Advertisement for orthosearch.org.uk
Results 1 - 20 of 46
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 39 - 39
1 Feb 2020
Suda Y Muratsu H Hiranaka Y Tamaoka T Oshima T Koga T Matsumoto T Maruo A Miya H Kuroda R
Full Access

Introduction. The influences of posterior tibial slope on the knee kinematics have been reported in both TKA and UKA. We hypothesized the posterior tibial slope (PTS) would affect the sagittal knee alignment after UKA. The influences of PTS on postoperative knee extension angle were investigated with routine lateral radiographies of the knee after UKA. Materials & Methods. Twenty-four patients (26 knees; 19 females, 7 males) underwent medial UKA were involved in this study. Average age was 74.8 ± 7.2 years. The mean preoperative active range of motion were − 4.1° ± 6.3°in extension and 123.2° ± 15.5° in flexion. All UKAs were performed using fixed bearing type UKA (Zimmer Biomet, ZUK), with adjusting the posterior slope of the proximal tibial bone cut according to the original geometry of the tibia. Routine lateral radiographies of the knee were examined preoperatively, 6 months after the surgery. PTS and knee extension angles with maximal active knee extension (mEXT) and one-leg standing (sEXT) were radiographically measured. We used the fibular shaft axis (FSA) for the sagittal mechanical axis of the tibia. PTS was defined as the angle between the medial tibial plateau and the perpendicular axis of FSA. Extension angles (mEXT and sEXT) were defined as the angles between FSA and distal femoral shaft axis (positive value for hyperextension). The changes of PTS and the influences of PTS on sEXT at each time period were analyzed using simple linear regression analysis (p<0.05). Results. The mean PTSs were 10.0° ± 3.0° and 9.9° ± 2.7° preoperatively, 6m after surgery respectively. The mean mEXTs were −4.1° ± 6.3° and −2.0° ± 5.4°, and sEXTs were −9.4° ± 7.6° and −7.3° ± 6.7° at each time period. Preoperative and postoperative PTS had positive correlation (r = −0.65). PTS significantly negatively correlated to sEXT at 6 months after the surgery (r = −0.63). Discussions. We found patient tended to stand with slight knee flexion (sEXT) which was smaller than the flexion contracture measured by mEXT. Interestingly, postoperative PTS significantly correlated to the knee flexion angle during one-leg standing. Patients with the higher PTS after UKA were more likely to stand with the higher knee flexion. The higher PTS had been reported to increase tibial anterior translation and strain or tear of the anterior cruciate ligament with load bearing in the normal knee. Slight knee flexion during one-leg standing would be beneficial to keep the joint surface parallel to the ground depending on PTS and reduce the anterior shearing force on the tibia after UKA. Conclusion. Postoperative posterior tibial slope reduced knee extension angle during one-leg standing after UKA. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 63 - 63
1 May 2016
Jenny J Bureggah A Diesinger Y
Full Access

INTRODUCTION

Measurement of range of motion is a critical item of any knee scoring system. Conventional measurements used in the clinical settings are not as precise as required. Smartphone technology using either inclinometer application or photographic technology may be more precise with virtually no additional cost when compared to more sophisticated techniques such as gait analysis or image analysis. No comparative analysis between these two techniques has been previously performed. The goal of the study was to compare these two technologies to the navigated measurement considered as the gold standard.

MATERIAL

Ten patients were consecutively included. Inclusion criterion was implantation of a TKA with a navigation system.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 74 - 74
1 May 2016
Nakano N Matsumoto T Muratsu H Takayama K Kuroda R Kurosaka M
Full Access

Introduction / Purpose

Many factors can influence postoperative knee flexion angle after total knee arthroplasty (TKA), and range of flexion is one of the most important clinical outcomes. Although many studies have reported that postoperative knee flexion is influenced by preoperative clinical conditions, the factors which affect postoperative knee flexion angle have not been fully elucidated. As appropriate soft-tissue balancing as well as accurate bony cuts and implantation has traditionally been the focus of TKA success, in this study, we tried to investigate the influence of intraoperative soft-tissue balance on postoperative knee flexion angle after cruciate-retaining (CR) TKA using a navigation system and offset-type tensor.

Methods

We retrospectively analyzed 55 patients (43 women, 12 men) with osteoarthritis who underwent TKA using the same mobile-bearing CR-type implant (e.motion; B. Braun Aesculap, Germany). The mean age at the time of surgery was 74.2 (SD 7.3) years. The exclusion criteria for this study included valgus deformity, severe bony defect requiring bone graft or augmentation, revision TKA, active knee joint infection, and bilateral TKA. Intraoperative soft-tissue balance parameters such as varus ligament balance and joint component gap were measured in the navigation system (Orthopilot 4.2; B. Braun Aesculap) while applying 40-lb joint distraction force at 0°, 10°, 30°, 60°, 90°, and 120° of knee flexion using an offset-type tensor with the patella reduced. Varus ligament balance was defined as the angle (degree, positive value in varus imbalance) between the seesaw and platform plates of the tensor that was obtained from the values displayed by the navigation system. To determine clinical outcome, we measured knee flexion angle using a goniometer with the patient in the supine position before and 2 years after surgery. Correlations between the soft-tissue parameters and postoperative knee flexion angle were analyzed using simple linear regression models. Pre- and postoperative knee flexion angle were also analyzed in the same manner.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 206 - 206
1 Mar 2013
Jenny J
Full Access

INTRODUCTION

The magnitude of knee flexion angle is a relevant information during clinical examination of the knee, and this item is a significant part of every knee scoring system. It is generally performed by visual analysis or with manual goniometers, but these techniques may be neither precise nor accurate. More sophisticated techniques are only possible in experimental studies. Smartphone technology might offer a new way to perform this measurement with increased accuracy.

