Advertisement for orthosearch.org.uk
Results 1 - 20 of 128
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 91 - 91
1 Apr 2019
Chaudhary M Muratoglu O Varadarajan KM
Full Access

INTRODUCTION. Postoperative functional limitations after Total Knee Arthroplasty (TKA) are caused, in part, by a mismatch between a patient's natural anatomy and conventional “off-the-shelf” implants. To address this, we propose a new concept combining off-the-shelf femur and tibia implants with custom polyethylene tibial inserts designed to account for a patient's unique anatomy. Our goal in this study was to use knee specific computational modeling to determine the neutral path of motion and laxity of an intact knee under axial compression and shear forces through full flexion and compare intact motion against the same knee implanted with a conventional off-the-shelf vs. a custom tibial insert. METHODS. 3D models of a healthy knee joint were acquired from an open development repository funded by the National Institute of Biomedical Imagining and Bioengineering (Harris et al., 2016). The knee model was virtually implanted with conventional (off-the-shelf) posterior cruciate retaining (CR) components including the femoral component, tibial tray, and a conventional insert. A custom CR tibial insert was designed taking into account native articular geometry and compatibility with placement of the off-the-shelf femoral/tibial tray. Bone, cartilage and implant models were imported into ANSYS Workbench. Ligaments were calibrated using data from in-vitro experimental tests (Harris et al., 2016). The following load conditions were applied to the femur: 20 N axial compression (neutral path), 20 N axial compression with 80 N anterior shear force, and 20 N axial compression with 80 N posterior shear force. Simultaneously for each loading condition, the knee was flexed from 0 – 120 degrees. A circular axis system was used to describe the motion of the femur relative to the tibia. RESULTS. For the intact case, neutral path was characterized by greater posterior femoral displacement on the lateral side than on the medial side, especially in early flexion. Neutral path of the custom insert was closer to intact condition than the conventional insert. Overall AP laxity was similar between intact and implanted models except at 30 degrees where increased laxity occurred posteriorly for the implanted models, likely due to resection of the anterior cruciate ligament (ACL) as part of the TKA procedure. For intact and implanted models, AP laxity significantly decreased at the higher flexion angles. DISCUSSION. Our findings indicate that motion with a custom tibial insert was closer to intact than the conventional design. Nonetheless, custom articular surface alone may not fully reproduce intact motion due to limitations such as resection of the ACL, and such custom inserts may benefit from guiding features such as a cam, post, or retention of the native ACL to more closely reproduce normal knee function. We did not simulate specific activities of daily living. Increasing the magnitudes of compression and shear forces would not change the neutral path of motion, although, a reduction in laxity would be expected


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 104 - 104
1 Mar 2017
Yamane S Moro T Kyomoto M Watanabe K Takatori Y Tanaka S Ishihara K
Full Access

Artificial knee joints are continuously loaded by higher contact stress than artificial hip joints due to a less conformity and much smaller contact area between the femoral and tibial surfaces. The higher contact stress causes severe surface damage such as pitting or delamination of polyethylene (PE) tibial inserts. To decrease the risks of these surface damages, the oxidation degradation of cross-linked polyethylene (PE) induced by residual free radicals resulting from gamma-ray irradiation for cross-linking or sterilization should be prevented. Vitamin E (VE), as an antioxidant, blended PE (PE(VE)) has been used to solve the problems. In addition, osteolysis induced by PE wear particles, bone cement and metallic debris is recognized as one of the important problems for total knee arthroplasty (TKA). To decrease the generation of PE wear particles, we have developed the bearing surface mimicking the articular cartilage; grafting a biocompatible polymer, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), onto the PE surface having high wear resistance. In this study, we have evaluated the surface, mechanical under severe oxidative condition, and wear properties of PMPC-grafted cross-linked PE(VE) (PMPC-CLPE(VE)) material for artificial knee joints. Untreated and PMPC-grafted 0.1 mass% VE-blended PE (GUR1020E resin) with a gamma-ray irradiation of 100 kGy for cross-linking and 25 kGy for sterilization were prepared (CLPE(VE) and PMPC-CLPE(VE), respectively). Surface properties were evaluated by Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscope (TEM) observations. Surface wettability and frictional property were measured by static water contact angle measurement and ball-on-plate friction test. To evaluate the oxidation degradation resistance, mechanical and physical properties such tensile test, izod impact test, small punch test and cross-link density measurement before and after accelerated aging were measured. Wear properties of the tibial inserts were examined by using knee simulator in the combination of Co-Cr-Mo femoral components according to ISO14243-3. Gravimetric wear, volumetric penetration and the number of generated wear particles were measured. By the FT-IR measurements and TEM observation, P–O peaks attributed to MPC unit and uniform PMPC layer with 100–200 nm thick was observed only on PMPC-CLPE(VE) surface. Static water contact angle of CLPE(VE) was almost 100 degree, while that of PMPC-CLPE(VE) decreased significantly to almost 35 degree. There was no significant difference in the mechanical and physical properties between CLPE(VE) and PMPC-CLPE(VE). Moreover, both the CLPE(VE) and PMPC-CLPE(VE) maintained these properties even after the accelerated aging of 12 weeks [Fig. 1]. Blended VE in CLPE would act as radical scavengers to prevent oxidation degradation. In the knee simulator wear test, the PMPC-CLPE(VE) tibial inserts showed about a half gravimetric wear compared to the CLPE(VE) tibial inserts [Fig. 2]. This would be due to the significant differences observed in wettability of the surface. Water thin film formed on the hydrated PMPC graft layer, would act as significantly efficient lubricant. From these results, the PMPC-CLPE(VE) is expected to be one of the great bearing materials not only preventing surface damages due to higher contact stress and oxidation degradation but also improving wear resistance, and to provide much more lifelong artificial knee joints. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 317 - 317
1 Dec 2013
Gao B Angibaud L
Full Access

