Genu recurvatum deformity is uncommon in arthritic knees undergoing total knee arthroplasty (TKA). We retrospectively analysed radiographs and navigation data to determine the clinical and radiographic results of computer-assisted TKA in knee arthritis with
Introduction. Genu recurvatum is a deformity rarely seen in patients receiving total knee arthroplasty. This deformity is defined as hyperextension of the knee greater than 5°. The incidence of
There is a difference between “functional instability” of a total knee arthroplasty (TKA) and a case of “TKA instability”. For example a TKA with a peri-prosthetic fracture is unstable, but would not be considered a “case of instability”. The concept of “stability” for a TKA means that the reconstructed joint can maintain its structure and permit normal motion and activities under physiologic loads. The relationship between stability and alignment is that stability maintains alignment. Instability means that there are numerous alignments and almost always the worst one for the loading condition. In the native knee, “instability” is synonymous with ligament injury. If this were true in TKA, then it would be reasonable to treat every “unstable TKA” with a constrained implant. But that is NOT the case. If the key to successful revision of a problem TKA is understanding (and correcting) the specific cause of the problem, then deep understanding of why the TKA is unstable is essential. A case of true “instability” then, is the loss of structural integrity under load as the result of problems with soft tissue stabilizing structures and/or the size or position of components. It is rare that ligament injury alone is the sole cause of instability (valgus instability invariably involves valgus alignment; varus instability usually means some varus alignment and compromised lateral soft tissues). There will be forces (structures) that create instability and forces (structures) that stabilise. There are three categories of instability: Varus-valgus or coronal: Assuming that the skeleton, implant and fixation are intact. These are usually cases that involve ligament compromise, but the usual cause is CORONAL ALIGNMENT, and this must be corrected. The ligament problem is best solved with mechanical constraint. Gait disturbances that increase the functional alignment problems (hip abductor lurch causing a valgus moment at the knee, scoliosis) may require attention of additional compensation with re-alignment. Plane of motion: Both fixed flexion contractures and
Introduction. Genu recurvatum deformities are unusual before total knee arthroplasty (TKA), occurring in less than 1% of patients. The purpose of this study is to evaluate the clinical and radiographic results of primary TKA in patients that had
Introduction. The assessment of leg length is essential for planning the correction of deformities and for the compensation of length discrepancy, especially after hip or knee arthroplasty. CT scan measures the “anatomical” lengths but does not evaluate the “functional” length experienced by the patients in standing position. Functional length integrates frontal orientation, flexion or hyperextension. EOS system provides simultaneously AP and lateral measures in standing position and thus provides anatomical and functional evaluations of the lower limb lengths. The objective of this study was to measure 2D and 3D anatomical and functional lengths, to verify whether these measures are different and to evaluate the parameters significantly influencing these potential differences. Material and Methods. 70 patients without previous surgery of the lower limbs (140 lower extremities) were evaluated on EOS images obtained in bipodal standing position according to a previously described protocol. We used the following definitions:. anatomical femoral length between the center of the femoral head (A) and center of the trochlea (B). anatomical tibial length between the center tibial spine (intercondylar eminence) (C) and the center of the ankle joint (D). functional length is AD. global anatomical length is AB + CD. Other parameters measured are HKA, HKS, femoral and tibial mechanical angles (FMA, TMA), angles of flexion or hyperextension of the knee, femoral and tibial torsion, femoro-tibial torsion in the knee, and cumulative torsional index (CTI). All 2D et3D measures were evaluated and compared for their repeatability. Results. Regarding repeatability, an ICC> 0.95 was found for all measurements except for the tibial mechanical angle (0.91 for 2D, 3D 0.92 for 3D). We observed 54/140 lower limbs with Flessum/
Introduction. To report our early experience and suitability over unicortical fixation system to reduce and hold the bone fragments in position during a CHAOS procedure of the femur or tibia during lower limb reconstruction surgery. Materials and Methods. We report a case series of the first consecutive 10 patients (11 bones) for which this CHAOS technique was used between May 2017 and October 2019 by the same surgeon. The novel aspect of the procedure was the use of a unicortical device, Galaxy UNYCO (Orthofix, Verona, Italy), which eliminate the need for any change of fixation during the procedure. It also means the intramedullary canal was left free for the intramedullary nailing. Results. We treated 4 femurs and 7 tibias with this technique without any loss or failure of the construct. We treated uniplanar and multiplanar deformities with the angulations between 8 degrees of valgus to 15 degrees of varus and from 0 to 8 mm translation in the AP view, from 20 degrees procurvatum to 15 degrees
