Adolescent idiopathic scoliosis (AIS) is a poorly understood progressive curvature of the spine. The 3-dimmensionnal spinal deformation brings abnormal biomechanical stresses on the load-bearing organs. We have recently reported for the first time the presence of
Introduction. Total disc replacement (TDR) provides an alternative to fusion that is designed to preserve motion at the treated level and restore disc height. The effects of TDR on spine biomechanics at the treated and adjacent levels are not fully understood. Thus, the present study investigated facet changes in contact pressure, peak contact pressure, force, peak force, and contact area at the
INTRODUCTION:. As a consequence from cervical arthroplasty, spine structural stiffness, loading and kinematics are changed, resulting in issues like adjacent segment degeneration and altered range of motion. However, complex anatomical structures and lack of adequate precision to study the
Low back pain is the single most common cause for disability in individuals aged 45 years or younger, it carries tremendous weight in socioeconomic considerations. Degenerative aging of the structural components of the spine can be associated with genetic aspects, lifetime of tissue exposure to mechanical stress & loads and environmental factors. Mechanical consequences of the disc degenerative include loss of disc height, segment instability and increase the load on
INTRODUCTION. Several clinical studies demonstrated long-term adjacent-level effects after implantation of spinal fusion devices[1]. These effects have been reported as adjacent joint degeneration and the development of new symptoms correlating with adjacent segment degeneration[2] and the trend has therefore gone to motion preservation devices; however, these effects have not been understood very well and have not been investigated thoroughly[3]. The aim of this study is to investigate the effect of varying the stiffness of spinal fusion devices on the adjacent vertebral levels. Disc forces, moments and
Cervical spinal arthrodesis is the standard of care for the treatment of spinal diseases induced neck pain. However, adjacent segment disease (ASD) is the primary postoperative complication, which draws great concerns. At present, controversy still exists for the etiology of ASD. Knowledge of cervical spinal loading pattern after cervical spinal arthrodesis is proposed to be the key to answer these questions. Musculoskeletal (MSK) multi-body dynamics (MBD) models have an opportunity to obtain spinal loading that is very difficult to directly measure in vivo. In present study, a previously validated cervical spine MSK MBD model was developed for simulating cervical spine after single-level anterior arthrodesis at C5-C6 disc level. In this cervical spine model, postoperative sagittal alignment and spine rhythms of each disc level, different from normal healthy subject, were both taken into account. Moreover, the biomechanical properties of
Cervical total disc replacement has been in practice for years now as a viable alternative to cervical fusion in suitable cases, aspiring to preserve spinal motion and prevent adjacent segment disease. Reports are rife that neck pain emerges as an annoying feature in the early postoperative period. The
Fluoroscopic guidance is common in interventional pain procedures. In spine surgery, injections are used for differential diagnosis and determination of indication for surgical treatment as well. Fluoroscopy ensures correct needle placement and accurate delivery of the drug. Also, exact documentation of the intervention performed is possible. However, besides the patient, interventional pain physicians, surgeons and other medical staff are chronically exposed to low dose scatter radiation. The long-term adverse consequences of low dose radiation exposure to the medical staff are still unclear. Especially in university hospital settings, where education of trainees is performed, fluoroscopy time and total radiation exposure are significantly higher than in private practice settings. It remains a challenge for university hospitals to reduce the fluoroscopic time while maintaining the quality of education. Multiple approaches have been made to reduce radiation exposure in fluoroscopy, including the wide spread use of pulsed fluoroscopy, or rarely used techniques like laser guided needle placement systems. The Zero-Dose-C-Arm-Navigation (ZDCAN) allows an optimal positioning of the c-arm without exposure to radiation. For training purposes, relevant anatomical structures can be highlighted for each interventional procedure, so injection needles can be best positioned next to the target area. The Zero-Dose-C-Arm-Navigation (ZDCAN) module was developed to display a radiation free preview of the expected fluoroscopic image of the spine. Using an optical tracking system and a registered 3D-spine model, the expected x-ray image is displayed in real-time as a projection of the model. Additionally, selected anatomical structures including nerve roots,
Spinal stenosis is a condition resulting in the compression of the neural elements due to narrowing of the spinal canal. Anatomical factors including enlargement of the
Purpopse. Few Cervical Total Disc Replacement (TDR) devices are engineered to address both the Center of Balance (COB) and the Center of Rotation (COR) of the cervical motion segments. The COB is the axis in the intervertebral disc through which the axial compressive load is transmitted. TDRs placed posterior of this point tend to fall into kyphosis while devices placed anterior of this point tend to fall into lordosis. Thus from a “balancing” point of view the ideal placement would be at the COB. However, the COR position has been shown to be posterior and inferior to the disc space. It has also been shown that constrained devices tend to lose motion when there is a mismatch between device and anatomic centers. Mobile core devices may be placed at the COB since their unconstrained rotations and translations allow for the device COR to follow the anatomic COR, but they rely heavily on the
