This study compares outcomes of fixation of subtrochanteric femoral fractures using a single
Introduction: Weber B fractures are one of the most common fractures of the ankle. Unstable fractures are treated with lateral plating and a
Introduction. The vast majority of intertrochanteric fractures treated with cephalomedullary nails (CMN) will heal. Occasionally even though bony union occurs excessive
Subtrochanteric femoral fractures are a subset of hip fractures generally treated with cephalomedullary nail fixation\[1\]. Single
Introduction:
Good
Abstract. Background. Multiple devices can stabilise the MTP joint for arthrodesis. The ideal implant should be easy to use, provide reproducible and high quality results, and ideally enable early rehabilitation to enable faster return to function, whilst lessening soft tissue irritation. We prospectively evaluated the combination of the IO-Fix (Extremity Medical, NJ, USA) device which consists of an intra-osseous post and
Purpose: A variety of second generation femoral interlocking intramedullary nails, in which the proximal
Minimizing tip-apex distance has been shown to reduce clinical failure of sliding hip screws used to fix peritro-chanteric fractures. The purpose of this study was to determine if such a relationship exists for the position of the
Purpose: Healing may be problematic after
Purpose: Minimizing tip-apex distance (TAD) has been shown to reduce clinical failure of extramedullary sliding hip screws used to fix peritrochanteric fractures. There is debate regarding the optimal position of the
The rigidity of a sliding compression screw and three cannulated
Hypothesis. The proximal geometry and design of trochanteric nails affects initial construct stiffness, fatigue survival, and preservation of biomechanical stability over time. Materials & Methods. Eight pairs of human cadaveric femora were implanted with two different short intramedullary nails with (Intertan, (S&N)) and without (Gamma 3, (Stryker)) interlocking
Purpose: Cephalomedullary nails rely on a large
We report our experience in 42 patients, using corticocancellous bone grafts and
The compression produced by and the resistance to pullout of the 6.5 mm cannulated Herbert screw were compared with those of ASIF headed screws. The latter were tested with and without washers and in the following sizes: 4.5 mm cortical, 6.5 mm cancellous with a 16 mm threaded segment, and 6.5 mm cancellous with a 32 mm threaded segment. Polyurethane foam was used as a substitute for cancellous bone and ASIF artificial bone for corticocancellous bone. The compression produced by a cancellous
Over the past four decades, internal fixation has continued to gain popularity as a method for treating fractures because of significant improvements in both implant design and materials. This biomechanical study compares the compressive forces generated by a conventional 4.5 AO/ASIF cortical
A number of techniques have been developed to improve the immediate mechanical anchorage of implants for enhancing implant longevity. This issue becomes even more relevant in patients with osteoporosis who have fragile bone. We have previously shown that a dynamic hip screw (DHS) can be augmented with a calcium sulphate/hydroxyapatite (CaS/HA) based injectable biomaterial to increase the immediate mechanical anchorage of the DHS system to saw bones with a 400% increase in peak extraction force compared to un-augmented DHS. The results were also at par with bone cement (PMMA). The aim of this study was to investigate the effect of CaS/HA augmentation on the integration of a different fracture fixation device (gamma nail lag-screw) with osteoporotic saw bones. Osteoporotic saw bones (bone volume fraction = 15%) were instrumented with a gamma nail without augmentation (n=8) or augmented (n=8) with a CaS/HA biomaterial (Cerament BVF, Bonesupport AB, Sweden) using a newly developed augmentation method described earlier. The lag-screws from both groups were then pulled out at a displacement rate of 0.5 mm/s until failure. Peak extraction force was recorded for each specimen along with photographs of the screws post-extraction. A non-parametric t-test was used to compare the two groups. CaS/HA augmentation of the lag-screw led to a 650% increase in the peak extraction force compared with the controls (p<0.01). Photographs of the augmented samples shows failure of the saw-bones further away from the implant-bone interface indicating a protective effect of the CaS/HA material. We present a novel method to enhance the immediate mechanical anchorage of a lag-screw to osteoporotic bone and it is also envisaged that CaS/HA augmentation combined with systemic bisphosphonate treatment can lead to new bone formation and aid in the reduction of implant failures and re-operations.