MATERIAL

20 patients operated on for unicompartmental or total knee replacement with help of a navigation system participated to the study. There were 13 women and 7 men with a mean age of 72.1 years.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 38 - 38
1 May 2016
Higashi H Kaneyama R Shiratsuchi H Oinuma K Miura Y Tamaki T Jonishi K Yoshii H
Full Access

Objective

In Total Knee Arthroplasty (TKA), it is important to adjust the difference of the flexion-extension gap (gap difference) to get the good range of motion and the sufficient stability. However the effect of the gap adjustment on the post-operative knee flexion angle(KFA) is unknown. We investigated the relationship between the gap difference and the postoperative KFA improvement rate.

Methods

179 knees that underwent LCS RP TKA were investigated more than 6 months after surgery(Feb/2013∼Sep/2014). The patients were 49 men and 130 women, of average age 70.6 years (50∼88) and BMI 26.3 (17.0∼55.2). Among them, 175 knees were knee osteoarthritis and 2 joints were rheumatoid arthritis, 2 joints were avascular necrosis. The extension gap was typically prepared with a measured resection, and a small temporary flexion bone gap was prepared with a 4mm resection of the femoral posterior condyle using the pre-cut method(fig 1). Then we measured the gaps under the installation of the Pre-cut Trial(PT; Kaneyama 2011)by the off-set spacer with 1mm increments in patella reduction position(fig 2,3). The final amount of bone resection was determined by comparison of the measured gaps and gaps required for implantation. We calculated the differences between the final extension gap and the final flexion gap and their relationship with knee flexion angles at 6 months postoperatively were analyzed.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 89 - 89
23 Feb 2023
Marasco S Gieroba T Di Bella C Babazadeh S Van Bavel D
Full Access

Identifying and restoring alignment is a primary aim of total knee arthroplasty (TKA). In the coronal plane, the pre-pathological hip knee angle can be predicted using an arithmetic method (aHKA) by measuring the medial proximal tibial angle (MPTA) and lateral distal femoral angle (aHKA=MPTA - LDFA). The aHKA is shown to be predictive of coronal alignment prior to the onset of osteoarthritis; a useful guide when considering a non-mechanically aligned TKA. The aim of this study is to investigate the intra- and inter-observer accuracy of aHKA measurements on long leg standing radiographs (LLR) and preoperative Mako CT planning scans (CTs). Sixty-eight patients who underwent TKA from 2020–2021 with pre-operative LLR and CTs were included. Three observers (Surgeon, Fellow, Registrar) measured the LDFA and MPTA on LLR and CT independently on three separate occasions, to determine aHKA. Statistical analysis was undertaken with Bland-Altman test and coefficient of repeatability. An average intra-observer measurement error of 3.5° on LLR and 1.73° on CTs for MPTA was detected. Inter-observer errors were 2.74° on LLR and 1.28° on CTs. For LDFA, average intra-observer measurement error was 2.93° on LLR and 2.3° on CTs, with inter-observer errors of 2.31° on LLR and 1.92° on CTs. Average aHKA intra-observer error was 4.8° on LLR and 2.82° on CTs. Inter-observer error of 3.56° for LLR and 2.0° on CTs was measured. The aHKA is reproducible on both LLR and CT. CT measurements are more reproducible both between and within observers. The difference between measurements using LLR and CT is small and hence these two can be considered interchangeable. CT may obviate the need for LLRs and may overcome difficulties associated with positioning, rotation, body habitus and flexion contractures when assessing coronal alignment


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 49 - 49
10 Feb 2023
Erian C Erian M Ektas N Scholes C Bell C
Full Access

Anterior cruciate ligament (ACL) ruptures are debilitating injuries, often managed via ACL reconstruction (ACLR). Reduced range of motion (ROM), particularly loss of extension (LOE), is the most significant contributor to post-operative patient dissatisfaction. LOE may preclude return to sport, increase re-rupture rates and precipitate osteoarthritis. Passive LOE rates following ACLR have been reported at 15%. However, LOE incidence during active tasks are poorly characterised. Our review sought to determine knee extension angles for active tasks following an ACL injury or ACLR. We hypothesised greater incidences of active LOE following ACL injury or ACLR, compared to uninjured contralateral limbs or controls. We systematically searched MEDLINE, Embase, Cochrane Library, Scopus, SPORTDiscus, and relevant trials databases for English articles. Included were cohort, cross-sectional, case-controlled or randomised controlled trials analysing adults with ACL injury treated surgically or otherwise, with at least 12-weeks follow-up and reporting either active knee extension angle, active LOE angles or incidence of active knee LOE during functional tasks. The protocol was registered on PROSPERO (CRD42018092295). Subsequent meta-analysis was performed. After screening, 71 eligible articles were included. Studies were heterogenous in design and quality. Included tasks were overground walking (n=44), running (n=3), hopping/jumping/cutting (n=11) single-leg landing (n=7), and stair climbing (n=6). LOE incidence varied depending on functional activities (33.95-92.74%). LOE incidence did not vary depending on ACL status (67.26% vs. 65.90% vs. 62.57% for ACL intact, ACLD and ACLR, respectively). We observed no difference in active LOE incidence according to ACL status. Importantly, the observed incidence for active LOE was reliably higher than previously reported rates for passive measures. Given the discrepancy between active and passive LOE incidence, clinicians may advisably prioritise active ROM during ACL rehabilitation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 149 - 149
1 Jul 2020
Burkhart T Getgood A Abbott M Dentremont A
Full Access