INTRODUCTION. Lumbar total disc replacement (TDR) is an alternative treatment to avoid fusion related adverse events, specifically adjacent segment disease. New generation of elastomeric non-articulating devices have been developed to more effectively replicate the shock absorption and flexural stiffness of native disc. This study reports 5 years clinical and radiographic outcomes, range of motion and position of the center of rotation after a viscoelastic TDR. Material and methods. This prospective observational cohort study included 61 consecutive patients with monosegmental TDR. We selected patients with intermediate functional activity according to Baecke score. Hybrid constructs had been excluded. Only cases with complete clinical and radiological follow-up at 3, 6, 12, 24 and 60 months were included. Mean age at the time of surgery was 42.8 +7.7 years-old (27–60) and mean BMI was 24.2 kg/m² +3.4 (18–33). TDR level was L5-S1 in 39 cases and L4-L5 in 22 cases. The clinical evaluation was based on Visual Analog Scale (VAS) for pain, Oswestry Disability Index (ODI) score, Short Form-36 (SF36) including physical component summary (PCS) and mental component summary (MCS) and General Health Questionnaire GHQ28. The radiological outcomes were range of motion and position of the center of rotation at the index and the adjacent levels and the adjacent disc height changes. Results. There was a significant improvement in VAS (3.3±2.5 versus 6.6±1.7, p<0.001), in ODI (20±17.9 versus 51.2±14.6, p<0.001), GHQ28 (52.6±15.5 versus 64.2±15.6, p<0.001), SF 36 PCS (58.8±4.8 versus 32.4±3.4, p<0.001) and SF 36 MCS(60.7±6 versus 42.3±3.4, p<0.001). Additional surgeries were performed in 5 cases. 3 additional procedures were initially planified in the surgical program: one adjacent L3-L5 ligamentoplasty above a L5S1 TDR and two L5S1 TDR cases had additional laminectomies. Fusion at the index level was secondary performed in 2 L4L5 TDR cases but the secondary posterior fusion did not bring improvement. In the 56 remaining patients none experienced
In the UK, the NHS generates an estimated 25 megatonnes of carbon dioxide equivalents (4% to 5% of the nation’s total carbon emissions) and produces over 500,000 tonnes of waste annually. There is limited evidence demonstrating the principles of sustainability and its benefits within orthopaedic surgery. The primary aim of this study was to analyze the environmental impact of orthopaedic surgery and the environmentally sustainable initiatives undertaken to address this. The secondary aim of this study was to describe the barriers to making sustainable changes within orthopaedic surgery. A literature search was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines through EMBASE, Medline, and PubMed libraries using two domains of terms: “orthopaedic surgery” and “environmental sustainability”.Aims
Methods
Purpose of study. This RCT is to determine whether or not there is a clinical benefit from inserting a dynamic stabilising implant such as the Wallis ligament on the functional recovery of patients who have undergone lumbar decompression surgery. This Interspinous implant was developed as an anatomically conserving procedure without recourse to lumbar spinal fusion surgery. The biomechanical studies have shown that unloading the disc and
Background. The factors that are considered to be associated with successful clinical outcome fallowing cervical arthroplasty surgery are patient selection, absence of
Introduction and aims. Low back pain is a common complaint, affecting up to one third of the adult population costing over £1 billion to the NHS each year and £3.5 billion to the UK economy in lost production. The demand for spinal injections is increasing allowing for advanced spinal physiotherapists to perform the procedure. The objective of this study was to investigate outcome following spinal injections performed by consultant spinal surgeon (n=40) and advanced spinal physiotherapists (ASP) (n=40) at our centre. Method and Materials. Data on 80 patients who had received caudal epidural (n=36), nerve root block (n=28) and
The optimal management of patients with the diagnosis of a spinal epidural abscess (SEA) remains controversial. The purpose of this study was to describe the clinical characteristics of patients presenting with spontaneous SEA and to correlate presentation and treatment with clinical and neurological outcome. A retrospective review of the medical records and radiology of patients with a diagnosis of SEA, treated between September 2003 and December 2010, at a tertiary referral hospital was performed. A total of 46 patients were identified including 27 males and 19 females. Mean age was 61 years (range, 30 – 86 years). At presentation, all patients had axial pain and 67% had a neurological deficit, out of which one third had paraplegia or quadriplegia. 32% patients were febrile. Diabetes was the most common risk factor (30%) followed by malignancy (17%), intravenous drug use (6%) and alcoholism (2%). Organisms were cultured in 44 patients with Methicillin Sensitive Staphylococcus Aureus most common (68%), followed by Methicillin Resistant Staphylococcus Aureus (14%). The epidural abscess was located in the lumbar spine in 24 patients, thoracic spine in 11 patients and cervical spine in 11 patients. 61% of patients had a concurrent source of septic focus on presentation, including psoas abscess (24%),
To describe the incidence of adverse clinical outcomes related to COVID-19 infection following corticosteroid injections (CSI) during the COVID-19 pandemic. To describe the incidence of positive SARS-CoV-2 reverse transcriptase polymerase chain reaction (RT-PCR) testing, positive SARS-COV2 IgG antibody testing or positive imaging findings following CSI at our institution during the COVID-19 pandemic. A retrospective observational study was undertaken of consecutive patients who had CSI in our local hospitals between 1 February and 30June 2020. Electronic patient medical records (EPR) and radiology information system (RIS) database were reviewed. SARS-CoV-2 RT-PCR testing, SARS-COV2 IgG antibody testing, radiological investigations, patient management, and clinical outcomes were recorded. Lung findings were categorized according to the British Society of Thoracic Imaging (BSTI) guidelines. Reference was made to the incidence of lab-confirmed COVID-19 cases in our region.Aims
Methods
The aim of this paper was to present the clinical features of
patients with musculoskeletal sources of methicillin-sensitive A total of 137 patients presented with MSSA septicaemia between
2012 and 2015. The primary source of infection was musculoskeletal
in 48 patients (35%). Musculoskeletal infection was considered the
primary source of septicaemia when endocarditis and other obvious
sources were excluded. All patients with an arthroplasty at the time
were evaluated for any prosthetic involvement. Aims
Patients and Methods