Introduction. Precision error (PE) in
Osteoporosis is a common disorder characterized by low bone mass and reduced bone quality that affects the bone strength negatively and leads to increased risk of fracture. Bone mineral density (BMD) has been the standard instrument for the diagnosis of osteoporosis and the determination of fracture risk. Despite the approximation of the bone mass, BMD does not provide information about the bone structure. Trabecular bone score (TBS), which provides an indirect evaluation of skeletal microarchitecture, is calculated from
Abstract. Objective. This study assesses the prevalence of major and minor discordance between hip and spine T scores using Radiofrequency Echographic Multi-spectrometry (REMS). REMS is a novel technology that uses ultrasound and radiofrequency analysis to measure bone density and bone fragility at the hip and lumbar spine. The objective was to compare the results with the existing literature on
Objectives. The aim of the current study was to assess whether calcaneal broadband ultrasound attenuation (BUA) can predict whole body and regional
Introduction and Objective. Geriatric patients with a fragility fracture of the hip (FFH) are especially prone to sarcopenia with poor functional outcomes and quality of life. We assessed the prevalence of sarcopenia in older South African patients with FFH. Risk factors for sarcopenia were also investigated. Materials and Methods. From August 1 to November 30, 2018, all older patients with FFH were invited to participate. Sarcopenia was diagnosed based on the revised criteria of the European Working Group on Sarcopenia in Older People (EWGSOP2). Handgrip strength (HGS) and muscle strength were assessed. Muscle quantity was determined by
Background. Although there are predictive equations that estimate the total fat mass obtained from multiple-site ultrasound (US) measurements, the predictive equation of total fat mass has not been investigated solely from abdominal subcutaneous fat thickness. Therefore, the aims of this study were; (1) to develop regression-based prediction equations based on abdominal subcutaneous fat thickness for predicting fat mass in young- and middle-aged adults, and (2) to investigate the validity of these equations to be developed. Methods. The study was approved by the Local Research Ethics Committee (Decision number: GO 19/788). Twenty-seven males (30.3 ± 8.7 years) and eighteen females (32.4 ± 9.5 years) were randomly divided into two groups as the model prediction group (19 males and 12 females) and the validation group (8 males and 6 females). Total body fat mass was determined by
Objectives. Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While
SL-PLUS MIA stem (Smith & Nephew Orthopaedics AG) is a modified implant of Zweymuller type SL-PLUS standard stem (Smith & Nephew Orthopaedics AG). We constructed finite element (FE) models and analysed equivalent stresses in the femur. In addition, we measured bone mineral density (BMD) in the femur by
Objectives. To assess the sensitivity and specificity of self-reported osteoporosis
compared with
Aims. Osteoporosis and abnormal bone metabolism may prove to be significant
factors influencing the outcome of arthroplasty surgery, predisposing
to complications of aseptic loosening and peri-prosthetic fracture.
We aimed to investigate baseline bone mineral density (BMD) and
bone turnover in patients about to undergo arthroplasty of the hip
and knee. Methods. We prospectively measured bone mineral density of the hip and
lumbar spine using
The shape of the vertebral bodies from L1 to L4 was assessed from lateral
Summary Statement. It is now possible to diagnose osteoporosis using incidental CT scans; this approach has been used to objectively demonstrate the role of osteoporosis in fracture in ankylosing spondylitis patients. Background. In advanced disease, Ankylosing Spondylitis (AS) is frequently associated with a reduction in bone mineral density (BMD), this contributes to pain and predisposes to fractures. Quantifying this reduction in BMD is complicated by the simultaneous processes occurring, in which there is both an overgrowth of bone (syndesmophytes) and a concurrent loss of trabecular bone. Traditional methods such as
We studied the reliability of the Singh classification of trabecular bone structure in the proximal femur as a measure of osteoporosis, using kappa statistics. Radiographs of fractures of the femoral neck or trochanteric region in 80 consecutive patients were assessed by six observers. The interobserver variation was large; only three of 72 radiographs were given the same classification by all six observers and the kappa values ranged from 0.15 to 0.54. The intraobserver variation showed substantial strength of agreement; kappa values ranged from 0.63 to 0.88. In 77 patients
In a prospective study of 14 patients undergoing total hip replacement we have used
Weight-bearing is a known stimulus for bone remodelling and a reduction in weight-bearing is associated with reduced bone mineral density (BMD) in affected limbs post lower limb fracture. This study investigated short and long-term precision of a method for measuring relative left/right weight-bearing using two sets of identical calibrated scales. The effect of imbalance on BMD at the hip and on lower limb lean tissue mass (LLTM) was also assessed. 46 postmenopausal women, with no history of leg or ankle fracture, were measured three times whilst standing astride two scales (Seca, Germany). 34 of the participants were re-measured after 6 months by the same method. Bilateral hip and total body
The operative treatment of fractures of the proximal humerus can be complicated by poor bone quality. Our aim was to evaluate a new method which allows prediction of the bone quality of the proximal humerus from radiographs. Anteroposterior radiographs were taken of 19 human cadaver humeri. The cortical thickness was measured at two levels of the proximal humeral diaphysis. The bone mineral density (BMD) was determined for the humeral head (HH), the surgical neck (SN), the greater tuberosity (GT) and lesser tuberosity (LT) using
Summary. At the clinical CT image resolution level, there is no influence of the image voxel size on the derived finite element human cancellous bone models. Introduction. Computed tomography (CT)-based finite element (FE) models have been proved to provide a better prediction of vertebral strength than
Background and objectives. Local bone-related adverse events occur more frequently following metal-on metal hip resurfacing (MOMHR) versus convention total hip arthroplasty (THA). High local tissue levels of cobalt and chromium may contribute to impaired bone health, however the systemic effects on bone of exposure to elevated metal levels after MOMHR are unknown. Methods. In this cross-sectional study we compared whole body bone mineral density (WB-BMD) and biochemical markers of bone turnover in 31 healthy male subjects at a mean of 8 years after MOMHR versus 31 individually age and time since surgery matched male subjects after conventional THA. All subjects had well-functioning prostheses and were in good self-reported health as assessed by Oxford Hip Score and EQ-5D questionnaire. WB-BMD was measured by
We have studied the effect of hydroxyapatite (HA) coating in 15 ovariectomised and 15 normal rats which had had a sham procedure. Twenty-four weeks after operation, HA-coated implants were inserted into the intramedullary canal of the right femur and uncoated implants into the left femur. The prostheses were removed four weeks after implantation. Twelve specimens in each group had mechanical push-out tests. Sagittal sections of the other three were evaluated by SEM. The bone mineral density (BMD) of the dissected left tibia was measured by
Summary Statement. Proximal femoral bony deficits present a surgical and biomechanical challenge to implant longevity in revision hip arthroplasty. This work finds comparable primary stability when a distally fixing tapered fluted stem was compared with a conical design in cadaveric tests. Introduction. Proximal bony deficits complicate revision hip surgery and compromise implant survival. Longer distally fixing stems which bypass such defects are therefore required to achieve stability compatible with bony ingrowth and implant longevity. Aims. It is hypothesised that a tapered stem will provide superior rotational stability to a conical design. This work therefore aims to compare the primary stability and biomechanical properties of a new design of tapered fluted modular femoral stem (Redapt®, Smith & Nephew) with that of a conical fluted stem (Restoration®, Stryker). Materials & Methods. 7 Pairs of cadaveric femora were obtained according to strict inclusion/exclusion criteria. Each underwent