Introduction. Ability to accommodate increased range of motion is a design objective of many modern TKA prostheses. One challenge that any “high-flex friendly” prosthesis has to overcome is to manage the femorotibial contact stress at higher flexion angle, especially in the polyethylene tibial insert. When knee flexion angle increases, the femorotibial contact area tends to decrease thus the contact stress increases. For a high-flex design, considerations should be taken to control the contact stress to reduce the risk of early damage or failure on the tibial insert. This study evaluated the effect of femoral implant design on high flexion contact stress. Two prostheses from a same TKA family were compared – one as a conventional design and the other as a high-flex design. Methods. Two cruciate retaining (CR) prostheses from a same TKA product family were included in this study. The first is a conventional design for up to 125° of flexion (Optetrak CR, Exactech, USA). The second is a high-flex design for up to 145° of flexion (Logic CR, Exactech, USA). The high-flex design has a femoral component which has modified posterior condyle geometry (Figure 1), with the intent to increase femorotibial contact area and decrease contact stress at high flexion. Three sizes (sizes 1, 3, and 5) from each prosthesis line were included to represent the commonly used size spectrum. Contact stress was evaluated at 135° of flexion using finite element analysis (FEA). The CAD models were simplified and finite element models were created assuming all materials as linear elastic (Figure 2). For comparison purpose, a compressive force of 20% body weight was applied to the femoral component. The average body masses of sizes 1, 3 and 5 patients are 69.6 kg, 89.9 kg, and 106.3 kg based on the manufacture's clinical database. A nonlinear FEA solver was used to solve the simulation. Von Mises stress in the tibial insert was examined and compared between the two prostheses. Results. The high-flex design demonstrated lower tibial insert stresses compared to the conventional design, and the stress reduction is consistent across different sizes (Figure 3). The peak von Mises stress of the high-flex design was 8.6 MPa, 10.8 MPa, and 11.9 MPa for sizes 1, 3 and 5, representing a 40% to 60% decrease compared to those of the conventional design (14.3 MPa, 26.5 MPa, and 25.6 MPa respectively). Discussion/Conclusion. One limitation of the study was that no material nonlinearity was considered in the FEA, thus stress values above the yield strength of polyethylene could be over-estimated. However, as a qualitative comparison, the analysis demonstrated the effectiveness of the high-flex design on reducing tibial insert contact stress. Although the actual flexion angle of a CR TKA patient is not fully defined by the prosthesis and largely affected by the patient's anatomy and pre-operative range of motion, a lower contact stress at high flexion indicates a more forgiving mechanical structure and less risk for polyethylene damage when the patient is able to perform high flexion activities


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 316 - 316
1 Dec 2013
Gao B Angibaud L
Full Access

Introduction. Total knee arthroplasty (TKA) prostheses are semi-constrained artificial joints. Femorotibial constraint is a key property of a TKA prosthesis and should be designed to match the device's intended function. Cruciate Retaining (CR) prostheses are usually used for patients with a functioning posterior cruciate ligament (PCL). For patients without a fully functioning PCL, CR-Constrained (CRC) prostheses may be used. A CRC tibial insert usually has a more conforming sagittal profile especially in the anterior aspect to provide increased constraint to prevent paradoxical femoral translation during knee flexion. A quantitative understanding of the constraint behavior of a prosthesis design is critical to ensure its functional outcome. Using a validated computer simulation, this study evaluated the anterior-posterior (AP) constraint of two types of tibial inserts (CR and CRC) from a same TKA product family. Methods. Both the CR and CRC prostheses are from the same TKA product family (Optetrak Logic, Exactech, USA). Three sizes (sizes 1, 3, and 5) from each product line were included in this study. Computer simulations using finite element analysis (FEA) were performed at 0° flexion per ASTM F1223 standard [1] (Figure 1). The simulation has been validated with physical testing (more details submitted in a separate abstract to ISTA 2013). Briefly, FEA models were created with all materials considered linear elastic. The tibial baseplate was distally fixed and a constant compressive force (710 N) was applied to the femoral component. Nonlinear Surface-Surface-Contact was established at the articulating surfaces. A coefficient of friction of 0.1 was assumed for all articulations [2]. The femoral component was driven under a displacement-controlled scheme to slide along AP direction on the tibial insert. Constraint force occurring at the articulation was derived from the reaction force at the distal fixation. A nonlinear FEA solver was used to solve the simulations. Results. The force-displacement curves predicted by the simulation exhibited the hysteresis loop appearance for both CR and CRC inserts (Figure 2). The anterior aspect of the CRC curves showed a steeper raise than the CR curves, and the trend was consistent across sizes. Taking the slope from 0 to 5 mm range, the anterior constraint of the CRC insert was significantly greater than the CR insert, while the posterior constraint of the CRC insert was also slightly greater (Figure 3). Discussion/Conclusion. The increased AP constraint of the CRC insert revealed in the study is consistent with the design geometry and functional intent of the device. With a much increased anterior lip, the CRC insert is expected to provide substantially greater anterior constraint than the CR insert to prevent paradoxical femoral translation for patients without a fully functioning PCL. The CRC insert is also expected to provide slightly increased posterior constraint due to its gently elevated posterior lip. This study quantitatively demonstrated the effect of design geometry on the outcome constraint function of different TKA prostheses


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_15 | Pages 45 - 45
1 Dec 2015
W-Dahl A Stefánsdóttir A Sundberg M Lidgren L Robertsson O
Full Access

To reveal if patient reported knee-related pain, function, quality of life, general health and satisfaction at one year after primary total knee arthroplasty (TKA) is different between patients not being subject to revision surgery and those having had early treatment with open debridement and exchange of the tibial insert for postoperative PJI. The Swedish Knee Arthroplasty Register was used to identify 50 patients in the region of Skane that had a primary TKA during the years 2008 – 2012 and within 6 months were revised with open debridement and exchange of the tibial insert due to suspected or verified PJI. Only patients without further revisions were included. Patient reported outcome measurements (PROM) were obtained preoperatively and 1 year postoperatively and included knee related pain, function, quality of life using the Knee injury and Osteoarthritis Outcome Score (KOOS), general health using the EQ-VAS as well as satisfaction with the surgery. The scores were compared to those reported by 3,913 patients having a TKA during the same time but not revised during the first year. Welch's t-test and the Chi2-test were used in statistical analysis. Compared to the controls the infected patients were older (mean age 72 vs 69 years, p = 0.04) and were more morbid (ASA 3; 14/50 patients vs 14%, p = 0.02). The preoperative PROM data were similar. Complete 1 year PROM data was available for 31 of the patients. Those patients reported somewhat worse outcome one year postoperatively than the controls with statistically and clinically significant differences in general health (mean 61 vs 76, p=0.002), KOOS ADL (mean 65 vs 76, p=0.03) and knee related quality of life (mean 51 vs 63, p=0.02) with large variations on individual level. Just over half of the patients (17/29) treated for PJI were very satisfied or satisfied with the surgery compared to 79% of the controls. Patients treated with open debridement and exchange of the tibial insert due to early PJI after primary TKA reported less beneficial postoperative outcome than those without revision surgery during the first postoperative year but with large individual variations