Previous studies have identified the anterolateral complex (ALC) as having an important role in controlling anterolateral rotatory laxity following anterior cruciate ligament injury and subsequent reconstruction. In particular, injury to the iliotibial band (ITB) and its component deep (dITB) and capsulo-osseous (coITB) layers, have been shown to significantly correlate with different grades of the pivot-shift test in patients with acute ACL injuries. However, the kinematic properties of the capsulo-osseous layer of the ITB, throughout knee range of motion, are not fully understood. The purpose of this study was to quantify the kinematic behaviour of the capsulo-osseous layer of the ITB through various degrees of knee flexion. Ten fresh-frozen cadaveric knee specimens were dissected to expose the capsulo-osseous layer of the iliotibial band. Radiopaque beads were embedded, at standardized increments (12.5%, 25%, 50% and 75% of total length from proximal to distal), into the tissue and fluoroscopic images were taken from 0o to 105o of knee flexion in 15° increments. The positions of the beads were identified in each image and the length, width, and area changes of the capsulo-osseous layer were calculated. Comparisons of the total length of the anterior and posterior borders of the coITB through knee ROM were conducted using a two-way (8 knee angles by 2 borders) repeated measures analysis of variance (rm-ANOVA), whereas the effect of knee angle on isometry and total area changes was assessed using one-way rm-ANOVAs (α=0.05). There was a significant increase in the length of the anterior capsulo-osseous layer at flexion angles greater than 15o and on the posterior border at angles greater than 75 o with changes occurring primarily at 12.5 % of the total length. In addition, at all flexion angles the length changes were significantly larger in the anterior border compared to the posterior border. Meanwhile, non-homogenous decreases in width and area were found with increasing flexion angle. The distance between the capsulo-osseous layer insertion on the distal femur and proximal tibia significantly increased from 60o-105o, maximal changes occurred at 105o (9.64 [4.12] %, p = 0.003). The primary finding of this study was that the coITB behaved in a non-isometric fashion, with significant increases in length occurring at flexion angles greater than 15o. Moreover, these changes in length were non-homogenous across the different regions of the coITB that were investigated, with the greatest changes occurring in the proximal segments (0–25%). The data presented here suggest that coITB in flexion angles from 0o to 105o behaves in a non-isometric fashion, with the majority of its length change occurring in its proximal segment. Further quantification of the pathway that the coITB takes with respect to osseous landmarks may result in improvements in ALC procedures as an augmentation to ACL reconstruction, thereby potentially improving rotational stability and clinical outcomes


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 142 - 142
1 Jul 2020
Wilson J Outerleys J Wilson D Richardson G Dunbar MJ
Full Access

Up to 20 percent of patients remain dissatisfied after primary total knee arthroplasty (TKA) surgery. Understanding the reasons for dissatisfaction post TKA may allow for better patient selection and optimized treatment for those who remain dissatisfied. The association between function, mobility and satisfaction are not well understood. The purpose of this study was to investigate the association between post-TKA satisfaction and i) pre-operative, ii) post-operative, and iii) change in knee joint function during gait. Thirty-one patients scheduled to receive primary TKA for knee osteoarthritis (OA) diagnosis were recruited and visited the Dynamics of Human Motion laboratory for instrumented walking gait analysis (using a synchronized NDI Optotrak motion capture system and AMTI force platforms in the walkway) at two time points, first within the week prior to their surgery, and second at approximately one year after surgery. At their post-operative visit, patients were asked to indicate their satisfaction with their knee prosthesis on a scale from zero to 100, with zero being totally unsatisfied and 100 being completely satisfied. Knee joint mechanics during gait at both time points were characterized by discriminant scores, the projection of their three-dimensional knee angles and moments during gait onto an existing discriminant model that was created to optimize separation of severe knee OA and healthy asymptomatic gait patterns. This discriminant model was created using data from 73 healthy participants and 73 with severe knee OA, and includes the magnitude and pattern features (captured with principal component analysis) of the knee adduction and flexion moment, and the magnitude of the knee flexion angle during gait. Larger discriminant scores indicate improved function toward healthy patterns, and smaller scores indicate more severe function. Associations between post-operative satisfaction and pre, post and change in discriminant scores were examined using Pearson correlation analyses. We also examined associations between satisfaction and pre-operative BMI, EQ5D and Oxford 12 scores, as well as changes in these scores from pre to post-TKA. Discriminant scores representing knee joint function during gait significantly improved on average after surgery (P =0.05). While overall knee joint function improved after primary TKA surgery, the amount of improvement in function was not reflected in post-operative patient satisfaction. However, the pre-operative function of the patient was negatively associated with satisfaction, indicating that patients with higher pre-operative function are overall less satisfied with their TKA surgery, regardless of any functional improvement due to the surgery. Interestingly, the only significant association with post-operative satisfaction was knee joint function, and the relationship between function and patient satisfaction following TKA appears to relate only to the baseline functional state of the patient, and not with functional improvement. This suggests that dissatisfaction post-surgery is more likely reflecting the unmet expectations of a higher functioning patient, and has implications for the need for improved understanding of pre-operative patient functional variability in TKA triage and expectation management


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 14 - 14
1 Jul 2020
Young K Wilson JA Dunbar MJ Roy P Abidi S
Full Access

Identifying knee osteoarthritis (OA) patient phenotypes is relevant to assessing treatment efficacy, yet biomechanical variability has not been applied to phenotyping. This study aimed to identify demographic and gait related groups (clusters) among total knee arthroplasty (TKA) candidates, and examine inter-cluster differences in gait feature improvement post-TKA. Knee OA patients scheduled for TKA underwent three-dimensional gait analysis one-week pre and one-year post-TKA, capturing lower-limb external ground reaction forces and kinematics using a force platform and optoelectronic motion capture. Principal component analysis was applied to frontal and sagittal knee angle and moment waveforms (n=135 pre-TKA, n=106 post-TKA), resulting in a new uncorrelated dataset of subject PCscores and PC vectors, describing major modes of variability throughout one gait cycle (0–100%). Demographics (age, gender, body mass index (BMI), gait speed), and gait angle and moment PCscores were standardized and assessed for outliers. One patient exceeding Tukey's outer (3IQR) fence was removed. Two-dimensional multidimensional scaling followed by k-medoids clustering was applied to scaled demographics and pre-TKA PCscores [134×15]. Number of clusters (k=2:10) were assessed by silhouette coefficients, s, and stability by Adjusted Rand Indices (ARI) of 100 data subsets. Clusters were validated by examining inter-cluster differences at baseline, and inter-cluster gait changes (PostPCscore–PrePCscore, n=105) by k-way ANOVA and Tukey's honestly significant difference (HSD) criterion. Four (k=4) TKA candidate groups yielded optimum clustering metrics (s = 0.4, ARI=0.75). Cluster 1 was all-males (male:female=19:0) who walked with faster gait speeds (1>2,3), larger flexion angle magnitudes and stance-phase angle range (PC1 & PC4 1>2,3,4), and more flexion (PC2 1>2,3,4) and adduction moment (PC2 & PC3 1>2,3) range patterns. Cluster 1 had the most dynamic kinematics and kinetic loading/unloading range amongst the clusters, representing a higher-functioning (less “stiff”) male subset. Cluster 2 captured older (2>1,3) males (31:1) with slower gait speeds (2 4), and lower flexion angle magnitude (PC1 3 2,3) and less stiff kinematic and kinetic patterns relative to Clusters 2 and 3, representing a higher-functioning female subset. Radiographic severity did not differ between clusters (Kellgren-Lawrence Grade, p=0.9, n=102), and after removing demographics and re-clustering, gender differences remained (p < 0 .04). Pre-TKA, higher-functioning clusters (1&4) had more dynamic loading/un-loading kinetic patterns. Post-TKA, high-functioning clusters experienced less gait improvement (flexion angle PC2, 1,4 < 3, p≥0.004, flexion moment PC2, 4 < 2,3), with some sagittal range patterns decreasing postoperatively. TKA candidates can be characterized by four clusters, differing by demographics and biomechanical severity features. Post-TKA, functional gains were cluster-specific, stiff-gait clusters experienced more improvement, while higher-functioning clusters experienced less gain and showed some decline. Results suggest the presence of cohorts who may not benefit functionally from TKA. Cluster profiling may support triaging and developing targeted OA treatment strategies, meeting individual function needs


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 55 - 55
1 Feb 2020
Oshima Y Watanabe N Takeoka T Iizawa N Majima T Takai S
Full Access

Introduction. Upright body posture is maintained with the alignment of the spine, pelvis, and lower extremities, and the muscle strength of the body trunk and lower extremities. Conversely, the posture is known to undergo changes with age, and muscle weakness of lower extremities and the restriction of knee extension in osteoarthritis of the knee (knee OA) have been considered to be associated with loss of natural lumbar lordosis and abnormal posture. As total knee arthroplasty (TKA) is aimed to correct malalignment of lower extremities and limited range of motion of knee, particularly in extension, we hypothesized that TKA positively affects the preoperative abnormal posture. To clarify this, the variation in the alignment of the spine, pelvis, and lower extremities before and after TKA was evaluated in this study. Patients and methods. Patients suffering from primary knee OA who were scheduled to receive primary TKA were enrolled in this study. However, patients with arthritis secondary to another etiology, i.e. rheumatoid arthritis, trauma, or previous surgical interventions to the knee, were excluded. Moreover, patients who suffered from hip and ankle OA, cranial nerve diseases, or severe spinal deformity were also excluded. The sagittal vertical axis (SVA), the horizontal distance between the posterosuperior aspect of the S1 endplate surface and a vertical plumb line drawn from the center of the C7 vertebral body, is an important index of sagittal balance of the trunk. Thus, patients were classified into two groups based on the preoperative SVA with preoperative standing lateral digital radiographs: normal (< 40mm) and abnormal (≥ 40mm) groups. The variations in the sagittal alignment of the spine, pelvis and lower extremities were evaluated preoperatively, and at 1 and 3 months postoperatively. This study was approved by an institutional review board, and informed consent for participation was obtained from the patients. Results. Forty-nine knees in 49 patients were enrolled. Three different patterns of postural changes as well as hip and knee angles following TKA were observed. After TKA, the preoperatively normal SVA patients (26.5%) showed extension of the hip and knee joints and decrease of lumbar lordosis, while the SVA remained almost within the normal range. In the preoperatively abnormal SVA group, 13 patients (26.5%) showed extension of the knee joint while the SVA remained abnormal, however, 23 of the preoperatively abnormal SVA group patients (47.0%) showed improvement of SVA into the normal range with the extension of the hip and knee joints. Discussion. As the spine, pelvis, and lower extremities together affect body alignment, once limitation of knee extension due to severe knee OA is corrected and lower extremity alignment is improved with TKA, the lumbar lordosis may increase, and SVA could decrease. Recently, the relationship between the imbalance of the sagittal plane of the body and the risk of falls was described. From this, it could be said that TKA not only helped in recovering knee function and lower extremity alignment in severe knee OA, but also helped to improve posture and to protect from falls


