tissue reaction to metal debris, hypersensitivity to metal debris, accelerated wear/metallosis, pseudotumours, and corrosion. A significant number of patients with metal-on-metal hip arthroplasty may present to surgeons for routine followup, concern over their implant, or frank clinical problems. A common issue with MOM hip arthroplasty that can lead to accelerated wear and failure is implant malposition. Malposition of a hard-on-hard bearing can lead to edge loading and accelerated wear at the articular surfaces, which will lead to elevation in blood
Background. Previous studies have indicated poor outcomes and high complication rate in patients having revision of metal-on-metal (MoM) hip implants resulting from adverse local tissue reactions. Metal ions released by MoM bearings may potentially increase infection occurrence in patients with failed implants. Questions/purposes. We reviewed all patients at our institution who sustained revision of a failed large-head metal-on-metal hip implant to determine if infection-related complications are associated with the elevation of serum metal ions concentration. Methods. From December 2005 to April 2013, we performed 44 revisions of large-head MoM total hip arthroplasty (THA) and resurfacing in 44 patients. In all revision procedures MoM couplings (ASR XL Acetabular System and DePuy ASR Hip Resurfacing System) were explanted. Preoperative diagnosis were: aseptic loosening in 21 hips, hip pain with high serum
Introduction. A metal ion study was undertaken in patients who had received an articular surface replacement. The design of these components is optimised in line with lubrication theory and produces low levels of wear in hip joint simulators. Methods. Patients were recruited in four centres. Whole blood samples were analysed for
Introduction. There have been increased concerns with trunnion fretting and corrosion and adverse local tissue reactions (ALTR) in total hip arthroplasty. We report on 11 catastrophic trunnion failures associated with severe ALTR requiring urgent revision arthroplasty. Methods. We retrospectively reviewed 10 patients with gross trunnion failure (n=11) and an additional 3 patients with impending trunnion failure. Results. All patients presented to the emergency department with severe pain, an inability to bear weight, and dramatic radiographs demonstrating implant failure. Patients were an average of 7.8 years from the initial index procedure. Implants were a cementless component with metal on polyethylene bearing from a single manufacturer with a 36mm femoral head size and a range of extended offset of 2.5 to 5.5 and neck length of +0 (n=1), +5 (n=5), and +10 (n=5). The implant was used during a limited time (2.5 years) by single surgeon in our practice using a posterior approach, with the last implant placed 7 years ago. Prior to revision, serum cobalt levels were elevated, typically more than chromium levels. Radiographs demonstrated failure of the implant with a dissociation of the head from the taper and large radiolucent fluid collections from the metal debris (Fig 1). Intraoperative findings and magnetic resonance imaging confirmed a diagnosis of ALTR with loss of abductors, and severe material loss from the taper (Fig 2). We estimate a conservative incidence of catastrophic trunnion failure in our series to be 2.2% (n = 636 total implanted). A femoral revision with a modular Wagner stem was performed, and when necessary the acetabulum was revised secondary to destruction of the locking mechanism from mechanical wear. Discussion and Conclusion. ALTR can occur in patients with catastrophic failure of their trunnion. Radiographs are dramatic. Serum
Introduction:. The ASR™ Articular Surface Replacement and ASR™ XL Metal-on-Metal systems were recalled due to high revision rates at five years. A worldwide clinical follow-up of patients was initiated. This paper summarizes current findings in South Africa (SA) in comparison with those outside SA (OSA). Methods:. Patients were followed annually, or until revision, from 10 clinical centers worldwide. Data collected includes demographic, surgical, radiographic, blood
Hip simulator studies have shown reduced hip offset can cause microseparation and increased wear in hard-on-hard hip bearings. However this has not been analysed yet in vivo. We studied the effect of reduced hip offset on serum
Introduction:. The clinical significance of serum
761 cases in 613 patients with minimal two years follow-up had both