Full Access

Postoperative functional outcomes and patients’ satisfaction after total knee arthroplasty are associated with postoperative range of motion. Severe deformities require surgical correction such as soft tissue release and appropriate bone resection. The goal of surgery is to correct the contracture and bring the knee to good range of motion. Using gap-balancing technique is one of the major techniques to obtain good range of motion. Although the gaps are well balanced, the thickness of tibial insert would affect the range of motion. In this study, we analyzed the difference between intraoperative extension joint gap and the thickness of implanted insert (DJI). The objective of this study was to investigate whether DJI affected the postoperative extension of the knee. A total of 155 knees were analyzed retrospectively. Subject included 27 males and 128 females with an average of 72.7 ± 7.0 years. The mean preoperative knee flexion angle was 136.1 ± 20.0°and the mean preoperative knee extension deficit was 4.0 ± 6.1°. All the patients had a diagnosis of varus-type osteoarthritis, identical prostheses (Stryker NRG posterior-stabilized type) implanted with a modified gap-balancing technique and no postoperative complications which may have affected the range of motion. Range of motion was measured using a goniometer before surgery and 12 months after surgery. Joint gap between femoral component and proximal tibia in full extension was measured by a tensor/ balancer device which added joint gap an expansion force by 30 inch pounds intra-operatively. Although we empirically regarded the appropriate DJI was 5 mm for this prosthesis, we determined the thickness of the tibial inserts considering preoperative range of motion. Thinner inserts compared with the joint gap was implanted for knees with flexion contracture and thicker inserts was implanted for knees with hyperextension. In this study, to determine the relationship of DJI and flexion contracture, the correlation coefficient between DJI and extension deficit was calculated. The diagram of DJI and postoperative extension angle is shown in Figure 1. The correlation coefficient between DJI and postoperative extension deficit was 0.24, which showed that DJI slightly affected the postoperative extension of the knee. Flexion contracture cannot be corrected by simply adjusting DJI


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 134 - 134
1 Feb 2017
Geller J Judge C Murtaugh T
Full Access

Soft tissue balance and alignment have long been known to play an essential role in the long-term success of primary total knee arthroplasty (TKA). Until recently balance was confirmed based on intra-operative feel and experience. In this study we analyzed short-term outcomes of cruciate retaining TKA (CR-TKA) performed with a smart tibial trial device (STT), which provides real-time, intra-operative compartmental load and rotational congruency readings, to a comparable cohort of patients receiving conventional TKA where the same surgeon balanced the compartments based on feel and experience.

Seventy patients received CR-TKA with STT and were matched to one-hundred and eighty non-STT consecutive controls using the same anesthesia, surgical approach, and post-operative rehabilitation and pain management protocol. Both groups were evaluated preoperatively and then post-operatively at three months and one year using Short Form 12 (SF12) and the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) questionnaires. T-tests were used to compare average scores within each cohort, as well as between the two cohorts, for each time interval.

The average age and BMI for the STT cohort were 70.9 ± 9.2 years and 29.8 ± 6.1 kg/m2. Operation length was seen to be 12.0 minutes greater for the STT cohort compared to the conventional cohort (p = 0.0012). The average difference in pressure between medial and lateral compartments was 8.30, 11.49, and 8.65 lbs at 10°, 45°, and 90° respectively. Only 10 cases had a difference greater than 15 lbs between compartments. At 3 months, the STT cohort had significantly higher average function scores on the WOMAC (p=0.046) and higher change from baseline pain scores on the WOMAC (p=0.0016). When scores were stratified into the top 50% and the bottom 50% and the coronal balance was compared, SF12 pain scores and WOMAC function scores at 1 year in the top 50% had greater coronal balance indicated by pressure differences ≤ 15 lbs (p<0.002)

Given the results of this case-control study, we conclude that STT can indeed help the surgeon balance compartmental loads and femoral-tibial rotational congruency and lead to improved short-term physical and functional outcomes in primary CR-TKA.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 19 - 19
1 Feb 2020
Simon J Lundberg H Valle CD Wimmer M
Full Access

Introduction. Studies have shown that increased implant conformity in total knee arthroplasty (TKA) has been linked to increased constraint and thus rotational torque at the bone/implant interface. Anterior stabilized (AS) tibial inserts were designed to compensate for excessive AP motion in less-conforming cruciate-retaining (CR) tibial inserts. However, increased constraint may affect implant loading. Therefore, the purpose of this study is to model rotational prosthesis constraint based on implant-specific data and to compare rotational torque and 3D contact forces in implants with CR-lipped and AS tibial inserts during normal gait. Methods. A previously reported knee joint contact model was updated to include rotational torque due to prosthesis constraint (ASTM F1223(14)). Piecewise multiple linear regression with manually selected cutoff points was used to determine estimates of AP force, ML force, and rotation torque as functions of AP displacement, ML displacement, knee external rotation, respectively, and knee flexion angle from standard data. These functions were used to estimate total moment contribution of the prosthesis from measured knee displacement/rotation angles. Estimates were incorporated into the contact model equilibrium equations as needed by the model. As the model parametrically varies muscle activation coefficients to solve for the range of physiologically possible forces at each time point, the reported force/torque values are the mean across all solutions at each time point. Rotational torque and three dimensional contact forces were calculated for 14 informed-consented subjects, five with AS tibial inserts (1/4 m/f, 67±10 years, 29.2±4.4 BMI, 1/4 right/left) and nine with CR-lipped TKRs (2/7 m/f, 64±6 years, 30.6±5.8 BMI, 4/5 right/left). Rotational torque waveforms were compared using statistical nonparametric mapping; 3D contact forces were compared at mean timing of the flexion/extension moment peaks using independent samples t-tests. Results. Waveform analysis of rotational torque found no significant differences between implant types. CR- lipped inserts showed an initial peak internal rotation torque during weight acceptance and continued with a pattern of internal rotation throughout stance. Peak torque for AS inserts also occurred during weight acceptance, but it varied between internal/external rotation torque. Additionally, after weight acceptance, AS subjects showed a pattern of external rotation torque. Mean axial force, medial-lateral shear force, and anterior-posterior shear force waveforms were similarly shaped between implant groups. Flexion and extension moment peaks occurred at 23% and 74% stance on average. There were no significant differences in three-dimensional knee joint contact forces between groups at either time point. Discussion. There were different patterns of rotational torque between groups. Implants with lipped CR inserts tended to undergo internal rotation torques that peaked during weight acceptance. Torque seen in implants with AS inserts was also largest during weight acceptance, but greatly varied between internal and external rotation, before settling in a pattern of external rotation for the remainder of stance. This may be due to constraints added by AS insert geometry. In conclusion, a model of rotational torque due to implant constraints has been developed; increased implant constraint increased the external rotation torque experienced by the implant and may also affect shear forces at the implant surface. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 145 - 145
1 Mar 2017
Shalhoub S Fitzwater F Dickinson M Clary C Maletsky L
Full Access