Total knee arthroplasty is well documented to be a very successful operation, proper alignment and soft tissue balancing is important. Computer navigation for TKA has been available for more than 10 years. This paper reviews our outcomes and the lessons learned from CAS. October 1, 2001 we preformed the first clinical case of a navigated TKA in North America. We tracked our early results at with 1 year of follow up of 150 navigated knee cases and compared there data to 50 non- navigated knees. Long standing lower extremity x-rays were measured to determine mechanical alignment. In 2011 we reviewed all cases to date to determine if there were pin site problems. In 2012 we looked at are
Background. A grossly deformed knee is believed to be an indication for PS -TKA. However, the role CR-TKA in such knees is unclear in the literature. Considering the obvious advantages of CR, we analysed the mid term follow up of CR knees in gross deformities. Materials and Methods. 1590 patients (1740 knees) underwent TKA between January 2011 to December 2012, out of which 570 knees had gross deformity (varus > 15°, FFD > 10°, valgus > 10°,
The advent of Elastic Stable Intramedullary Nailing has revolutionised the conservative treatment of long human bone fractures in children (Metaizeau, 1988; Metaizeau et al., 2004). Unfortunately, failures still occur due to excessive bending and fatigue (Linhart et al., 1999; Lascombes et al., 2006), bone refracture or nail failure (Bråten et al., 1993; Weinberg et al., 2003). Ideally, during surgery, nail insertion into the diaphyseal medullary canal should not interrupt or injure cartilage growth; nails should provide an improved rigidity and fracture stabilisation. This study aims at comparing deflections and stiffnesses of nail-bone assemblies: standard cylindrically-shaped nails (MI) vs. new cylindrical nails (MII) with a flattened face across the entire length allowing more inertia and a curved tip allowing better penetration into the cancellous bone of the metaphysis (Figure 1). MII exhibits a section with two parameters: a diameter C providing nail stiffness and a height C' providing practical dimension when both nails are crossed at the isthmus of the diaphysis: C/C' is set to 1.25 for all MII nails. A CT scan of a patient aged 22 years was used to segment a 3D model of a 471mm-long right femur model. The medullary canal diameters at the isthmus are 10.8mm and 11.4mm in the ML and AP direction, respectively. Titanium-made CAD models of MI (Ø=4mm) and MII (flat face: Ø=5mm) were pre-curved to maintain their flat face and carefully placed and positioned according to surgeon's instructions. Both nails were inserted via lateral holes in the distal femur with their extremities either bumping against the cortex or lying in the trabecular bone. Transverse and comminuted fractures were simulated (Figure 1). For each assembly, a Finite Element (FE) tetrahedral mesh was generated (∼100181 nodes and 424398 elements). Grey-scale levels were used to assign heterogeneous material properties to the bone (E=6850 ρ. 1.49. (Morgan et al., 2003)). Two modes of loading were considered: 4-point bending (varus and
Instability currently represents one of the main causes of residual pain and symptoms following TKA and thus is a major cause of revision total knee replacement, second only to component loosening in some series. Instability related to ligamentous laxity can be categorised by the pattern of relative laxity of the soft tissue structures and this in turn helps in determination of the bony alignment issue, component sizing or positioning problem or ligamentous abnormality that may be contributory and require correction. Instability patterns associated with TKA can be symmetrical and global type instability where there is laxity in all planes, and can also more commonly be asymmetrical or isolated laxity problems where there is good stability in some planes or positions of the knee but excessive laxity in at least one direction. Isolated laxity problems can be subcategorised into one of 3 patterns: Extension instability, Flexion instability, and
An important goal of total knee replacement is deformity correction. Arthritic narrowing can be accompanied by a fixed shortening of the collateral ligament on the same side of the narrowing. There can also be ligamentous laxity that develops in the opposite compartment. Flexion contracture can develop with tightening of the posterior capsule. Successful total knee replacement requires proper bone resection along with gap balancing and balanced collateral ligament tensioning. Beware of correctable deformities, as the collateral ligament may have kept its resting length and therefore the knee becomes stable after the bone resections are made and the spacer block is inserted to test the stability of the knee in flexion and extension. In the varus knee, the MCL may be contracted. A medial release of the superficial medial collateral ligament may be necessary. This can be done by stripping the periosteal insertion of the MCL. A stretch may be accomplished by placing a laminar spreader in the