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 86 - 86
1 Nov 2016
Burkhart T Perry K Dobbin E Herman B Howard J Lanting B
Full Access

The purpose of this study was to determine the effect of sectioning the relevant soft tissues and a TKA on the medial and lateral knee joint gap. Twelve intact lower extremity cadaveric specimens (mean (SD) age 76.5 (11.6) years) were tested. A custom designed knee tensioner was developed that allowed the separate application of forces to the medial and lateral components of the knee. The distance between the bottom of the load cell and the top of a compression rod was measured with digital calipers (precision = 0.1mm). Loads of 100N and 200N were then applied to each compartment and the resulting displacement was measured. The two loads were applied to the knee in the following conditions: i) All soft tissues intact; ii) an arthrotomy; iii) ACL sectioned; iv) PCL sectioned; v) release of the mid-coronal tissues; and vi) TKA. Finally, tensions were applied for all conditions from 90° to 0° of knee flexion in 30° increments. There was a significant effect of soft tissue release on the magnitude of the gap at the 100N load application, such that there was an increase in the when the mid-coronal MCL release was performed compared to the intact (2.2mm) and arthrotomy (1.75mm) conditions. With respect to the 200N load application there was a statistically significant tissue release effect, where differences were detected between the mid-coronal MCL release and intact (3.04mm) and arthrotomy conditions (2.31mm). At the 100N load there was a significance increase in the gap compared to the intact knee. There was also a significant condition by knee angle interaction where the gap was approximately 4mm larger following the TKA compared to the intact condition when the knee was flexed at 90°. Furthermore, there was a statistically significant 4.8mm and 3.8mm difference between 90° and 0° and 60° and 0° of knee flexion respectively, for the TKA condition only. At the 200N load application the gap width increased significantly by 2.5mm following the TKA. Finally, there was a significant condition by knee angle interaction where the change in gap width increased significantly from the intact (7.54mm) to the TKA condition (13.88mm) at 90° of knee flexion. There was a statistically significant difference in the TKA condition between 60° and 0° of knee flexion. Releasing the soft tissues increases the gap between the tibia and femur, when compared to the intact condition, with significance occurring only following the mid-coronal release. Furthermore, the TKA did not return the knee to its intact state as was evident by the significant difference between the TKA and intact conditions. This suggests that the resulting kinematics may not accurately match those pre-surgery resulting in un-physiological motion patterns and the possibility of early failure and revision


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 141 - 141
1 Feb 2020
Young-Shand K Roy P Abidi S Dunbar M Wilson JA
Full Access

Purpose. Identifying knee osteoarthritis patient phenotypes is relevant to assessing treatment efficacy. Biomechanics have not been applied to phenotyping, yet features may be related to total knee arthroplasty (TKA) outcomes, an inherently mechanical surgery. This study aimed to identify biomechanical phenotypes among TKA candidates based on demographic and gait mechanic similarities, and compare objective gait improvements between phenotypes post-TKA. Methods. Patients scheduled for TKA underwent 3D gait analysis one-week pre (n=134) and one-year post-TKA (n=105). Principal Component Analysis was applied to frontal and sagittal knee angle and moment gait waveforms, extracting the major patterns of gait variability. Demographics (age, gender, BMI), gait speed, and frontal and sagittal pre-TKA gait angle and moment PC scores previously found to differentiate gender, osteoarthritis severity, and symptoms of TKA recipients were standardized (mean=0, SD=1). Multidimensional scaling (2D) and hierarchical clustering were applied to the feature set [134×15]. Number of clusters was assessed by silhouette coefficients, s, and stability by Adjusted Rand Indices (ARI). Clusters were validated by examining inter-cluster differences at baseline, and inter-cluster gait changes (Post. PCscore. –Pre. PCscore. , n=105) by k-way Chi-Squared, Kruskal-Wallace, ANOVA and Tukey's HSD. P-values <0.05 were considered significant. Results. Four (k=4) TKA candidate groups yielded optimum clustering metrics (s=0.37, ARI=0.57). Cluster 1 was a compact (n=7) male cluster, walking with faster gait speeds (1.20.2m/s, 3<2<1,4, P<0.001) and higher adduction moment magnitudes (PC1, 3,4<2,1, P<0.001). Cluster 1 had the most dynamic kinematic (stance-phase flexion angle range PC4, 3,4,2<1, P<0.001) and kinetic (flexion moment range PC2, 3<2<4<1, P<0.001; adduction moment range PC2, 3,2<4<1, P<0.001 and PC3, 3,2<1, P=0.001) loading/un-loading range patterns among the clusters. Cluster 1 represented a higher-functioning (less “stiff-kneed”) male subset, most resembling asymptomatic patterns. Cluster 2 was also mostly males (44/47), demonstrating adduction moment magnitudes (PC1) comparable to Cluster 1. However, Cluster 2 was older (67.07.4years, 1,4<2, P=006), walking with slower gait speeds (0.80.2m/s), and less flexion moment (PC2) and adduction moment (PC2) range; representing an older, “stiff-kneed” male subset. Cluster 3 was mostly females (32/34) with the slowest gait speeds (0.70.1m/s), the lowest overall flexion angle magnitudes (PC1, 3<2,4,1, P<0.001), stance-to-swing flexion angle (PC2, 3<2,1, P=0.004) and flexion moment range (PC2). Cluster 3 captured a slow female subset, with the “stiffest-kneed” gait among the clusters. Cluster 4 was mostly females (43/46) with faster gait speeds (1.00.1m/s) and less stiff kinematic and kinetic patterns relative to Clusters 2–3, representing a higher-functioning female phenotype. Post-TKA, higher-functioning clusters demonstrated less dynamic gait improvement (flexion angle ΔPC2, 1,4,2<3, P<0.001; flexion moment ΔPC2, 4<2,3, P=0.009; adduction moment ΔPC2, 1<3, P=0.01), with some sagittal range patterns decreasing post-operatively. Conclusions. TKA candidates were characterized by four clusters, differing by demographics and biomechanical severity features. Pre-TKA, stiff-kneed clusters (2 and 3) had less dynamic loading/un-loading kinetics. Post-TKA functional gains were cluster-specific; stiff-kneed clusters experienced more improvement, while higher-functioning clusters demonstrated some functional decline. Results suggest the presence of cohorts who may not benefit functionally from TKA. Cluster profiling may aid in triaging and developing osteoarthritis management and surgical strategies that meet individual or group-level function needs