Introduction. Knee joint instability, which is a primary reason for TKA revision surgeries, is typically caused by deficiency in the knee ligaments [1, 2]. Managing ligament deficiency and restoring joint stability continues to be one of the greatest challenges for revision surgeries [3]. To treat such patients, revision TKA implants frequently incorporate a constrained post and cam mechanism to provide enhanced varus-valgus constraint to supplement the function of the collateral ligaments. The aim of this study was to evaluate knee kinematics during a weight bearing deep knee bend for both a primary TKA system and its complimentary revision system. The hypothesis of the study was that the revision tibial insert would demonstrate improved knee stability, in the form of a reduced range of motion under out-of-plane loading, when compared to the primary system. Methods. Eight cadaveric knees (age: 59±10 years, BMI 23.3±3.5) were implanted with an ATTUNE™ revision femoral component and a primary posterior stabilized tibial component. Each knee was mounted and aligned into the Kansas Knee Simulator (Fig. 1) [4]. A deep knee bend was performed between 10° and 110° flexion with no out-of-plane loading. Additional deep knee bends were performed with constant 6Nm external and 6Nm internal torques about the tibial long axis, and with 40N medial and 40N lateral loads applied at the ankle sled. The 40N medial and 40N lateral loads produce approximately 15Nm adduction and abduction moments at the knee, respectively. The primary tibial insets were then replaced with revision tibial inserts from the same TKA system and the deep knee bend cycles were repeated. The revision tibial inserts included a larger tibial post intended to constrain the varus-valgus rotation of the knee. The change in knee kinematics of the revision tibial insert compared to the primary insert was calculated and student t-tests were performed to identify significant differences between the two tibial insert types for each loading condition. Results. The baseline deep knee bend with no out-of-plane loads showed no statistical difference in kinematics between the primary and the revision tibial inserts. The revision tibial insert demonstrated a significant reduction in varus-valgus range-of-motion compared to the primary tibia for the deep knee bends with adduction and abduction moments (Fig. 2). The deviation in the internal-external rotation for internal-external torque cycles were significantly smaller for the revision compare to the primary tibial inserts (Fig. 3). Discussion. The primary and revision implants have the same tibial plateau geometries; therefore, it was expected that they have similar tibiofemoral kinematics for the baseline deep knee bend. The variations in tibiofemoral kinematics in the cycles with out-of-sagittal plane loads between the two inserts were primarily due to the differences in their intercondylar box and post geometry. The larger post in the revision implants resulted in tighter fit between the post and cam which restricted the knee joint motion. Increased conformity of the TKA revision system successfully reduced deviation in varus-valgus and internal-external rotations from baseline kinematics which may be desirable for patients with instability due to ligaments deficiency. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 112 - 112
10 Feb 2023
Ross M Vince K Hoskins W
Full Access

Constrained implants with intra-medullary fixation are expedient for complex TKA. Constraint is associated with loosening, but can correction of deformity mitigate risk of loosening?. Primary TKA's with a non-linked constrained prosthesis from 2010-2018 were identified. Indications were ligamentous instability or intra-medullary fixation to bypass stress risers. All included fully cemented 30mm stem extensions on tibia and femur. If soft tissue stability was achieved, a posterior stabilized (PS) tibial insert was selected. Pre and post TKA full length radiographs showed. i. hip-knee-ankle angles (HKAA). ii. Kennedy Zone (KZ) where hip to ankle vector crosses knee joint. 77 TKA's in 68 patients, average age 69.3 years (41-89.5) with OA (65%) post-trauma (24.5%) and inflammatory arthropathy (10.5%). Pre-op radiographs (62 knees) showed varus in 37.0%. (HKAA: 4. o. -29. o. ), valgus in 59.6% (HKAA range 8. o. -41. o. ) and 2 knees in neutral. 13 cases deceased within 2 years were excluded. Six with 2 year follow up pending have not been revised. Mean follow-up is 6.1 yrs (2.4-11.9yrs). Long post-op radiographs showed 34 (57.6%) in central KZ (HKKA 180. o. +/- 2. o. ). . Thirteen (22.0%) were in mechanical varus (HKAA 3. o. -15. o. ) and 12 (20.3%) in mechanical valgus: HKAA (171. o. -178. o. ). Three failed with infection; 2 after ORIF and one with BMI>50. The greatest post op varus suffered peri-prosthetic fracture. There was no aseptic loosening or instability. Only full-length radiographs accurately measure alignment and very few similar studies exist. No cases failed by loosening or instability, but PPF followed persistent malalignment. Infection complicated prior ORIF and elevated BMI. This does not endorse indiscriminate use of mechanically constrained knee prostheses. Lower demand patients with complex arthropathy, especially severe deformity, benefit from fully cemented, non-linked constrained prostheses, with intra-medullary fixation. Hinges are not necessarily indicated, and rotational constraint does not lead to loosening


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 133 - 133
1 Feb 2017
MacDonald D Caton T Higgs G Malkani A Chen A Mont M Kurtz S
Full Access

