Advertisement for orthosearch.org.uk
Results 1 - 20 of 250
Results per page:
Bone & Joint Research
Vol. 6, Issue 2 | Pages 82 - 89
1 Feb 2017
Nagra NS Zargar N Smith RDJ Carr AJ

Objectives. All-suture anchors are increasingly used in rotator cuff repair procedures. Potential benefits include decreased bone damage. However, there is limited published evidence for the relative strength of fixation for all-suture anchors compared with traditional anchors. Materials and Methods. A total of four commercially available all-suture anchors, the ‘Y-Knot’ (ConMed), Q-FIX (Smith & Nephew), ICONIX (Stryker) and JuggerKnot (Zimmer Biomet) and a traditional anchor control TWINFIX Ultra PK Suture Anchor (Smith & Nephew) were tested in cadaveric human humeral head rotator cuff repair models (n = 24). This construct underwent cyclic loading applied by a mechanical testing rig (Zwick/Roell). Ultimate load to failure, gap formation at 50, 100, 150 and 200 cycles, and failure mechanism were recorded. Significance was set at p < 0.05. Results. Overall, mean maximum tensile strength values were significantly higher for the traditional anchor (181.0 N, standard error (. se). 17.6) compared with the all-suture anchors (mean 133.1 N . se. 16.7) (p = 0.04). The JuggerKnot anchor had greatest displacement at 50, 100 and 150 cycles, and at failure, reaching statistical significance over the control at 100 and 150 cycles (22.6 mm . se. 2.5 versus 12.5 mm . se. 0.3; and 29.6 mm . se. 4.8 versus 17.0 mm . se. 0.7). Every all-suture anchor tested showed substantial (> 5 mm) displacement between 50 and 100 cycles (6.2 to 14.3). All-suture anchors predominantly failed due to anchor pull-out (95% versus 25% of traditional anchors), whereas a higher proportion of traditional anchors failed secondary to suture breakage. Conclusion. We demonstrate decreased failure load, increased total displacement, and variable failure mechanisms in all-suture anchors, compared with traditional anchors designed for rotator cuff repair. These findings will aid the surgeon’s choice of implant, in the context of the clinical scenario. Cite this article: N. S. Nagra, N. Zargar, R. D. J. Smith, A. J. Carr. Mechanical properties of all-suture anchors for rotator cuff repair. Bone Joint Res 2017;6:82–89. DOI: 10.1302/2046-3758.62.BJR-2016-0225.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 900 - 907
1 Aug 2002
Ding M Odgaard A Danielsen CC Hvid I

Previous studies have shown that low-density, rod-like trabecular structures develop in regions of low stress, whereas high-density, plate-like trabecular structures are found in regions of high stress. This phenomenon suggests that there may be a close relationship between the type of trabecular structure and mechanical properties. In this study, 160 cancellous bone specimens were produced from 40 normal human tibiae aged from 16 to 85 years at post-mortem. The specimens underwent micro-CT and the microstructural properties were calculated using unbiased three-dimensional methods. The specimens were tested to determine the mechanical properties and the physical/compositional properties were evaluated. The type of structure together with anisotropy correlated well with Young’s modulus of human tibial cancellous bone. The plate-like structure reflected high mechanical stress and the rod-like structure low mechanical stress. There was a strong correlation between the type of trabecular structure and the bone-volume fraction. The most effective microstructural properties for predicting the mechanical properties of cancellous bone seem to differ with age


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 7 | Pages 1059 - 1064
1 Sep 2000
Rupp S Seil R Kohn D Müller B

Our aim was to analyse the effect of avascularity on the morphology and mechanical properties (tensile strength, viscoelasticity) of human bone-patellar-tendon-bone (BPTB) grafts in vitro. These were harvested at postmortem and stored submerged in denaturated human plasma at a constant pH, pO. 2. , pCO. 2. , temperature and humidity under sterile conditions. Mechanical testing was performed two and four weeks after removal of the graft. The mean ultimate strength was 1085.7 ± 255.8 N (control), 1009.0 ± 314.9 N (two weeks cultured) and 1076.8 ± 414.8 N (four weeks cultured). There was no significant difference in linear stiffness or deformation to failure between the groups. There was a difference in viscoelasticity between the control group and the avascular grafts and the latter had significant lower peak load-to-load ratios after 15 minutes compared with the control group. After two and four weeks the graft contained viable fibroblasts. There was regular cellularity in the superficial layers and decreased cellularity in the midportion. The structure of the collagen including the crimp pattern appeared to be normal in polarised light. We conclude that avascularity does not significantly affect ultimate failure loads or stiffness of BPTB grafts. Slight changes in viscoelasticity were induced, but the significance of the increased stress relaxation is not fully understood


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 454 - 460
1 Mar 2010
Baleani M Bialoblocka-Juszczyk E Engels GE Viceconti M

We investigated the effect of pre-heating a femoral component on the porosity and strength of bone cement, with or without vacuum mixing used for total hip replacement.