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 88 - 88
1 Apr 2019
Smulders K Rensch PV Wymenga A Heesterbeek P Groen B
Full Access

Background. The cruciate ligaments are important structures for biomechanical stability of the knee. For total knee arthroplasty (TKA), understanding of the exact function of the (PCL) and anterior (ACL) cruciate ligament during walking is important in the light of recent designs of bicruciate TKAs. However, studies evaluating in vivo function of the PCL during daily activities such as walking are scarce. We aimed to assess the role of the PCL during gait by measuring kinematics and kinetics of individuals with PCL deficiency and compare them with individuals with ACL deficiency and healthy young adults. Methods. Individuals with unilateral PCL deficiency (PCLD; n=9), unilateral ACL deficiency (n=10) and healthy young adults performed (n=10) 10 walk trials (5 for each leg) in which they walked over a force platform. Motion analysis (Vicon Motion Capture System) was used to calculate joint angles and internal moments around the knee, hip and ankle in the sagittal plane. Joint angles and moments of the injured knee (in PCLD and ACLD) or left knee (in HYA) were compared between groups at weight acceptance, mid-stance and push-off phases (see Fig. 1). Clinical assessment included passive knee laxity (Kneelax) for anterior (in 20–30° knee flexion) and posterior tibia translation (in 70–90° knee flexion) and Lysholm questionnaires. Results. Lysholm scores were significantly lower in PCLD and ACLD individuals compared to HYA (p's ≤ .001). PCLD subjects had more passive anterior (p = .001) and posterior tibia translation (p = .041) compared to HYA, but no significant differences were found in both directions between ACLD and HYA (p's > .10). During gait, knee angles at weight acceptance, late stance and around toe-off were not significantly different between the PCLD and HYA, and between ACLD and HYA (all p's > .06). However, the knee extension moment during mid-stance was significantly lower in the PCLD group when compared to the HYA group (p = .001; Fig. 2). Interestingly, the knee moment in the PCLD group remained positive (i.e. extension moment) throughout the stance phase, whereas HYA and ACLD groups created a substantial flexion moment around the knee at this instant. We did not observe any significant differences in hip and ankle joint angles and moments between groups. Discussion. We observed a difference in gait pattern in individuals with PCL deficiency compared to HYA, that was confined to an absence of knee flexion moments during the mid-stance phase. We hypothesize that this difference reflects a compensation strategy employed by individuals with PCL deficiency to avoid external knee (hyper)extension moments. Gait adaptations related to PCL deficiency might also have implications for design of total knee prosthesis and calls for careful evaluation of gait patterns after TKA with a specific focus on the role of the PCL. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 113 - 113
1 Feb 2017
Lee S
Full Access

Objectives. The purpose of this study was to evaluate the impact of multi-radius (MR, n=20) versus gradually reducing radius (GR, n=18) knee design on the kinematics and kinetics of the knee during level ground walking one year after total knee arthroplasty. Materials and Methods. Thirty-eight knees with end-stage knee osteoarthritis were examined before and one year after total knee arthroplasty. The groups consisted of subjects who had undergone total knee arthroplasty with a representative MR designed implant (B Braun-Aesculap Vega. ®. Knee System) and a representative GR designed implant (Depuy Attune. ®. Knee System) (Figure 1). The kinematic and kinetic parameters of knee varus angle, first peak knee adduction moment, sagittal plane knee excursion and extensor moment were evaluated during gait, as well as the spatiotemporal gait outcomes of walking speed, stride length, cadence, step length, the percentage of stance phase. Comparisons of preoperative and postoperative outcomes were done by the paired t-test. Independent t-test was also done to compare the postoperative outcomes of MR designed implant and GR designed implant. Results. In spatiotemporal parameters of GR implant group, there was an increase in walking speed, stride length and cadence (all p<0.05) and no change in step length and the percentage of stance phase postoperatively. GR implant group showed large reductions in varus angle and adduction moment (all p<0.001), a significant increase in extensor moment (p=0.01), and a small reduction in sagittal plane excursion (p=0.04) after surgery. In comparison of two groups at one year after surgery, there were no significant differences of all spatiotemporal, kinematic and kinetic parameters between two groups except varus angle. GR implant group showed more reduction in varus angle than MR implant group (p=0.01). Conclusions. Total knee arthroplasty performed with gradually reducing radius knee design reduces frontal plane loading patterns of knee varus angle and adduction moment and provided improvement in spatiotemporal parameters. Post-operatively there were no statistical differences between the MR implant group and the GR implant group in any of the kinematic and kinetic measures except knee varus angle during level ground walking


