Abstract
Over the past four decades, internal fixation has continued to gain popularity as a method for treating fractures because of significant improvements in both implant design and materials. This biomechanical study compares the compressive forces generated by a conventional 4.5 AO/ASIF cortical screw lag screw with a differential pitch cortical compression screw in a simulated fracture model using whole bone composite femur. The differential pitch screw investigated in this study generates 82% of the compression generated by a conventional 4.5mm AO/ASIF cortical screw. Proving compression in diaphyseal fractures is achievable using a differential pitch screw. Sufficient compression is generated to allow osteosynthesis using a plate to be preformed independent of the lag screw positioning. It is thus advantageous over the traditional compromise that arises when exposure to the fracture site is limited, of either incorporating the lag screw into the plate of choosing a non-optimal plate or screw position. It is proposed as an adjunct to the internal fixation of long bone fractures and not a single fixation device.
The abstracts were prepared by Emer Agnew. Correspondence should be addressed to Irish Orthopaedic Association, Secretariat, c/o Cappagh National Orthopaedic Hospital, Finglas, Dublin 11, Ireland.