Background. Sequentially annealed, highly crosslinked polyethylene (HXLPE) has been used clinically in total knee arthroplasty (TKA) for over a decade[1]. However, little is known about the reasons for HXLPE revision, its surface damage mechanisms, or its in vivo oxidative stability relative to conventional polyethylene. We asked whether retrieved sequentially annealed HLXPE tibial inserts exhibited: (1) similar reasons for revision; (2) enhanced resistance to surface damage; and (3) enhanced oxidative stability, when compared with tibial inserts fabricated from conventional gamma inert sterilized polyethylene (control). Methods. Four hundred and fifty-six revised tibial inserts in two cohorts (sequentially annealed and conventional UHMWPE control) were collected in a multicenter retrieval program between 2000 and 2016. We controlled for implantation time between the two cohorts by excluding tibial inserts with a greater implantation time than the longest term sequentially annealed retrieval (9.5 years). The mean implantation time (± standard deviation) for the sequentially annealed components was 1.9 ± 1.7 years, and for the control inserts, 3.4 ± 2.7 years (Figure 1). Reasons for HXLPE revision were assessed based on medical records, radiographs, and examinations of the retrieved components. Surface damage mechanisms were assessed using the Hood method[2]. Oxidation was measured at the bearing surface, the backside surface, the anterior and posterior faces, as well as the post (when available) using FTIR (ASTM F2102). Surface damage and oxidation analyses were available for 338 of the components. We used nonparametric statistical testing to analyze for differences in oxidation and surface damage when adjusting for polyethylene formulation as a function of implantation time. Results. The tibial inserts in both cohorts were revised most frequently for loosening, infection, and instability. Instability was observed more frequently in inserts without a stabilizing post. In both cohorts, the most commonly observed surface damage mechanisms were burnishing, pitting, and scratching. Delamination was rare and only observed in 2 sequentially annealed inserts and 7 inserts in the control cohort. We observed six cases of posterior condyle fracture, which was always associated with instability (Figure 2). 5/6 of the fracture cases did not have a stabilizing post. Oxidation indices of the sequentially annealed inserts were, on average, low (ASTM oxidation index < 1) and not significantly different than the control inserts on the bearing surface and anterior/posterior face (Figure 3). Discussion. The findings of this study document the reasons for revision, surface damage mechanisms, and oxidative behavior of sequentially annealed HXLPE for TKA. We observed evidence of low in vivo oxidation in both retrieved sequentially annealed HXLPE and control tibial inserts. We found no association between the levels of oxidation and clinical performance of the HXLPE tibial components. However, because of the short-term follow-up, analysis of longer-term retrievals may be appropriate


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 120 - 120
1 May 2016
Parker A Fitch D Nambu S Timmerman I
Full Access

Introduction. Total knee replacement (TKR) implant designs and materials have been shown to have a significant impact on tibial insert wear. A medial-pivot (MP) design theoretically should generate less wear due to a large contact area in the medial compartment and lower contact stresses. Synovial fluid aspiration studies have confirmed that a first generation MP TKR system (ADVANCE®, MicroPort Orthopedics Inc., Arlington, TN, USA) generates less wear debris than is seen with other implant designs articulating against conventional polyethylene (CP). Objectives. The objective of this study was to evaluate the in vitro wear rate of a second generation MP TKR system (EVOLUTION® Cruciate-Sacrificing, MicroPort Orthopedics Inc., Arlington, TN, USA) using CP tibial inserts and compare to previously published values for other TKR designs with CP and first or second generation crosslinked polyethylene (XLPE) tibial inserts. Methods. In vitro wear was assessed for five MP CP tibial inserts, each loaded for 5 megacycles (Mc) of simulated gait in accordance with ISO 14243–3. Insert cleaning and wear measurements were performed every 0.5 Mc in accordance with ISO 14243–2. Manufacturer websites and the MEDLINE database were searched for previously published in vitro wear rates for other TKR designs used in combination with CP and first or second generation XLPE inserts. Second generation XLPE inserts are those with additives or additional manufacturing, such as sequentially annealed and irradiated XLPE (X3®, Stryker, Mahwah, NJ, USA) and vitamin E infused polyethylene (E1®, Biomet, Warsaw, IN, USA). All TKR designs utilized cobalt-chrome (CoCr) femoral components, except Legion-Verilast that included Oxinium™ femoral components (Smith & Nephew, Memphis, TN, USA). Results. The mean wear rate for the MP system (2.0+0.2 mg/Mc) was less than half the wear rates reported for other TKR designs using CP inserts (Figure 1). The wear was also reduced or similar to those reported for all but three designs used in combination with XLPE inserts (Figure 2). Interestingly, wear rates for the MP system were approximately one-third of those reported for E1 and X3 used in combination with the Scorpio and Triathlon CR TKR systems (Stryker, Mahwah, NJ, USA). The main limitation to the current study is the use of literature comparators. While the comparison studies were all conducted using similar methods on knee wear simulator machines, there were some experimental differences that could potentially impact wear rates (e.g. diluted vs. non-diluted serum, gait patterns, types of testing machines). Conclusions. In vitro wear for a second generation MP TKR system was similar or lower than what has been previously reported for other TKR systems used with CP or XLPE tibial inserts. These results suggest that implant design may play a larger role in TKR wear debris generation than the material used for the tibial insert


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 19 - 19
1 Feb 2021
Wakelin E Plaskos C Shalhoub S Keggi J DeClaire J Lawrence J Koenig J Randall A Ponder C
Full Access

Introduction. Achieving a balanced joint with neutral alignment is not always possible in total knee arthroplasty (TKA). Intra-operative compromises such as accepting some joint imbalance, non-neutral alignment or soft-tissue release may result in worse patient outcomes, however, it is unclear which compromise will most impact outcome. In this study we investigate the impact of post-operative soft tissue balance and component alignment on postoperative pain. Methods. 135 patients were prospectively enrolled in robot assisted TKA with a digital joint tensioning tool (OMNIBotics with BalanceBot, Corin USA) (57% female; 67.0 ± 8.1 y/o; BMI: 31.9 ± 4.8 kg/m. 2. ). All surgeries were performed with a PCL sacrificing tibia or femur first techniques technique, using CR femoral components and a deep dish tibial insert (APEX, Corin USA). Gap measurements were acquired under load (average 80 N) throughout the range of motion during trialing with the tensioning tool inserted in place of the tibial trial. Component alignment parameters and post-operative joint gaps throughout flexion were recorded. Patients completed 1-year KOOS pain questionnaires. Spearman correlations and Mann-Whitney-U tests were used to investigate continuous and categorical data respectively. All analysis performed in R 3.5.3. Results. Significant correlations were found between KOOS Pain and joint balance (p < 0.05). Joint gap thresholds of an equally balanced or tighter medial compartment in extension, ±1 mm medial laxity compared to the final insert thickness in midflexion, and medio-lateral imbalance < 1.5 mm in flexion generated subgroups with significantly improved pain outcomes (median Δ = 8.3, 5.6 and 2.8 points, respectively). When all joint balance thresholds were satisfied, further improved outcomes resulted (median Δ = 11.2, p = 0.0018) (Figure 1 Left). No significant correlations were identified between femoral coronal (0.8 ± 2.1° valgus) and axial (2.1 ± 2.7° external) or tibiofemoral extension (1.1 ± 2.4° varus) and flexion (2.4 ± 2.8° varus) coronal alignments and KOOS Pain. Neutral and non-neutral femoral (±3° coronal and 0° – 5° external) and tibiofemoral (±3° coronal and −2° − 5° external) subgroups also reported no difference in KOOS pain outcome (Figure 1 Right). Discussion and Conclusion. The gap profiles identified here help build the understanding of joint balance and its relationship with outcome when using a PCL sacrificing deep dish tibial insert. Using a digitally-controlled distraction device, joint gap windows of clinical relevance were identified with statistically improved patient outcomes. By combining joint gap targets, subpopulations were identified with clinically significant improved pain outcomes. Furthermore, small changes in component alignment did not impact 1 yr pain outcomes, indicating soft tissue balance has a greater impact on outcome that alignment in the enrolled population. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 147 - 147
1 Jan 2016
Gao B Angibaud L Johnson D
Full Access

