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Aims
Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype,
is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability
prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of
our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual
spinopelvic mechanics and patient phenotype for predicting impingement.

Methods
This international, multicentre prospective cohort study across two centres encompassed 157
adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and
extension stances was identified using the virtual range of motion (ROM) tool of the robotic
software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data
to predict impingement presence, direction (flexion or extension), and type. A secondary model
integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess
for any potential enhancement in prediction accuracy.

Results
We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical
planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement
prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy,
while the support vector machine (SVM) determined impingement type with 72.9% accuracy.
After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural
network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had
similar impingement direction prediction rates (around 84.5%).

Conclusion
This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing
a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated
promising accuracy in predicting impingement, its type, and direction. While the addition of
imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined
annotations, such as landmark markings, offers avenues for future enhancement. Prior to clinical
integration, external validation and larger-scale testing of this algorithm are essential.

HIP @BoneJointOpen

Is it feasible to develop a supervised learning algorithm incorporating spinopelvic mobility to predict impingement in patients undergoing
THA?
A. Fontalis, B. Zhao, P. Putzeys, et al.

671

From University College
London, London, UK, and
Hôpitaux Robert Schuman,
Luxembourg City, Luxembourg

Correspondence should be
sent to A. Fontalis
andreasfontalis@doctors.org.
uk

Cite this article:
Bone Jt Open 2024;5(8):
671–680.

DOI: 10.1302/2633-1462.
58.BJO-2024-0020.R1

mailto: andreasfontalis@doctors.org.uk
mailto: andreasfontalis@doctors.org.uk
mailto: andreasfontalis@doctors.org.uk


Take home message
• This study highlights the feasibility of using an artificial

intelligence algorithm to predict impingement in total hip
arthroplasty based on individual spinopelvic mechanics and
patient phenotype.

• The algorithm demonstrated promising accuracy, poten-
tially guiding surgeons in preoperative planning and
intraoperative decision-making.

Introduction
Instability and dislocation represent frequent postopera-
tive complications following primary total hip arthroplasty
(THA), often necessitating early revision surgery.1  Documen-
ted incidence rates range from 0% to 5%,2  while recent
comprehensive data analyzing over 16,000 THAs highligh-
ted an adjusted instability risk between 0.17% and 1.74%.3

Mounting evidence challenges the perceived safety of the
traditional Lewinnek zone, and has underscored that a
significant  number of hip dislocations occur within the
purported “safe zone” for cup positioning.2,4  Several surgical
factors play a pivotal role in hip stability, encompassing
the preservation of dynamic and static hip stabilizers and
restoration of joint biomechanics.5  Accurate offset  restora-
tion also holds evident biomechanical benefits  by enhanc-
ing the abductor moment arm and reducing joint reaction
forces. This may be particularly beneficial  for patients with
a rigid spine,6  potentially mitigating impingement and
dislocation risks.7,8  Nevertheless, the single most important
objective for achieving stability is precise implant position-
ing, tailored to the individual’s biomechanics and phe-
notype.5,9  This involves not only the specific  anatomical
characteristics of the patient, but also functional aspects
such as spinopelvic interactions.

Current research consensus indicates that, due to
individual variances in spinopelvic anatomy, there is no
one-size-fits-all optimal cup position.10 Spinopelvic motion
involves the complex coordination between the spine, pelvis,
and hips to facilitate postural adjustments. The variation in
sacral slope (ΔSS) is an essential metric for measuring such
dynamic shifts in spinopelvic mobility.5,11 A rigid spinopelvic
structure results in diminished pelvic extension and reduced
acetabular anteversion during the transition to a seated
position. Consequently, there is an increased reliance on
hip joint flexion, amplifying the chances of anterior impinge-
ment and subsequent posterior dislocation when seated.12

With the integration of innovative surgical technologies,
such as computer navigation and robotic arm assistance,
the emphasis has shifted towards personalized, functional
component placement in THA.10,13 The current workflow with
CT-based robotic systems features a virtual range of motion
(ROM) tool, offering real-time feedback on impingement and
the ramifications of component orientation changes.14 An
added benefit of robotic arm-assisted (RO) THA is its capacity
for ample data collection during the preoperative planning
stage and intraoperatively.

In pursuit of enhancing postoperative outcomes, a few
studies have endeavoured to predict instability and estab-
lish a personalized safe zone for component placement.9,15,16

However, there remains a conspicuous absence of studies
leveraging artificial intelligence (AI) to predict instability or
impingement.

To this end, our study evaluated the feasibility of
developing an AI algorithm tailored to individual spinopel-
vic mechanics and patient phenotype for predicting impinge-
ment. We also explored whether integrating imaging data
could further enhance its accuracy.

Methods
Study design and participants
We conducted an international, multicentre prospective
cohort study across two centres in the UK and Luxembourg,
aiming to evaluate the feasibility of an AI algorithm predict-
ing impingement in THA based on patient phenotype and
individual spinopelvic mechanics. The study adhered to the
ethical standards of the 1964 Declaration of Helsinki,17 and
secured ethical approval from the Hôpitaux Robert Schuman
institutional review board (Ref. CIVLU-21–09-037787). The
cohort comprised adult patients undergoing primary RO THA.
We excluded patients undergoing revision surgery for any
reason.