narrow medial joint space and opening the space until the MCL stretches from its insertion. This maneuver will require a further increase in polyethylene thickness height of 2 – 4mm. Krackow has also on occasion done a surgical imbrication of the LCL, if it appears attenuated on the lateral side of a severe varus deformity. For valgus deformities, the LCL, arcuate ligament and popliteus and ITB can be contracted. At this time, most authors recommend preservation of the popliteus tendon as it affects primarily the flexion gap. In extension there has been consensus that the surgeon should release what is tight. This may include the ITB release in a pie-crust fashion, or off the Gerdy's tubercle and then a selective release of the arcuate ligament complex. Krackow has also utilised tightening imbrication of the MCL if it is severely attenuated and lax. This has been used infrequently, however. To avoid overlengthening of the knee by referencing balance off of the lengthened, attenuated MCL in cases of severe valgus deformity, less release is performed and a CCK implant may be used. For severe flexion contractures, the posterior osteophytes should be first aggressively removed. The posterior joint capsule can be stripped off the distal femur and sometimes the gastrocnemius muscle insertions can be dissected free. After these maneuvers, proximal raising of the joint line by resection of the distal femur can be utilised. In ankylosis with severe flexion contracture, constrained implants will be needed if the proximal resection extends above the insertion of the collateral ligaments.
There are many challenges facing the revision knee surgeon. Bony defects, ligamentous imbalance, and difficult gap balancing scenarios are common and require practical management strategies. Typically, an implant with the least amount of constraint necessary to provide a well-aligned, well-balanced arc of motion is preferred. Constraint in implants increases the stresses on both the bearing surfaces and the bony interfaces and may result in earlier mechanical failure of the implant. Despite this fact, there are situations where one cannot rely on a simple larger polyethylene post (such as found in CCK type devices) to balance gaps. The author prefers to choose hinge-type devices in situations that demonstrate massive gap imbalance (typically huge flexion gaps), situations with deficient extensor mechanisms that can result in
Aims. A flexed knee gait is common in patients with bilateral spastic
cerebral palsy and occurs with increased age. There is a risk for
the recurrence of a flexed knee gait when treated in childhood,
and the aim of this study was to investigate whether multilevel
procedures might also be undertaken in adulthood. Patients and Methods. At a mean of 22.9 months (standard deviation 12.9), after single
event multi level surgery, 3D gait analysis was undertaken pre-
and post-operatively for 37 adult patients with bilateral cerebral
palsy and a fixed knee gait. Results. There was a significant improvement of indices and clinical and
kinematic parameters including extension of the hip and knee, reduction
of knee flexion at initial contact, reduction of minimum and mean
knee flexion in the stance phase of gait, improved range of movement
of the knee and a reduction of mean flexion of the hip in the stance phase.
Genu
There are many challenges facing the revision knee surgeon. Bony defects, ligamentous imbalance, and difficult gap balancing scenarios are common and require practical management strategies. Typically, am implant with the least amount of constraint necessary to provide a well-aligned, well-balanced arc of motion is preferred. Constraint in implants increases the stresses on both the bearing surfaces and the bony interfaces and may result in earlier mechanical failure of the implant. Despite this fact, there are situations where one cannot rely on a simple larger polyethylene post (such as found in CCK type devices) to balance gaps. The author prefers to choose hinge type devices in situations that demonstrate massive gap imbalance (typically huge flexion gaps), situations with deficient extensor mechanisms that can result in
Introduction. Limb length discrepancy after THA can result in medicolegal litigation. It can create discomfort for the patient and potentially cause back pain or affect the longevity of the implant. Some patients tolerate the length inequality better compared to others despite difference in anatomical femoral length after surgery. Methods and materials. We analyzed the 3D EOS images of 75 consecutive patients who underwent primary unilateral THA (27 men, 48 women). We measured the 3D length of the femur and tibia (anatomical length), the 3D global anatomical length (the sum of femur and tibia anatomical lengths), the 3D functional length (center of the femoral head to center of the ankle), femoral neck-shaft angle, hip-knee-ankle angle, knee flexum/
