header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

MID-FLEXION INSTABILITY IN TKA: WOOLLY THINKING OR A REAL CONCERN?

Current Concepts in Joint Replacement (CCJR) – Winter 2014



Abstract

Knee replacements may be unstable in the: 1. Plane of motion instability, due to recurvatum or buckling (in flexion). 2. Coronal plane or varus-valgus instability and 3. Flexed position. The third, flexion instability, has been well described and is characterised clinically by early, easy, superior flexion that is then compromised by difficulties with ascending and descending stairs, recurrent effusions and peri-articular tenderness. This “flexion instability” results generally from a flexion gap that is more spacious than the extension gap, where the polyethylene insert has been selected to permit full extension.

The term “mid-flexion” instability should not be used as a synonym for “flexion instability”. The concept of mid-flexion instability implies that the knee is stable in extension and stable in flexion (90 degrees) but unstable at points in between. The most common error in assessment probably occurs when surgeons observe stability to varus-valgus stress with the knee locked in full extension, where it is not appreciated that the posterior structures are tight and stabilising the knee. Once the knee if flexed enough to relax these structures, the true “flexion instability is revealed. This is not “mid-flexion” instability.

It is conceivable, that an arthroplasty might be designed where the geometry of the femoral condylar curve is such a large, recessed radius that the collateral ligaments are tight in both full extension and 90 degrees of flexion, but unstable in between. There have been marketing allegations that one product or another has been designed in a way to result in “mid-flexion instability. The only published information is based on finite element analysis models.

There is scant literature on “mid-flexion” instability”. Laboratory investigations with cadavers, concluded that proximal elevation of the joint line may create “mid-flexion” instability as a result of altering collateral ligament function. Computer models have questioned this effect. One clinical report describes “mid-flexion” (rotational) instability in a revision arthroplasty. So-called “anatomic alignment”, posterior stabilization and resection of distal femur to correct flexion contractures have been alleged to cause “mid-flexion” instability.