Cement mantles were moulded in a manner simulating clinical practice for cemented hip replacement. During polymerisation, the temperature was monitored. Specimens of cement extracted from the mantles underwent bending or fatigue tests, and were examined for porosity.

Pre-heating the stem alone significantly increased the mean temperature values measured within the mantle (+14.2°C) (p < 0.001) and reduced the mean curing time (−1.5 min) (p < 0.001). The addition of vacuum mixing modulated the mean rise in the temperature of polymerisation to 11°C and reduced the mean duration of the process by one minute and 50 seconds (p = 0.01 and p < 0.001, respectively). In all cases, the maximum temperature values measured in the mould simulating the femur were < 50°C. The mixing technique and pre-heating the stem slightly increased the static mechanical strength of bone cement. However, the fatigue life of the cement was improved by both vacuum mixing and pre-heating the stem, but was most marked (+ 280°C) when these methods were combined.

Pre-heating the stem appears to be an effective way of improving the quality of the cement mantle, which might enhance the long-term performance of bone cement, especially when combined with vacuum mixing.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1534 - 1538
1 Nov 2007
Hammer TO Wieling R Green JM Südkamp NP Schneider E Müller CA

This study investigated the quality and quantity of healing of a bone defect following intramedullary reaming undertaken by two fundamentally different systems; conventional, using non-irrigated, multiple passes; or suction/irrigation, using one pass. The result of a measured re-implantation of the product of reaming was examined in one additional group. We used 24 Swiss mountain sheep with a mean tibial medullary canal diameter between 8 mm and 9 mm. An 8 mm ‘napkin ring’ defect was created at the mid-diaphysis. The wound was either surgically closed or occluded. The medullary cavity was then reamed to 11 mm. The Reamer/Irrigator/Aspirator (RIA) System was used for the reaming procedure in groups A (RIA and autofilling) and B (RIA, collected reamings filled up), whereas reaming in group C (Synream and autofilling) was performed with the Synream System. The defect was allowed to auto-fill with reamings in groups A and C, but in group B, the defect was surgically filled with collected reamings. The tibia was then stabilised with a solid locking Unreamed Humerus Nail (UHN), 9.5 mm in diameter. The animals were killed after six weeks. After the implants were removed, measurements were taken to assess the stiffness, strength and callus formation at the site of the defect.

There was no significant difference between healing after conventional reaming or suction/irrigation reaming. A significant improvement in the quality of the callus was demonstrated by surgically placing captured reamings into the defect using a graft harvesting system attached to the aspirator device. This was confirmed by biomechanical testing of stiffness and strength. This study suggests it could be beneficial to fill cortical defects with reaming particles in clinical practice, if feasible.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 67 - 67
11 Apr 2023
Britton M Schiavi J Vaughan T
Full Access

Type-2 Diabetic (T2D) patients experience up to a 3-fold increase in bone fracture risk[1]. Paradoxically, T2D-patients have a normal or increased bone mineral density when compared to non-diabetic patients. This implies that T2D has a deleterious effect on bone quality, whereby the intrinsic material properties of the bone matrix are altered. Creating clinical challenges as current diagnostic techniques are unable to accurately predict the fracture probability in T2D-patients. To date, the relationship between cyclic fatigue loading, mechanical properties and microdamage accumulation of T2D-bone tissue has not yet been examined and thus our objective is to investigate this relationship. Ethically approved femoral heads were obtained from patients, with (n=8) and without (n=8) T2D. To obtain the mechanical properties of the sample, one core underwent a monotonic compression test to 10% strain, the other core underwent a cyclic compression test at a normalized stress ratio between 0.0035mm/mm and 0.016mm/mm to a maximum strain of 3%. Microdamage was evaluated by staining the tissue with barium sulfate precipitate [2] and conducting microcomputed tomography scanning with a voxel size of 10μm. The monotonically tested T2D-group showed no statistical difference in mechanical properties to the non-T2D-group, even when normalised against BV/TV. There was also no difference in BV/TV. For the cyclic test, the T2D-group had a significantly higher initial modulus (p<0.01) and final modulus (p<0.05). There was no difference in microdamage accumulation. Previous population-level studies have found that T2D-patients have been shown to have an increased fracture risk when compared to non-T2D-patients. This research indicates that T2D does not impair the mechanical properties of trabecular bone from the femoral heads of T2D-patients, suggesting that other mechanisms may be responsible for the increased fracture risk seen in T2D-patients