Introduction. Cruciate Retaining (CR) and Posterior Stabilizing (PS) are two common types of total knee arthroplasty (TKA) surgeries. The CR approach preserves the posterior cruciate ligament (PCL) while the PS approach sacrifices it. Implant size selection during a TKA surgery is primarily driven by the patient's bone size, but could also be affected by surgery types due to the influence of the PCL. The objective of this study was to investigate the effect of TKA surgery type on implant size selection, based on the clinical database of a well-established commercial implant system. Methods. A clinical database operated by Exactech, Inc. (Gainesville, FL, USA) was utilized for this study. The database contains TKA patient information of Optetrak® implant recipients from over 30 physicians in the US, UK, and Colombia since 1995. Patient height was used as a control factor for comparison of surgery types, and categorized by every 10 cm (e.g., the “170 cm” category contains patients from 170 to 179 cm). Taking primary TKA only and body heights from 130 cm to 199 cm, a total of 2,677 cases were examined. No statistical difference exists on patients' gender, body weight, or BMI within every height category between the CR and PS groups. The femoral implant size and tibial insert thickness were compared between the two groups. Results. The implant size generally increases with patient height for both CR and PS groups, except for those under 140 cm (Figure 1). For all height categories, the CR patients received consistently smaller implants than the PS patients (p<0.05). On average, a CR TKA was about 0.67 size smaller than a PS TKA (p<0.001). A 0.67 size corresponds to about 2.7 mm in femoral component's AP dimension. Tibial insert thickness does not vary substantially by patient size (Figure 2). The difference between CR and PS groups was also less significant. On average, the CR group's tibial insert was about 0.5 mm thinner than that of the PS group (10.4 mm vs. 10.9 mm). Discussion. Flexion-extension gap balancing is a key objective in a TKA surgery. Although it is commonly known in the TKA community that a CR knee tends to have tighter gaps (especially flexion gap) than a PS knee, a quantitative understanding of this subject is lacking. By utilizing a novel statistical method on a single-product database, this study was able to provide a relevant answer to this question. This study found that a CR TKA on average accepted a femoral implant 2.7 mm smaller in AP dimension and a 0.5 mm thinner tibial insert than a PS TKA. Assuming all other factors the same, tibial insert thickness is a reflection of extension gap, while tibial insert thickness plus the AP dimension of the femoral component is a reflection of flexion gap. Thus the gap difference between CR and PS knees is about 0.5 mm at extension and about 3.2 mm at flexion. With statistical evidences, this study indicated that CR surgeons tend to downsize implant (consciously or unconsciously) more often than PS surgeons


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 80 - 80
1 Jan 2016
Cho C Murakami T Sawae Y
Full Access

Ultra-high molecular weight polyethylene (UHMWPE) is the sole polymeric material currently used for weight-bearing surfaces in total joint arthroplasty. However, the wear phenomenon of UHMWPE components in knee and hip prostheses after total joint arthroplasty is one of the major restriction factors on the longevity of these implants. In order to minimize the wear of UHMWPE and to improve the longevity of artificial joints, it is necessary to clarify the factors influencing the wear mechanism of UHMWPE. In the microscopic surface observation of the virgin knee prosthesis with anatomical design, various grades of microscopic surface scratches and defects caused by machining and surface finishing processes during manufacture of the component were observed on the surface of the metallic femoral component [Fig. 1] (C. Cho et al, 2009), although the overall surface were finished at smoother level. It is thought that certain levels of the microscopic surface asperities caused by these surface damages in the metallic femoral component might contribute to increasing and/or accelerating wear of the UHMWPE tibial insert. Therefore, it is necessary to clarify quantitatively the influence of the microscopic surface asperities of the metallic components in virgin artificial joints on the wear of UHMWPE components. The primary purpose of this study was to investigate the influence of the microscopic surface asperities of the virgin metallic femoral component on the wear of the UHMWPE tibial insert in the virgin knee prosthesis. In this study, the authors focused on the three-dimensional shape of the microscopic surface asperities as a factor influencing the wear mechanism of the UHMWPE tibial insert. The 3D microscopic surface profile measurement of the virgin metallic femoral component using a laser microscope and reproduction of the femoral component surface using 3D CAD software were performed [Fig. 2] in order to produce idealized 3D finite element models of the microscopic surface asperity of the femoral component based on actual measurement data. Elasto-plastic finite element contact analyses between idealized microscopic surface asperities and UHMWPE were also performed in order to investigate the influence of the three-dimensional shape of the microscopic surface asperities of the virgin metallic femoral component on the wear of the UHMWPE tibial insert. The analytical findings of this study suggest that the aspect ratio and shape ratio [Fig. 3] of the microscopic surface asperity of the virgin metallic femoral component have an important influence on increasing and/or accelerating wear of the UHMWPE tibial insert


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 67 - 67
1 Feb 2020
Gascoyne T Rodgers L Kubiak S Petrak M
Full Access