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 69 - 69
1 Aug 2013
Smith J Blyth M Jones B MacLean A Rowe P
Full Access

Total knee arthroplasty (TKA) has been established as a successful procedure for relieving pain and improving function in patients suffering from severe knee osteoarthritis for several decades now. It involves removing bone from both the medial and lateral compartments of the knee and sacrificing one or both of the cruciate ligaments. This in turn is likely to have an impact on the patients' functional outcome. In subjects where only one compartment of the knee joint is affected with osteoarthritis then unicondylar knee arthroplasty (UKA) has been proposed as an alternative procedure to TKA. This operation preserves the cruciate ligaments and removes bone only from the affected side of the joint. As a result there is the possibility of an improved functional outcome post surgery. UKA has been associated with faster recovery, good functional outcome in terms of range of motion and it is bone sparing compared to TKA. However, the biggest obstacle to UKA success is the high failure rates. The aim of this study was to compare the functional outcome of computer navigated TKA (n=60) and UKA (n=42) patients 12 month post operation using flexible electrogoniometry. Flexible electrogoniometry was used to investigate knee joint kinematics during gait, slopes walking, stair negotiation, and when using standard and low chairs. Maximum, minimum and excursion knee joint angles were calculated for each task. The biomechanical assessment showed statistically significant improvements in the knee kinematics in terms of maximum (p<0.0004) and excursion (p<0.026) knee joint angles in the UKA patient group compared to the navigated TKA group for each of the functional tasks. There was no statistically significant difference between the minimum knee joint angles during these functional tasks (p>0.05). Therefore, UKA patients were showed to have a significantly better functional outcome in terms of the maximum knee joint angle during daily tasks. A limitation of this study is that it compares two cohorts rather than two randomised groups. It is expected that UKA patients will have a better functional outcome. Our results suggest that for patients with less severe knee osteoarthritis, UKA may offer a better functional outcome than the more common surgical option of TKA. The recent advancements in computer assisted and robotic assisted knee arthroplasty has the possibility to improve the accuracy of UKA and therefore led to the increase in confidence and in usage in a procedure which has the potential to give patients a superior functional outcome


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 296 - 296
1 Dec 2013
Duffell L Mushtaq J Masjedi M Cobb J
Full Access

It has been proposed that higher knee adduction moments and associated malalignment in subjects with severe medial knee joint osteoarthritis (OA) is due to anatomical deformities as a result of OA [1, 2]. The emergence of patient-matched implants should allow for correction of any existing malalignment. Currently the plans for such surgeries are often based on three dimensional supine computed tomography (CT) scans or magnetic resonance imaging (MRI), which may not be representative of malalignment during functional loading. We investigated differences in frontal plane alignment in control subjects and subjects with severe knee joint OA who had undergone both supine imaging and gait analysis. Fifteen subjects with severe knee OA, affecting either the medial or lateral compartment, and 18 control subjects were selected from a database established as part of a larger study. All subjects had undergone gait analysis using the Vicon motion capture system. OA subjects had undergone routine CT scans and were scheduled for knee joint replacement surgery. Control subjects had no known musculoskeletal conditions and had undergone MRI imaging of hip, knee and ankle joints. Frontal plane knee joint angles were measured from supine imaging (supine) and from motion capture during standing (static) and during gait at the first peak ground reaction force (gait). OA subjects had a significantly higher BMI (p < 0.01) and different gender composition (13 males and 2 females vs 4 males and 5 females; p = 0.03) compared with controls. Multiple linear regression analysis indicated no significant confounding effect of these differences on frontal plane angles measured in supine, static or gait conditions. For both OA and healthy subjects, frontal plane knee angles were significantly higher during gait compared with supine (p = 0.03 and 0.02, respectively). There were also significant differences in knee alignment between OA and healthy subjects for supine and static (p < 0.05) but not for gait, although this was approaching significance (p = 0.052). Overall there seemed to be higher variation in alignment in the OA subjects (Fig. 1). The significantly higher frontal plane knee joint angles measured in both control and OA subjects during gait compared with supine imaging indicate that functional alignment should be taken into consideration when planning patient-specific surgeries. Higher variation in OA patients may be due to alterations in gait patterns due to pain or degree of wear in their osteoarthritic joints, and requires further investigation. In addition, methodological considerations should be taken when comparing alignment from measurements taken with imaging and motion capture to avoid systematic errors in the data. In conclusion, we believe that both supine and loadbearing imaging are insufficient to gain a full representation of functional alignment, and analysis of functional alignment should be routinely performed for optimal surgical planning


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 45 - 45
1 Feb 2017
Kaneko T Hada M Toyoda S Sunakawa T Ikegami H Mochizuki Y Musha Y
Full Access

INTRODUCTION. Normal kinematics have not been achieved in TKA design. Recently, knee simulation studies have suggested that a medial pivot TKA can achieve the anatomic pathway that reduce mid-flextion rollback and increase lateral rotation. However, the influence of postoperative flextion angle associated with medial tightness for guide motion TKA remains poorly understood. The purpose of this study was to investigate the effect of postoperative flextion angle and clinical outcomes associated with tightness for medial component gap (MCP). METHODS. We evaluated 79 patients who underwent 84 medial pivot The Journey.2. Bi-Cruciate Substituting (BCS) TKA using the measured resection tequnique, from June 2014 to March 2016. We measured the gaps after implantation from extension to full flextion with reduced patella by constant distraction force (120N). A new tensor has the same articular shapes as that the tibial liner, including anterior and posterior structure. RESULTS. There were no patients with midflextion instability for varus ligament balance. Postoperative knee flextion angle was positively corrected with preoperative knee flextion angle (r=0.62, p=0.001). The MCP difference (max-mini)(r=0.66, p=0.002) and Lateral minus medial component gap (varus angle) (r=0.43, p=0.001)from extension to full flextion was negative correlations with postoperative flextion angle. DISCUSSION AND CONCLUSIONS. Medial tightness and no lateral laxity as well as joint component gap at extension throughout full flex is the most important factors affecting postoperative flextion angle in guided motion TKA


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 32 - 32
1 Feb 2020
Maag C Peckenpaugh E Metcalfe A Langhorn J Heldreth M
Full Access

Introduction. Aseptic loosening is one of the highest causes for revision in total knee arthroplasty (TKA). With growing interest in anatomically aligned (AA) TKA, it is important to understand if this surgical technique affects cemented tibial fixation any differently than mechanical alignment (MA). Previous studies have shown that lipid/marrow infiltration (LMI) during implantation may significantly reduce fixation of tibial implants to bone analogs [1]. This study aims to investigate the effect of surgical alignment on fixation failure load after physiological loading. Methods. Alignment specific physiological loading was determined using telemetric tibial implant data from Orthoload [2] and applying it to a validated finite element lower limb model developed by the University of Denver [3]. Two high demand activities were selected for the loading section of this study: step down (SD) and deep knee bend (DKB). Using the lower limb model, hip and ankle external boundary conditions were applied to the ATTUNE. ®. knee system for both MA and AA techniques. The 6 degree of freedom kinetics and kinematics for each activity were then extracted from the model for each alignment type. Mechanical alignment (MA) was considered to be neutral alignment (0° Hip Knee Ankle Angle (HKA), 0° Joint Line (JL)) and AA was chosen to be 3° varus HKA, 5° JL. It is important not to exceed the limits of safety when using AA as such it is noted that DePuy Synthes recommends staying within 3º varus HKA and 3º JL. The use of 5º JL was used in this study to account for surgical variation [Depuy-Synthes surgical technique DSUS/JRC/0617/2179]. Following a similar method described by Maag et al [1] ATTUNE tibial implants were cemented into a bone analog with 2 mL of bone marrow in the distal cavity and an additional reservoir of lipid adjacent to the posterior edge of the implant. Tibial implant constructs were then subjected to intra-operative ROM/stability evaluation, followed by a hyperextension activity until 15 minutes of cement curing time, and finally 3 additional ROM/stability evaluations were performed using an AMTI VIVO simulator. The alignment specific loading parameters were then applied to the tibial implants using an AMTI VIVO simulator. Each sample was subjected to 50,000 DKB cycles and 120,000 SD cycles at 0.8 Hz in series; approximating 2 years of physiological activity. After physiological loading the samples were tested for fixation failure load by axial pull off. Results. Following alignment specific physiological loading the average fixation pull-off load for MA was 3289 ± 400 N and for AA was 3378 ± 133 N (Figure 1). There was no statistically significant difference fixation failure load by axial pull-off between the two alignment types (p=0.740). Conclusion. This study indicated that anatomic alignment, as defined with the alignment limits of this study, does not adversely affect the fixation failure load of ATTUNE tibial implants. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 109 - 109
1 Feb 2017
Kim J Han H Lee S Lee M
Full Access

Background. Rotational alignment is important for the long-term success and good functional outcome of total knee arthroplasty (TKA). While the surgical transepicondylar axis (sTEA) is the generally accepted landmark on the distal femur, a precise and easily identifiable anatomical landmark on the tibia has yet to be established. Our aim was to compare five axes on the proximal tibia in normal and osteoarthritic (OA) knees to determine the best landmark for determining rotational alignment during TKA. Methods. One hundred twenty patients with OA knees and 30 without knee OA were recruited for the study. Computed tomography (CT) images were obtained and converted through multiplanar reconstruction so the angles between the sTEA and the axes of the proximal tibia could be measured. Five AP axes were chosen: the line connecting the center of the posterior cruciate ligament(PCL) and the medial border of the patellar tendon at the cutting level of the tibia (PCL-PT), the line from the PCL to the medial border of the tibial tuberosity (PCL-TT1), the line from the PCL to the border of the medial third of the tibia (PCL-TT2), the line from the PCL to the apex of the tibia (PCL-TT3), and the AP axis of the tibial prosthesis along with the anterior cortex of the proximal tibia (anterior tibial curved cortex, ATCC). Results. In OA knees, the mean angles were less than those in normal knees for all 5 axes tested. In normal knees, the angle of the ATCC axis had the smallest mean value (1.6° ± 2.8°) and the narrowest range. In OA knees, the angle of the PCL-TT1 axis had the smallest mean value (0.3° ± 5.5°); however, the standard deviation (SD) and range were wider than that of the angle of the ATCC axis. The mean angle of the ATCC axis was larger (0.8° ± 2.7°) than the angle of the PCL-TT1 axis, but the difference was not statistically significant (P =0.461). The angle of the ATCC axis had the smallest SD and the narrowest range. Conclusion. In OA knees, the AP axis of the proximal tibia showed greater internal rotation compared with normal knees. In our study, the ATCC was found to be the most reliable and useful anatomical landmark for tibial rotational alignment in TKA