Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

AN INTRA-OPERATIVE ADJUSTMENT OF THE DIFFERENCE BETWEEN THE JOINT GAP AND THE TIBIAL INSERT CANNOT CORRECT THE POST-OPERATIVE FLEXION CONTRACTURE IN TOTAL KNEE ARTHROPLASTY

The International Society for Technology in Arthroplasty (ISTA), 27th Annual Congress. PART 3.



Abstract

Postoperative functional outcomes and patients’ satisfaction after total knee arthroplasty are associated with postoperative range of motion. Severe deformities require surgical correction such as soft tissue release and appropriate bone resection. The goal of surgery is to correct the contracture and bring the knee to good range of motion. Using gap-balancing technique is one of the major techniques to obtain good range of motion. Although the gaps are well balanced, the thickness of tibial insert would affect the range of motion. In this study, we analyzed the difference between intraoperative extension joint gap and the thickness of implanted insert (DJI). The objective of this study was to investigate whether DJI affected the postoperative extension of the knee.

A total of 155 knees were analyzed retrospectively. Subject included 27 males and 128 females with an average of 72.7 ± 7.0 years. The mean preoperative knee flexion angle was 136.1 ± 20.0°and the mean preoperative knee extension deficit was 4.0 ± 6.1°. All the patients had a diagnosis of varus-type osteoarthritis, identical prostheses (Stryker NRG posterior-stabilized type) implanted with a modified gap-balancing technique and no postoperative complications which may have affected the range of motion. Range of motion was measured using a goniometer before surgery and 12 months after surgery. Joint gap between femoral component and proximal tibia in full extension was measured by a tensor/ balancer device which added joint gap an expansion force by 30 inch pounds intra-operatively. Although we empirically regarded the appropriate DJI was 5 mm for this prosthesis, we determined the thickness of the tibial inserts considering preoperative range of motion. Thinner inserts compared with the joint gap was implanted for knees with flexion contracture and thicker inserts was implanted for knees with hyperextension. In this study, to determine the relationship of DJI and flexion contracture, the correlation coefficient between DJI and extension deficit was calculated.

The diagram of DJI and postoperative extension angle is shown in Figure 1. The correlation coefficient between DJI and postoperative extension deficit was 0.24, which showed that DJI slightly affected the postoperative extension of the knee. Flexion contracture cannot be corrected by simply adjusting DJI.


*Email: