Abstract
Introduction
Aseptic loosening is one of the highest causes for revision in total knee arthroplasty (TKA). With growing interest in anatomically aligned (AA) TKA, it is important to understand if this surgical technique affects cemented tibial fixation any differently than mechanical alignment (MA). Previous studies have shown that lipid/marrow infiltration (LMI) during implantation may significantly reduce fixation of tibial implants to bone analogs [1]. This study aims to investigate the effect of surgical alignment on fixation failure load after physiological loading.
Methods
Alignment specific physiological loading was determined using telemetric tibial implant data from Orthoload [2] and applying it to a validated finite element lower limb model developed by the University of Denver [3]. Two high demand activities were selected for the loading section of this study: step down (SD) and deep knee bend (DKB). Using the lower limb model, hip and ankle external boundary conditions were applied to the ATTUNE® knee system for both MA and AA techniques. The 6 degree of freedom kinetics and kinematics for each activity were then extracted from the model for each alignment type. Mechanical alignment (MA) was considered to be neutral alignment (0° Hip Knee Ankle Angle (HKA), 0° Joint Line (JL)) and AA was chosen to be 3° varus HKA, 5° JL. It is important not to exceed the limits of safety when using AA as such it is noted that DePuy Synthes recommends staying within 3º varus HKA and 3º JL. The use of 5º JL was used in this study to account for surgical variation [Depuy-Synthes surgical technique DSUS/JRC/0617/2179].
Following a similar method described by Maag et al [1] ATTUNE tibial implants were cemented into a bone analog with 2 mL of bone marrow in the distal cavity and an additional reservoir of lipid adjacent to the posterior edge of the implant. Tibial implant constructs were then subjected to intra-operative ROM/stability evaluation, followed by a hyperextension activity until 15 minutes of cement curing time, and finally 3 additional ROM/stability evaluations were performed using an AMTI VIVO simulator. The alignment specific loading parameters were then applied to the tibial implants using an AMTI VIVO simulator. Each sample was subjected to 50,000 DKB cycles and 120,000 SD cycles at 0.8 Hz in series; approximating 2 years of physiological activity. After physiological loading the samples were tested for fixation failure load by axial pull off.
Results
Following alignment specific physiological loading the average fixation pull-off load for MA was 3289 ± 400 N and for AA was 3378 ± 133 N (Figure 1). There was no statistically significant difference fixation failure load by axial pull-off between the two alignment types (p=0.740).
Conclusion
This study indicated that anatomic alignment, as defined with the alignment limits of this study, does not adversely affect the fixation failure load of ATTUNE tibial implants.
For any figures or tables, please contact the authors directly.