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 58 - 58
2 Jan 2024
Camarero-Espinosa S
Full Access

The anterior cruciate ligament (ACL) is the connective tissue located at the end of long bones providing stability to the knee joint. After tear or rupture clinical reconstruction of the tissue remains a challenge due to the particular mechanical properties required for proper functioning of the tissue. The outstanding mechanical properties of the ACL are characterized by a viscoelastic behavior responsible of the dissipation of the loads that are transmitted to the bone. These mechanical properties are the result of a very specialized graded extracellular matrix that transitions smoothly between the heterotypic cells, stiffness and composition of the ACL and the adjacent bone. Thus, mimicking the zonal biochemical composition, cellular phenotype and organization are key to reset the proper functioning of the ACL. We have previously shown how the biochemical composition presented to cells in electrospun scaffolds results in haptokinesis, reverting contact-guidance effects. [1]. Here, we demonstrate that contact guidance can also be disrupted by structural parameters in aligned wavy scaffolds. The presentation of a wavy fiber arrangement affected the cell organization and the deposition of a specific ECM characteristic of fibrocartilage. Cells cultured in wavy scaffolds grew in aggregates, deposited an abundant ECM rich in fibronectin and collagen II, and expressed higher amounts of collagen II, X and tenomodulin as compared to aligned scaffolds. In-vivo implantation in rabbits of triphasic scaffolds accounting for aligned-wavy-aligned zones showed a high cellular infiltration and the formation of an oriented ECM, as compared to traditional aligned scaffolds. [2]


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 27 - 27
11 Apr 2023
Puente Reyna A Schwiesau J Altermann B Grupp T
Full Access

The purpose of the study was to compare the mechanical properties, oxidation and wear resistance of a vitamin E blended and moderately crosslinked polyethylene for total knee arthroplasty (MXE) in comparison with clinically established polyethylene materials. The following polyethylene materials were tested: CPE (30 kGy e-beam sterilized), XLPE (75 kGy gamma crosslinked @ 100°C), ViXLPE (0.1 % vitamin E blended, 80 kGy e-beam crosslinked @ 100°C), and MXE (0.1 % vitamin E blended polyethylene, 30 kGy gamma sterilized). For the different tests, the polyethylene materials were either unaged or artificially aged for two or six weeks according to ASTM F2003-02. The oxidation index was measured based on ASTM F2102 at a 1 mm depth. Small punch testing was performed based on ASTM F2977. Mechanical properties were measured on unaged materials according to ASTM D638. Wear simulation was performed on a load controlled 3 + 1 station knee wear simulator (EndoLab GmbH, Thansau, Germany) capable of reproducing loads and movement of highly demanding activities (HDA) as well as ISO 14243-1 load profiles. The load profiles were applied for 5 million cycles (mc) or delamination of the polyethylene components. Medium size AS e.motion. ®. PS Pro (Aesculap AG, Tuttlingen, Germany) femoral and tibial components with a ZrN-multilayer surface, as well as Columbus. ®. CR cobalt-chrome alloy femoral and tibial components were tested. Particle analysis was performed on the serum samples of the ISO 14243-1 wear simulations based on ISO 17853:2011 and ASTM F1877. The analysis of the mechanical properties show that moderately crosslinked polyethylene (MXE) might be a superior material for total knee arthroplasty applications [Schwiesau et al. 2021]. The addition of vitamin E in a moderately crosslinked polyethylene prevented its oxidation, kept its mechanical characteristics, and maintained a low wear, even under a HDA knee wear simulation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 33 - 33
11 Apr 2023
Ruksakulpiwat Y Numpaisal P Jeencham R
Full Access

