Aims. To develop prediction models using
Instability remains a common complication following total hip arthroplasty (THA) and continues to account for the highest percentage of revisions in numerous registries. Many risk factors have been described, yet a patient-specific risk assessment tool remains elusive. The purpose of this study was to apply a machine learning algorithm to develop a patient-specific risk score capable of dynamic adjustment based on operative decisions. 22,086 THA performed between 1998–2018 were evaluated. 632 THA sustained a postoperative dislocation (2.9%). Patients were robustly characterized based on non-modifiable factors: demographics, THA indication, spinal disease, spine surgery, neurologic disease, connective tissue disease; and modifiable operative decisions: surgical approach, femoral head size, acetabular liner (standard/elevated/constrained/dual-mobility). Models were built with a binary outcome (event/no event) at 1-year and 5-year postoperatively. Inverse Probability Censoring Weighting accounted for censoring bias. An ensemble algorithm was created that included Generalized Linear Model, Generalized Additive Model, Lasso Penalized Regression, Kernel-Based Support Vector Machines, Random Forest and Optimized Gradient Boosting Machine. Convex combination of weights minimized the negative binomial log-likelihood loss function. Ten-fold cross-validation accounted for the rarity of dislocation events.Introduction
Methods
Identification of patients at risk of not achieving minimally clinically important differences (MCID) in patient reported outcome measures (PROMs) is important to ensure principled and informed pre-operative decision making. Machine learning techniques may enable the generation of a predictive model for attainment of MCID in hip arthroscopy. Aims: 1) to determine whether machine learning techniques could predict which patients will achieve MCID in the iHOT-12 PROM 6 months after arthroscopic management of femoroacetabular impingement (FAI), 2) to determine which factors contribute to their predictive power. Data from the UK Non-Arthroplasty Hip Registry database was utilised. We identified 1917 patients who had undergone hip arthroscopy for FAI with both baseline and 6 month follow up iHOT-12 and baseline EQ-5D scores. We trained three established machine learning algorithms on our dataset to predict an outcome of iHOT-12 MCID improvement at 6 months given baseline characteristics including demographic factors, disease characteristics and PROMs. Performance was assessed using area under the receiver operating characteristic (AUROC) statistics with 5-fold cross validation. The three machine learning algorithms showed quite different performance. The linear logistic regression model achieved AUROC = 0.59, the deep neural network achieved AUROC = 0.82, while a random forest model had the best predictive performance with AUROC 0.87. Of demographic factors, we found that BMI and age were key predictors for this model. We also found that removing all features except baseline responses to the iHOT-12 questionnaire had little effect on performance for the random forest model (AUROC = 0.85). Disease characteristics had little effect on model performance. Machine learning models are able to predict with good accuracy 6-month post-operative MCID attainment in patients undergoing arthroscopic management for FAI. Baseline scores from the iHOT-12 questionnaire are sufficient to predict with good accuracy whether a patient is likely to reach MCID in post-operative PROMs.
Postoperative recovery after routine total hip arthroplasty (THA) can lead to the development of prolonged opioid use but there are few tools for predicting this adverse outcome. The purpose of this study was to develop machine learning algorithms for preoperative prediction of prolonged post-operative opioid use after THA. A retrospective review of electronic health records was conducted at two academic medical centers and three community hospitals to identify adult patients who underwent THA for osteoarthritis between January 1st, 2000 and August 1st, 2018. Prolonged postoperative opioid prescriptions were defined as continuous opioid prescriptions after surgery to at least 90 days after surgery. Five machine learning algorithms were developed to predict this outcome and were assessed by discrimination, calibration, and decision curve analysis.Background
Methods
Aims. This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. Methods. The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a
Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. Methods. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy. Results. We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy, while the support vector machine (SVM) determined impingement type with 72.9% accuracy. After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had similar impingement direction prediction rates (around 84.5%). Conclusion. This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing a comprehensive, real-world clinical dataset. Our
Cemented hemiarthroplasty is an effective form of treatment for most patients with an intracapsular fracture of the hip. However, it remains unclear whether there are subgroups of patients who may benefit from the alternative operation of a modern uncemented hemiarthroplasty – the aim of this study was to investigate this issue. Knowledge about the heterogeneity of treatment effects is important for surgeons in order to target operations towards specific subgroups who would benefit the most. We used causal forest analysis to compare subgroup- and individual-level treatment effects between cemented and modern uncemented hemiarthroplasty in patients aged > 60 years with an intracapsular fracture of the hip, using data from the World Hip Trauma Evaluation 5 (WHiTE 5) multicentre randomized clinical trial. EuroQol five-dimension index scores were used to measure health-related quality of life at one, four, and 12 months postoperatively.Aims
Methods