Abstract
INTRODUCTION
Measurement of range of motion is a critical item of any knee scoring system. Conventional measurements used in the clinical settings are not as precise as required. Smartphone technology using either inclinometer application or photographic technology may be more precise with virtually no additional cost when compared to more sophisticated techniques such as gait analysis or image analysis. No comparative analysis between these two techniques has been previously performed. The goal of the study was to compare these two technologies to the navigated measurement considered as the gold standard.
MATERIAL
Ten patients were consecutively included. Inclusion criterion was implantation of a TKA with a navigation system.
METHODS
Two free angle measurement applications were downloaded to the Smartphone: one using inclinometer technology, the other using camera technology. After navigation assisted TKA and just before wound closure, the operated knee was positioned at full extension, 30±2°, 60±2°, 90±2° and 120±2° according to the navigated measurement. At each step, the knee flexion angle was measured with both Smartphone applications: inclinometer application (figure 1) and camera application (figure 2). For each of the ten patients, 5 navigated, 5 inclinometer and 5 camera measurements were obtained for each patient, giving three sets of 50 repeat measurements. The sample size was calculated to get a significance level of 0.05 and a power of 0.8 to detect a 10° difference. The difference between the three sets of measurements was analyzed with an ANOVA test for repeat measurements, with post-hoc comparisons with a paired Wilcoxon test. The correlation between the three sets of measurements was analyzed with a Kendall test, with post-hoc comparisons with a Spearman test. All tests were performed at a 0.05 level of significance, and post-hoc comparisons were performed at a 0.01 level of significance.
RESULTS
The mean paired difference between navigated and camera measurements was 0.7° (SD 1.5°), with one difference greater than 3°. The mean paired difference between navigated and inclinometer measurements was 7.5° (SD 5.3°), with 16 differences greater than 10°. The mean paired difference between inclinometer and camera measurements was −6.8° (SD5.2°), with 7 differences greater than 10°. The ANOVA test for repeat measurements showed a significant difference between the three sets of measurements (p<0.001). The results of post-hoc paired comparisons with the Wilcoxon test are reported in table 2. The Kendall test showed that the distribution of the three sets of measurements was no different. The post-hoc paired correlations with the Spearman test showed a good coherence between all pairs of measurements (R² between 0.02 and 0.12). No pre-operative criteria showed a significant influence on the differences observed.
DISCUSSION
Measuring the knee flexion angle with the camera of a smartphone is effective in a routine clinical practice. Accuracy can be better than other conventional measurement techniques. All applications of a smartphone do not have the same precision and must be validated before clinical use.
CONCLUSION
Smartphone technology enables a more accurate assessment of the knee range of motion after TKA than conventional measurement techniques.
To view tables/figures, please contact authors directly.