Background. Additive manufacturing (AM) has created many new avenues for material and manufacturing innovation. In orthopaedics, metal additive manufacturing is now widely used for production of joint replacements, spinal fusion devices, and cranial maxillofacial reconstruction. Plastic additive manufacturing on the other hand, has mostly been utilized for pre-surgical planning models and surgical cutting guides. The addition of pharmaceuticals to additively manufactured plastics is novel, particularly when done at the raw material level. The purpose of this study was to prove the concept of antibiotic elution from additively manufactured polymeric articles and demonstrate feasibility of application in orthopaedics. Methods. Using patented processes, three heat-stable antibiotics commonly used in orthopaedics were combined with six biocompatible polymers (2 bioresorbable) into filament and powder base materials for fused deposition modeling (FDM) and selective laser sintering (SLS) AM processes. Raw materials of 1%, 2%, and 5% antibiotic concentrations (by mass) were produced as well as a blend of all three antibiotics each at 1% concentration. Thin disks of 25 mm diameter were manufactured of each polymer with each antibiotic at all concentrations. Disks were applied to the center of circular petri dishes inoculated with a bacterium as per a standard zone of inhibition, or Kirby-Bauer disk diffusion tests. After 72 hours incubation, the zone of inhibited bacterial growth was measured. Periprosthetic joint infection (PJI) of the knee was selected as the proof-of-concept application in orthopaedics. A series of tibial inserts mimicking those of a common TKR system were manufactured via SLS using a bioresorbable base material (Figure 1). Three prototype inserts were tested on a knee wear simulator for 333,000 cycles following ISO 14242–1:2014 to approximate 2–4 months of in vivo use between surgeries of a 2-stage procedure for PJI. Gravimetric measurement and visual damage assessment was performed. Results. Bacterial growth was inhibited to a mean diameter of 32.3 mm (FDM) and 42.2 mm (SLS) for nearly all combinations of polymers and concentrations of antibiotics. Prototype tibial inserts experienced an average of 200 mg of wear during testing and demonstrated no evidence of cracking, delamination or significant deformation (Figure 2). Conclusion. Bench-level testing of these novel antibiotic-eluting polymers demonstrates feasibility for their application in orthopaedic medicine. In particular, treatment of stubborn PJI with potential for increased and sustained antibiotic elution, patient-specific cocktailing, and maintenance of knee joint structure and function compared to existing PJI products and practices. Subsequent testing for these novel polymers will determine static and dynamic (wear-induced) antibiotic elution rates. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 218 - 218
1 Sep 2012
Wu JJ
Full Access

Ultra-high molecular weight polyethylene (UHMWPE) has been the gold standard material of choice for the load-bearing articulating surface in knee joint prostheses. However, the application of joint replacements to younger (aged < 64 years) and more active people plus the general increase in life expectancy results in an urgent need for a longer lasting material with better in-use performance. There are three major material related causes that can lead to joint failure in UHMWPE knee joint replacements: free radical induced chemical degradation; mechanical degradation through wear and delamination; and UHMWPE micron and submicron wear debris induced osteolysis. As a potential solution to these problems, highly crosslinked UHMWPE stabilised with infused antioxidant vitamin E (α-Tocopherol), which is abbreviated as E-Poly, has been of great interest. In the current work, the wear performance and mechanical properties of Vanguard cruciate retaining (CR) E-Poly tibial inserts were assessed and compared with Vanguard CR Arcom tibial inserts. Also E-Poly plates were compared with direct compression moulded UHMWPE wear plates. Both a multi-directional pin-on-plate tester and a six-station Prosim (Manchester, UK) knee wear simulator were used to assess wear properties of E-Poly plates and E-Poly tibial inserts respectively. All E-Poly plates and tibial inserts were sterilised and vacuum packed in the same way as Vanguard implants before wear testing. The wear knee simulator test was conducted in accordance with ISO 14243-3:2004 with the exception that a more aggressive Tibial Rotation and Anterior/Posterior displacement profiles, based on the kinematics of the natural knee were incorporated. Under the same aggressive pre-clinical wear testing condition, compared with Vanguard Arcom CR tibial inserts, Vanguard E-Poly CR tibial inserts experienced an 85% reduction in the mean wear rate. The former had a mean wear rate of 6.51±1.75 mm. 3. per million cycles (MC) and the latter had a mean wear rate of 0.96±0.11 mm. 3. /MC over the 7 million cycle testing period. A similar reduction (80%±8.5) in the mean wear factor was also observed on E-Poly plates compared with a series of direct compression moulded GUR1050 UHMWPE plates processed under a range of manufacturing processing conditions. Wear testing was conducted with a configuration of flat-ended stainless steel indenters multi-directionally sliding against the UHMWPE plates. Mechanical properties on Vanguard Arcom UHMWPE and E-Polys were evaluated using the small punch test. All tests were carried out using an Instron 5565 Universal Testing System at a constant crosshead speed of 0.5mm/min. With regard to work-to-failure, no statistical difference was observed, with the former being 254.2±4.1 mJ and the latter 255.6±28.2 mJ. However, all E-Polys exhibited strain stiffening due to the stretch of crosslinks. This resulted in a ca 12% reduction in elongation to break observed for E-Polys compared with that of Arcom UHMWPE. The former had an elongation to break of 4.1±0.2 mm and the latter of 4.7±0.3 mm. In conclusion, we have found that Vitamin E Stabilised UHMWPE tibial inserts are promising for knee joint prostheses. However, further investigations are needed to address potential issues such as the particle size and size distribution of E-Poly wear debris and the associated reactivity


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 33 - 33
1 Feb 2020
Maag C Cracaoanu I Langhorn J Heldreth M
Full Access