Currently, fibrin glue obtained from fibrinogen and thrombin of human and animal blood are widely investigated to use as injectable hydrogel for tissue engineering which contributes to minimally invasive surgery, superior biodegradability, cell attachment, proliferation and regenerating new tissue. However, most of them fail to achieve to be used for tissue engineering application because of a risk of immune response and poor mechanical properties. To overcome the limitation of fibrin glue and to reduce the usage of products from human and animal blood, the artificial fibrin glue materials were developed. Recently, cellulose nanofiber (CNF) as reinforcing agent has been explored for many tissue engineering applications such as bone and cartilage due to its impressive biological compatibility, biodegradability and mechanical properties. CNF was extracted from cassava pulp. PEO-PPO-PEO diacrylate block copolymer is a biodegradable synthetic polymers which is water insoluble hydrogel after curing by UV light at low intensity. To enhance the cell adhesion abilities, gelatin methacrylate (GelMA), the denature form of collagen was used to incorporate into hydrogel. The aim of this study was to develop the artificial fibrin glue from CNF reinforced PEO-PPO-PEO diacrylate block copolymer/GelMA injectable hydrogel. CNF/PEO-PPO-PEO diacrylate block copolymer/GelMA injectable hydrogels were prepared with 2-hydroxy-1-(4-(hydroxy ethoxy) phenyl)-2-methyl-1-propanone (Irgacure 2959) as a photoinitiator. The physicochemical properties were investigated by measuring various properties such as thickness, gel fraction, mechanical properties and water uptake. At optimal preparation condition, CNF reinforced injectable hydrogel was successful prepared after curing with UV light within 7 minutes. This hydrogel showed gel fraction and water uptake of 81 and 85%, respectively. The cytotoxicity, cell adhesion and proliferation of CNF reinforced injectable hydrogel was presented. Cellulose nanofiber from casava pulp was successfully used to prepare injectable hydrogel as artificial fibrin glue for tissue engineering. The hydrogel showed good physical properties which can be applied to use for tissue engineering application


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 44 - 44
11 Apr 2023
Medesan P Chen Y Rust P Mearns-Spragg A Paxton J
Full Access

Jellyfish collagens exhibit auspicious perspectives for tissue engineering applications primarily due to their outstanding compatibility with a wide range of cell types, low immunogenicity and biodegradability. Furthermore, derived from a non-mammalian source, jellyfish collagens reduce the risk of disease transmission, minimising therefore the ethical and safety concerns. The current study aims to investigate the potential of 3-dimensional jellyfish collagen sponges (3D-JCS) in promoting bone tissue regeneration. Both qualitative and quantitative analyses were performed in order to assess adhesion and proliferation of MC3T3 cells on 3D-JCL, as well as cell migration and bone-like ECM production. Histological and fluorescent dyes were used to stain mineral deposits (i.e. Alizarin Red S (ARS), Von Kossa, Tetracycline hydrochloride) while images were acquired using optical and confocal microscopy. Qualitative data indicated successful adhesion and proliferation of MC3T3 cells on the 3D-JCS as well as cell migration along with ECM production both on the inner and outer surface of the scaffolds. Moreover, quantitative analyses indicated a four-fold increase of ARS uptake between 2- and 3-dimensional cultures (N=3) as well as an eighteen-fold increase of ARS uptake for the 3D-JCS (N=3) when cultured in osteogenic conditions compared to control. This suggests the augmented osteogenic potential of MC3T3 cells when cultured on 3D-JCS. Nevertheless, the cell-mediated mineral deposition appeared to alter the mechanical properties of the jellyfish collagen sponges that were previously reported to exhibit low mechanical properties (compressive modulus: 1-2 kPa before culture). The biocompatibility, high porosity and pore interconnectivity of jellyfish collagen sponges promoted adhesion and proliferation of MC3T3 cells as well as cell migration and bone-like ECM production. Their unique features recommend the jellyfish collagen sponges as superior biomaterial scaffolds for bone tissue regeneration. Further studies are required to quantify the change in mechanical properties of the cell-seeded scaffolds and confirm their suitability for bone tissue regeneration. We predict that the 3D-JCS will be useful for future studies in both bone and bone-tendon interface regeneration. Acknowledgments. This research has been supported by a Medical Research Scotland Studentship award (ref: -50177-2019) in collaboration with Jellagen Ltd


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 59 - 59
2 Jan 2024
Depboylu F
Full Access

Production of porous titanium bone implants is a highly promising research and application area due to providing high osseointegration and achieving the desired mechanical properties. Production of controlled porosity in titanium implants is possible with laser powder bed fusion (L- PBF) technology. The main topics of this presentation includes the L-PBF process parameter optimization to manufacture thin walls of porous titanium structures with almost full density and good mechanical properties as well as good dimensional accuracy. Moreover, the cleaning and coating process of these structures to further increase osseointegration and then in-vitro biocompatibility will be covered


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 16 - 16
2 Jan 2024
Aydin M Luciani T Mohamed-Ahmed S Yassin M Mustafa K Rashad A
Full Access