Rotating Hinge total knee replacement designs are currently more frequently used for revision total knee replacement. As the designs of these implants have improved over time, the threshold for using them has been lowered. Cases of global instability and severe bone loss have not been adequately addressed by the standard use of unlinked constrained designs. Recurrent dislocation and polyethylene post failure due to cold flow and wear make the use of the unlinked designs insufficient to address the mechanical forces developed in a grossly unstable knee. The linked rotating hinge designs have been able to address global ligamentous instability in four planes. Medial-lateral instability is well addressed by these implants. In cases of severe ankylosis with large flexion contractures, it is often necessary to resect the distal femur above the femoral insertions of the medial and lateral collateral ligaments. The absence of the tethering effect of severely contracted collateral ligaments demand the need for linked designs, although there has been reported success with the use of unlinked designs. Rotating hinges are particularly important for use in cases of
The femur begins to bow anteriorly at the 200 mm level, but may bow earlier in smaller people. If the stem to be used is less than 200 mm, a straight stem can be used. If the stem is longer than 200 mm, it will perforate the anterior femoral cortex. I know this because I did this on a few occasions more than 20 years ago. To use a long straight stem, there are two techniques. One can either do a diaphyseal osteotomy or one can do a Wagner split (extended trochanteric osteotomy). Both of these will put the knee in some degree of hyperextension, probably insignificant in the elderly, but it may be of significance in the young. In very young people, therefore, it may be preferable to use a bowed stem to avoid this degree of
Knee replacements may be unstable in the: 1. Plane of motion instability, due to
Stability after TKA is essential for knee function and patient satisfaction. Stability may be marginally more important even than alignment because “stability” means there will be ONE alignment, whereas INSTABILITY means there will be many alignments of the joint, usually the worst one for any loading pattern. Whereas alignment results from the orientation and size of implants, stability depends on all of these, plus soft tissue integrity and in many cases, surgical alteration. Ligament releases (and rarely reconstructions) will certainly be required if alignment is changed with the arthroplasty. Instability may be a subtle or flagrant problem. The “Instabilities” are:
. i. Varus- valgus. ii. Plane of motion- Flexion. iii. Plane of Motion-Extension. Varus-valgus instability is the prototype and while it may originate exclusively from the failure of soft tissue, knee alignment and dynamic forces outside the knee joint such as hip abductor dysfunction, scoliois and tibialis posterior rupture may be implicated. A comprehensive approach will be needed. Flexion instability, most simply stated results from a flexion gap that exceeds the dimensions of the extension gap. It will result most commonly after surgery for the patient with a fixed flexion contracture whose knee extends fully because a relatively thin polyethylene insert has been selected. So-called “mid-flexion” instability (implying stability in extension and flexion) has not yet been thoroughly characterised. Extension instability includes all failures of the extensor mechanism (rupture, maltracking and weakness) which are better characterised as “buckling” under a separate topic.
Introduction. Coronal misalignment of the lower limbs is closely related to the onset and progression of osteoarthritis. In cases of severe genu varus or valgus, evaluating this alignment can assist in choosing specific surgical strategies. Furthermore, restoring satisfactory alignment after total knee replacement promotes longevity of the implant and better functional results. Knee coronal alignment is typically evaluated with the Hip-Knee-Ankle (HKA) angle. It is generally measured on standing AP long-leg radiographs (LLR). However, patient positioning influences the accuracy of this 2D measurement. A new 3D method to measure coronal lower limb alignment using low-dose EOS images has recently been developed and validated. The goal of this study was to evaluate the relevance of this technique when determining knee coronal alignment in a referral population, and more specifically to evaluate how the HKA angle measured with this 3D method differs from conventional 2D methods. Materials and methods. 70 patients (140 lower extremities) were studied for 2D and 3D lower limb alignment measurements. Each patient received AP monoplane and biplane acquisition of their entire lower extremities on the EOS system according the classical protocols for LLR. For each patient, the HKA angle was measured on this AP X-ray with a 2D viewer. The biplane acquisition was used to perform stereoradiographic 3D modeling. Valgus angulation was considered positive, varus angulation negative. Student's T-test was used to determine if there was a bias in the HKA angle measurement between these two methods and to assess the effect of flexion/hyperextension, femoral rotation and tibial rotation on the 2D measurements. One operator did measurements 2 times. Results. The average total dose for both acquisitions was 0.75mGy (± 0.11mGy). The 2D and 3D measurements are reported in table 1. Intraoperator reliability was >0,99 for all measurements. In the whole series, 2D–3D HKA differences were >2° in 34% of cases, >3° in 22% of cases, >5° in 9% of cases and >10° in 3% of cases >10°. We compared 2D and 3D measurements according to the degree of flessum/