INTRODUCTION. Implant wear testing is traditionally undertaken using standardized inputs set out by ISO or ASTM. These inputs are based on a single individual performing a single activity with a specific implant. Standardization helps ensure that implants are tested to a known set of parameters from which comparisons may be drawn but it has limitations as patients perform varied activities, with different implant sizes and designs that produce different kinematics/kinetics. In this study, wear performance has been evaluated using gait implant specific loading/kinematics and comparing to a combination deep knee bend (DKB), step down (SD) and gait implant specific loading on cruciate retaining (CR) rotating platform (RP) total knee replacements (TKR). This combination activity profile better replicates patient activities of daily living (ADL). METHODS. Two sets of three ATTUNE. ®. size 5 right leg CR RP TKRs (DePuy Synthes, Warsaw, IN) were used in a study to evaluate ADL implant wear. Implant specific loading profiles were produced via a validated finite element lower limb model [1] that uses activity data such as gait (K1L_110108_1_86p), SD (K1L_240309_2_144p), and DKB (K9P_2239_0_9_I1) from the Orthoload database [2] to produce external boundary conditions. Each set of components were tested using a VIVO joint simulator (AMTI, Watertown, MA, Figure 1) for a total of 4.5 million cycles (Mcyc). All cycles were conducted at 0.8Hz in force-control with flexion driven in displacement control. Bovine calf serum lubricant was prepared to a total protein concentration of 18g/L and maintained at 37°±2°C. Wear of the tibial inserts was quantified via gravimetric methods per ISO14243–2:2009(E). Polyethylene tibial insert weights were taken prior to testing and every 0.5Mcyc there after which corresponded to serum exchange intervals. The multi-activity test intervals were split into10 loops of 1,250 DKB, 3,000 SD, and 45,750 gait cycles in series. Based on activity data presented by Wimmer et al. the number of cycles per activity and activities used is sufficient for a person that is considered active [3]. A loaded soak control was used to compensate for fluid absorption in wear rate calculations. Wear rates were calculated using linear regression. RESULTS SECTION. The wear rate for the gait-only activity test was calculated to be 0.20±0.04mg/Mcyc conversely the wear rate for the multi-activity test was 2.65±0.67mg/Mcyc (Figure 2). Wear scars can be found in Figure 3. Using a two-sided t-test of unequal variance, it was found that there was a significant difference between the two wear rates (p=0.004). DISCUSSION. Adding activities to the wear simulation test significantly increased the average wear rate of the test samples, confirming that changes in cross shear from different activities will tend to increase the wear of an implant. The results of this study prove that single activity wear testing may not be the most clinically severe wear testing that can be used for pre-clinical wear assessment. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 113 - 113
1 Feb 2015
Trousdale R
Full Access

From 1985 through 1997, 56 isolated tibial insert exchange revisions were performed at our institution. Fifty-five patients with wear or instability were included. Those with loosening of any of the components, history of infection, severe knee stiffness or problems with the extensor mechanism were excluded. There were 29 males (1 bilateral) and 26 female patients with a mean age of 66 years (range 35 to 83 years) at the time of revision surgery. Twenty-seven inserts were exchanged based on ligamentous instability, 24 because of insert wear or breakage including two cases of polyethylene dislodgment from the tibial base-plate and 5 for other reasons. Twelve knees had one to three prior revisions. Surveillance from index arthroplasty averaged 8.3 years (range 1.6 to 16.2 years) and since revision 4.6 years (range 2 to 14 years). Knee Society and Function Scores improved from 56 and 50.9 prior to revision to 76 and 59 at final surveillance, respectively. Fourteen (25%) of the 56 knees subsequently required re-revision after a mean of only three years (range 0.5 to 6.8) from tibial insert exchange. The cumulative survival at 5.5 years was 63.5% (95% CI=+/−14.4, n=19). Of the 27 patients with preoperative instability, eight were revised and another four were considered as failures due to severe pain. Of the 24 failed inserts, five were re-revised, one was amputated as a result of chronic ankle osteomyelitis concomitant to a chronically painful arthroplasty, and another two inserts failed due to severe pain. Isolated tibial insert exchange led to a surprisingly high early failure rate. Tibial insert exchange should therefore be undertaken with caution as an isolated method of total knee revision surgery even in those circumstances for which the modular insert was designed and felt to be of greatest value


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 33 - 33
1 Feb 2020
Knowlton C Wimmer M
Full Access

INTRODUCTION. The specific factors affecting wear of the ultrahigh molecular weight polyethylene (UHMWPE) tibial component of total knee replacements (TKR) are poorly understood. One recent study demonstrated that lower conforming inserts produced less wear in knee simulators. The purpose of this study is to investigate the effect of insert conformity and design on articular surface wear of postmortem retrieved UHMWPE tibial inserts. METHODS. Nineteen NexGen cruciate-retaining (NexGen CR) and twenty-five NexGen posterior-stabilized (NexGen PS) (Zimmer) UHWMPE tibial inserts were retrieved at postmortem from fifteen and eighteen patients respectively. Articular surfaces were scanned at 100×100μm using a coordinate measuring machine (SmartScope, OGP Inc.). Autonomous mathematical reconstruction of the original surface was used to calculate volume loss and linear penetration maps of the medial and lateral plateaus. Wear rates for the medial, lateral and total articular surface were calculated as the slope of the linear regression line of volume loss against implantation time. Volume loss due to creep was estimated as the regression intercept. Student t-tests were used to check for significant. RESULTS. The NexGen CR and NexGen PS patient groups were approximately the same age at time of implantation (mean±SD: 72.1±9.9 and 68.7±8.8 years respectively, p=0.260) and implantation times were not significantly different (8.7±3.1 and 9.1±3.7 years, p=0.670). Both groups showed high variability in wear scars. No significant difference in wear rates on the total surface (mean±SE: 11.89±5.01 mm. 3. /year vs. 11.09±4.18 mm. 3. /year, p=0.905). However, NexGen CR components showed significantly higher volume loss due to creep than NexGen PS components (70.22±47.07 mm. 3. vs. 31.30±41.15 mm. 3. , p=0.007). These results were reflected on the medial and lateral sides, with no significant differences in wear rates on the medial side (p=0.856) or lateral side (p=0.633) and higher volume losses due to creep associated with the NexGen CR components. While NexGen CR and NexGen PS showed a near equal mean percentage of volume loss on the medial side (CR: 52.4±11.7%, PS: 52.5±11.6%), a paired t-test showed that NexGen PS components showed a higher volume loss on the medial side (p=0.056), NexGen CR components did not (p=0.404). DISCUSSION. The combination of higher conformity and more kinematic constraint in NexGen CR components may create larger contact areas with higher stresses, leading to higher volume loss due to creep observed in this study. However, these factors did not produce increased wear rates in the population. Constrained components may maintain more loading on medial side and limit sliding distance on lateral side, causing more wear medially. Total wear rates were very similar and resembled the previously reported rate of 12.9 ± 5.97 mm. 3. /year for retrieved Miller-Galante II (Zimmer) components, which features a near flat articulating surface. These findings indicate that materials factors may be most important in producing wear and that higher conformity alone does not decrease wear. For any figures or tables, please contact authors directly