The aim of this study is to print 3D polycaprolactone (PCL) scaffolds at high and low temperature (HT/LT) combined with salt leaching to induced porosity/larger pore size and improve material degradation without compromising cellular activity of printed scaffolds. PCL solutions with sodium chloride (NaCl) particles either directly printed in LT or were casted, dried, and printed in HT followed by washing in deionized water (DI) to leach out the salt. Micro-Computed tomography (Micro-CT) and scanning electron microscope (SEM) were performed for morphological analysis. The effect of the porosity on the mechanical properties and degradation was evaluated by a tensile test and etching with NaOH, respectively. To evaluate cellular responses, human bone marrow-derived mesenchymal stem/stromal cells (hBMSCs) were cultured on the scaffolds and their viability, attachment, morphology, proliferation, and osteogenic differentiation were assessed. Micro-CT and SEM analysis showed that porosity induced by the salt leaching increased with increasing the salt content in HT, however no change was observed in LT. Structure thickness reduced with elevating NaCl content. Mass loss of scaffolds dramatically increased with elevated porosity in HT. Dog bone-shaped specimens with induced porosity exhibited higher ductility and toughness but less strength and stiffness under the tension in HT whereas they showed decrease in all mechanical properties in LT. All scaffolds showed excellent cytocompatibility. Cells were able to attach on the surface of the scaffolds and grow up to 14 days. Microscopy images of the seeded scaffolds showed substantial increase in the formation of extracellular matrix (ECM) network and elongation of the cells. The study demonstrated the ability of combining 3D printing and particulate leaching together to fabricate porous PCL scaffolds. The scaffolds were successfully printed with various salt content without negatively affecting cell responses. Printing porous thermoplastic polymer could be of great importance for temporary biocompatible implants in bone tissue engineering applications


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 135 - 135
4 Apr 2023
Monahan G Schiavi-Tritz J Vaughan T
Full Access

This study aims to assess the fracture mechanics of type-2 diabetic (T2D) femoral bone using innovative site-specific tests, whilst also examining the cortical and trabecular bone microarchitecture from various regions using micro-computed tomography (CT) of the femur as the disease progresses. Male [Zucker Diabetic Fatty (ZDF: fa/fa) (T2D) and Zucker Lean (ZL: fa/+) (Control)] rats were euthanized at 12-weeks of age, thereafter, right and left femora were dissected (Right femora: n = 6, per age, per condition; Left femora: n=8-9, per age, per condition). Right femurs were notched in the posterior of the midshaft. Micro-CT was used to scan the proximal femur, notched and unnotched femoral midshaft (cortical) of the right femur and the distal metaphysis (trabecular) of the left femur to investigate microarchitecture and composition. Right femurs were fracture toughness tested to measure the stress intensity factor (Kic) followed by a sideways fall test using a custom-made rig to investigate femoral neck mechanical properties. There was no difference in trabecular and cortical tissue material density (TMD) between T2D and control rats. Cortical thickness was unchanged, but trabeculae were thinner (p<0.01) in T2D rats versus controls. However, T2D rats had a greater number of trabeculae (p<0.05) although trabecular spacing was not different to controls. T2D rats had a higher connectivity distribution (p<0.05) and degree of anisotropy (p<0.05) in comparison to controls. There was no difference in the mechanical properties between strains. At 12-weeks of age, rats are experiencing early-stage T2Ds and the disease impact is currently not very clear. Structural and material properties are unchanged between strains, but the trabecular morphology shows that T2D rats have more trabecular struts present in order to account for the thinner trabeculae


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 38 - 38
4 Apr 2023
Döring J Basten S Ecke M Herbster M Kirsch B Halle T Lohmann C Bertrand J Aurich J
Full Access

Reducing wear of endoprosthetic implants is still an important goal in order to increase the life time of the implant. Endoprosthesis failure can be caused by many different mechanisms, such as abrasive wear, corrosion, fretting or foreign body reactions due to wear accumulation. Especially, modular junctions exhibit high wear rates and corrosion due to micromotions at the connection of the individual components. The wear generation of cobalt-chromium-molybdenum alloys (CoCrMo) is strongly influenced by the microstructure. Therefore, the aim of this work is to investigate the subsurface phase transformation by deep rolling manufacturing processes in combination with a “sub-zero” cooling strategy. We analyzed the influence on the phase structure and the mechanical properties of wrought CoCr28Mo6 alloy (ISO 5832-12) by a deep rolling manufacturing process at various temperatures (+25°C,-10°C,-35°C) and different normal forces (700N and 1400N). Surface (S. a. ,S. z. ) and subsurface characteristics (residual stress) as well as biological behavior were investigated for a potential implant application. We showed that the microstructure of CoCr28Mo6 wrought alloy changes depending on applied force and temperature. The face centered cubic (fcc) phase could be transformed to a harder hexagonal-close-packed (hcp) phase structure in the subsurface. The surface could be smoothed (up to S. a. = 0.387 µm±0.185 µm) and hardened (≥ 700 HV 0.1) at the same time. The residual stress was increased by more than 600% (n=3). As a readout for metabolic activity of MonoMac (MM6) and osteosarcoma (SaOS-2) cells a WST assay (n=3) was used. The cells showed no significant negative effect of the sub-zero manufacturing process. We showed that deep rolling in combination with an innovative cooling strategy for the manufacturing process has a great potential to improve the mechanical properties of CoCr28Mo6 wrought alloy, by subsurface hardening and phase transformation for implant applications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 117 - 117
2 Jan 2024
Bektas E Wesdorp MA Schwab A Stoddart M Mata A Van Osch G D'Este M
Full Access

Biomaterials with mechanical or biological competence are ubiquitous in musculoskeletal disorders, and understanding the inflammatory response they trigger is key to guide tissue regeneration. While macrophage role has been widely investigated, immune response is regulated by other immune cells, including neutrophils, the most abundant leukocyte in human blood. As first responders to injury, infection or material implantation, neutrophils recruit other immune cells, and therefore influence the onset and resolution of chronic inflammation, and macrophage polarization. This response depends on the physical and chemical properties of the biomaterials, among other factors. In this study we report an in vitro culture model to describe the most important neutrophil functions in relation to tissue repair. We identified neutrophil survival and death, neutrophils extracellular trap formation, release of reactive oxygen species and degranulation with cytokines release as key functions and introduced a corresponding array of assays. These tests were suitable to identify clear differences in the response by neutrophils that were cultured on material of different origin, stiffness and chemical composition. Overall, substrates from biopolymers of natural origin resulted in increased survival, less neutrophil extracellular trap formation, and more reactive oxygen species production than synthetic polymers. Within the range of mechanical properties explored (storage modulus below 5 k Pa), storage modulus of covalently crosslinked hyaluronic acid hydrogels did not significantly alter neutrophils response, whereas polyvinyl alcohol gels of matching mechanical properties displayed a response indicating increased activation. Additionally, we present the effect of material stiffness, charge, coating and culture conditions in the measured neutrophils response. Further studies are needed to correlate the neutrophil response to tissue healing. By deciphering how neutrophils initiate and modulate the immune response to material implantation, we aim at introducing new principles to design immunomodulatory biomaterials for musculoskeletal disorders. Acknowledgments. This work was supported by the AO Foundation, AO CMF, grant AOCMF-21-04S


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 9 - 9
17 Apr 2023
Mortimer J Tamaddon M Liu C
Full Access

Rotator cuff tears are common, with failure rates of up to 94% for large and massive tears. 1. For such tears, reattachment of the musculotendinous unit back to bone is problematic, and any possible tendon-bone repair heals through scar tissue rather than the specially adapted native enthesis. We aim to develop and characterise a novel soft-hard tissue connector device, specific to repairing/bridging the tendon-bone injury in significant rotator cuff tears, employing decellularised animal bone partially demineralised at one end for soft tissue continuation. Optimisation samples of 15×10×5mm. 3. , trialled as separate cancellous and cortical bone samples, were cut from porcine femoral condyles and shafts, respectively. Samples underwent 1-week progressive stepwise decellularisation and a partial demineralisation process of half wax embedding and acid bathing. Characterisations were performed histologically for the presence/absence of cellular staining in both peripheral and central tissue areas (n=3 for each cortical/cancellous, test/PBS control and peripheral/central group), and with BioDent reference point indentation (RPI) for pre- and post-processing mechanical properties. Histology revealed absent cellular staining in peripheral and central cancellous samples, whilst reduced in cortical samples compared to controls. Cancellous samples decreased in wet mass after decellularisation by 45.3% (p<0.001). RPI measurements associated with toughness (total indentation depth, indentation depth increase) and elasticity (1st cycle unloading slope) showed no consistent changes after decellularisation. X-rays confirmed half wax embedding provided predictable control of the mineralised-demineralised interface position. Initial optimisation trials show proof-of-concept of a soft-hard hybrid scaffold as an immune compatible xenograft for irreparable rotator cuff tears. Decellularisation did not appreciably affect mechanical properties, and further biological, structural and chemical characterisations are underway to assess validity before in vivo animal trials and potential clinical translation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 65 - 65
17 Apr 2023
Tacchella C Lombardero SM Clutton E Chen Y Crichton M
Full Access

In this work, we propose a new quantitative way of evaluating acute compartment syndrome (ACS) by dynamic mechanical assessment of soft tissue changes. First, we have developed an animal model of ACS to replicate the physiological changes during the condition. Secondly, we have developed a mechanical assessment tool for quantitative pre-clinical assessment of ACS. Our hand-held indentation device provides an accurate method for investigations into the local dynamic mechanical properties of soft tissue and for in-situ non-invasive assessment and monitoring of ACS. Our compartment syndrome model was developed on the cranial tibial and the peroneus tertius muscles of a pig's leg (postmortem). The compartment syndrome pressure values were obtained by injecting blood from the bone through the muscle. To enable ACS assessment by a hand-held indentation device we combined three main components: a load cell, a linear actuator and a 3-axis accelerometer. Dynamic tests were performed at a frequency of 0.5 Hz and by applying an amplitude of 0.5 mm. Another method used to observe the differences in the mechanical properties inside the leg was a 3D Digital Image Correlation (3D-DIC). Videos were taken from two different positions of the pig's leg at different pressure values: 0 mmHg, 15 mmHg and 40 mmHg. Two strains along the x axis (Exx) and y axis (Eyy) were measured. Between the two pressure cases (15 mmHg and 40 mmHg) a clear deformation of the model is visible. In fact, the bigger the pressure, the more visible the increase in strain is. In our animal model, local muscle pressures reached values higher than 40 mmHg, which correlate with observed human physiology in ACS. In our presentation we will share our dynamic indentation results on this model to demonstrate the sensitivity of our measurement techniques. Compartment syndrome is recognised as needing improved clinical management tools. Our approach provides both a model that reflects physiological behaviour of ACS, and a method for in-situ non-invasive assessment and monitoring


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 34 - 34
2 Jan 2024
Díaz-Payno P Llorca J Lantada A Patterson J
Full Access

Even minor lesions in articular cartilage (AC) can cause underlying bone damage creating an osteochondral (OC) defect. OC defects can cause pain, impaired mobility and can develop to osteoarthritis (OA). OA is a disease that affects nearly 10% of the population worldwide. [1]. , and represents a significant economic burden to patients and society. [2]. While significant progress has been made in this field, realising an efficacious therapeutic option for unresolved OA remains elusive and is considered one of the greatest challenges in the field of orthopaedic regenerative medicine. [3]. Therefore, there is a societal need to develop new strategies for AC regeneration. In recent years there has been increased interest in the use of tissue-specific aligned porous freeze-dried extracellular matrix (ECM) scaffolds as an off-the-shelf approach for AC repair, as they allow for cell infiltration, provide biological cues to direct target-tissue repair and permit aligned tissue deposition, desired in AC repair. [4]. However, most ECM-scaffolds lack the appropriate mechanical properties to withstand the loads passing through the joint. [5]. One solution to this problem is to reinforce the ECM with a stiffer framework made of synthetic materials, such as polylactic acid (PLA). [6]. Such framework can be 3D printed to produce anatomically accurate implants. [7]. , attractive in personalized medicine. However, typical 3D prints are static, their design is not optimized for soft-hard interfaces (OC interface), and they may not adapt to the cyclic loading passing through our joints, thus risking implant failure. To tackle this limitation, more compliant or dynamic designs can be printed, such as coil-shaped structures. [8]. Thus, in this study we use finite element modelling to create different designs that mimic the mechanical properties of AC and prototype them in PLA, using polyvinyl alcohol as support. The optimal design will be combined with an ECM scaffold containing a tailored microarchitecture mimicking aspects of native AC. Acknowledgments: This project has received funding from the European Union's Horizon Europe research and innovation MSCA PF programme under grant agreement No. 101110000


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 25 - 25
1 Dec 2021
Solis J Edwards JH Fermor H Brockett C Herbert A
Full Access

Abstract. Decellularised porcine superflexor tendon (pSFT) provides an off-the-shelf, cost-efficient option for ACL reconstruction (ACLR). During decellularisation, phosphate buffered saline (PBS) is used for washing out cytotoxic solutes and reagents, maintaining tissue hydration. It has been shown to increase water content in tendon, swelling the tissue reducing mechanical properties. End stage PBS washes in the standard protocol were substituted with alternative solutions to study tissue swelling and its impact on the mechanical behaviour and matrix composition of pSFTs. 25%, 100% Ringers and physiological saline test groups were used (n=6 for all groups). pSFTs were subject to tensile and confined compression testing. Relative hydroxyproline (HYP), glycosaminoglycan (GAG) and denatured collagen content (DNC) were quantified. Modified decellularised tendon groups were compared to tendons decellularised using the standard protocol and native tendons. Specimen dimensions reduced (p=0.004) post-decellularisation only in 25% Ringers group. In all other modified groups, less swelling was apparent but not statistically different from standard group. Only 25% Ringers group had higher linear modulus (p=0.0035) and UTS (p=0.013) compared to standard group. All decellularised groups properties were reduced compared to native pSFTs. Stress relaxation properties showed a significant reduction in decellularised groups compared to native. Compression testing showed no significant differences in peak stress for modified decellularised groups compared to native. A reduction (p=0.036) was observed in standard group. Quantification of GAGs and DNC showed no significant differences between groups. HYP content was higher (p<0.0001) for saline group. A significant reduction in tissue swelling could be related to improved mechanical properties of decellularised pSFTs. Alternative solutions in end stage washes had no significant effect on quantities of matrix components, but altered structure/function could explain the differences in tensile and compressive behaviour, and should be further studied. In all decellularised groups, pSFTs retained suitable mechanical properties for ACLR


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 5 - 5
1 Dec 2022
Lombardo MDM Mangiavini L Peretti GM
Full Access

Menisci are crucial structures for knee homeostasis: they provide increase of congruence between the articular surfaces of the distal femur and tibial plateau, bear loading, shock absorption, lubrication, and proprioception. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible: only the meniscus tissue which is identified as unrepairable should be excised and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping, or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The features needed for a meniscal scaffold are: promotion of cell migration, it should be biomimetic and biocompatible, it should resist forces applied and transmitted by the knee, it should slowly biodegrade and should be easy to handle and implant. Several materials have been tested, that can be divided into synthetic and biological. The first have the advantage to be manufactured with the desired shapes and sizes and with precise porosity dimension and biomechanical characteristics. To date, the most common polymers are polylactic acid (PGA); poly-(L)-lactic acid (PLLA); poly- (lactic-co-glycolic acid) (PLGA); polyurethane (PU); polyester carbon and polycaprolactone (PCL). The possible complications, more common in synthetic than natural polymers are poor cell adhesion and the possibility of developing a foreign body reaction or aseptic inflammation, leading to alter the joint architecture and consequently to worsen the functional outcomes. The biological materials that have been used over time are the periosteal tissue, the perichondrium, the small intestine submucosa (SIS), acellular porcine meniscal tissue, bacterial cellulose. Although these have a very high biocompatibility, some components are not suitable for tissue engineering as their conformation and mechanical properties cannot be modified. Collagen or proteoglycans are excellent candidates for meniscal engineering, as they maintain a high biocompatibility, they allow for the modification of the porosity texture and size and the adaptation to the patient meniscus shape. On the other hand, they have poor biomechanical characteristics and a more rapid degradation rate, compared to others, which could interfere with the complete replacement by the host tissue. An interesting alternative is represented by hydrogel scaffolds. Their semi-liquid nature allows for the generation of scaffolds with very precise geometries obtained from diagnostic images (i.e. MRI). Promising results have been reported with alginate and polyvinyl alcohol (PVA). Furthermore, hydrogel scaffolds can be enriched with growth factors, platelet-rich plasma (PRP) and Bone Marrow Aspirate Concentrate (BMAC). In recent years, several researchers have developed meniscal scaffolds combining different biomaterials, to optimize the mechanical and biological characteristics of each polymer. For example, biological polymers such as chitosan, collagen and gelatin allow for excellent cellular interactions, on the contrary synthetic polymers guarantee better biomechanical properties and greater reliability in the degradation time. Three-dimensional (3D) printing is a very interesting method for meniscus repair because it allows for a patient-specific customization of the scaffolds. The optimal scaffold should be characterized by many biophysical and biochemical properties as well as bioactivity to ensure an ECM-like microenvironment for cell survival and differentiation and restoration of the anatomical and mechanical properties of the native meniscus. The new technological advances in recent years, such as 3D bioprinting and mesenchymal stem cells management will probably lead to an acceleration in the design, development, and validation of new and effective meniscal substitutes