Imaging protocols and radiological analysis
The preoperative imaging protocol for all participants
included a CT for surgical planning and weightbearing
anteroposterior (AP) pelvis radiographs. This was complemen-
ted by standing and relaxed-seated position lateral spine
radiographs. For the seated images, patients were instructed
to sit naturally, ensuring that their femora remained paral-
lel to the ground. All spinopelvic radiological measurements
were performed by two independent researchers from each
institution, with at least one being a consultant surgeon (TV,
FG, PP, AF, FM, RP). The sacral slope (SS) was defined as the
angle subtended by a horizontal line and a tangential line to
the S1 superior endplate. The ΔSS from standing to relaxed-
seated position was used to quantify spinopelvic mobility. The
pelvic incidence (PI) was defined as the angle between a line
joining the tangent to the S1 endplate and a line joining the
femoral head to the S1 endplate centre.18

Surgical techniques and implant details
Surgeries in each institution were performed using the
MAKOplasty total hip application system, version 4.0 (Stryker,
USA). All participants received the following implants: a
cementless, proximally coated femoral stem (Accolade II;
Stryker); a porous acetabular shell (Trident Acetabular System;
Stryker); a highly cross-linked polyethylene liner (X3 10° or 0°;
Stryker); and a ceramic head (Biolox δ; CeramTec, Germany).

A personalized 3D plan was generated using the
preoperative CT. Spinopelvic parameters were inputted into
the MAKO software (version 4.0), which includes a virtual
ROM (vROM) tool for real-time impingement feedback. The
surgical plan was determined with a focus on replicating
the native anatomy as closely as possible. The native centre
of rotation, leg length, and combined offset were aimed
to be restored using the contralateral side as a guide. The
acetabular component was carefully positioned to achieve
adequate bony coverage, avoid anterior prominence, and
prevent irritation of the psoas tendon, which could lead to
postoperative groin pain. In cases of dysplastic acetabula,
special attention was given to the posterior wall to assess
any deficiencies. The femoral stem sizing and positioning were
calculated to preserve leg length and native offset, ensuring
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that the stem did not underfill the canal or compromise the
calcar. Spinopelvic motion was also taken into account; for
example, in patients with a stiff pelvis fixed in anterior tilt,
increasing the offset and/or the inclination and anteversion of
the cup was considered. Conversely, in ‘stuck sitting’ patients,
our approach included the removal of posterior osteophytes,
a decrease in cup anteversion, an increase in femoral offset, or
a decrease in femoral anteversion. At the planning stage, hips
were assessed for impingement in standardized stances: 15°

extension, external rotation, and abduction in standing; and
110° flexion, 40° internal rotation, and 10° adduction in
sitting. Any detected impingement was further categorized
by its direction (anterior/posterior) and type (bone-bone,
implant-implant, or implant-bone). Additionally, planned stem
version, acetabular component orientation, and baseline
characteristics were recorded. Our dataset included various
scenarios of impingement identified intraoperatively, which
were essential for training the AI model to recognize and

Fig. 1
Schematic representation of our artificial intelligence model, illustrating the decision tree, which commences from a distinct feature such as ‘Sacral
Slope Sitting’ or ‘Planned Obliquity’. This bifurcates further into leaves based on specific criteria. For example, the left leaf encompasses patients with
a ‘Sacral Slope Sitting’ measurement beneath Decision Boundary A, whereas its right counterpart includes those exceeding this. In a hierarchical
decision tree, these leaves can split further, based on more features, until the model converges or reaches its maximum depth. Such convergence
aligns with predefined metrics integral to information gain. GBDT, Gradient-Boosted Decision Tree.

Fig. 2
Figure depicting the flow of patients throughout the study and models. THA, total hip arthroplasty.
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predict impingement effectively under real-world conditions.
Intraoperative adjustments to the surgical plan, such as
modifications to the offset and component positioning,
were frequently necessary based on real-time feedback and
intraoperative trialling.

Model description
In this study, we focused on two AI models designed to
predict impingement during hip arthroplasty surgery, taking
into account the individual phenotype, component position-
ing, and spinopelvic mechanics. Our primary model, Light
Gradient-Boosting Machine (LGBM),19 employed AI using

tabular data to predict: 1) the presence of impingement; 2)
whether impingement will occur in flexion or extension; and 3)
the type of impingement (bone-on-bone, implant-on-implant,
implant-on-bone).

Gradient-Boosted Decision Trees (GBDT) and LGBM
generate multiple trees sequentially across iterative learning

Fig. 3
Examples of sub-decision trees in Light Gradient-Boosting Machine.

Table I. Baseline and spinopelvic characteristics of the studied
cohort.

Variable
Patient undergoing robotic
arm-assisted THA (n = 157)

Mean age, yrs (range) 65 (32 to 88)

Sex, n (%)

Female 79 (50.6)

Male 77 (49.4)

Laterality, n (%)

Right 81 (51.9)

Left 75 (48.1)

Mean sacral slope standing, ° (SD) 37.8 (8.8)

Mean sacral slope sitting, ° (SD) 15.2 (12)

Mean pelvic incidence, ° (SD) 53.1 (12.4)

Mean pelvic tilt in standing
position, ° (SD) 15.5 (8.4)

THA, total hip arthroplasty.

Table II. Surgical planning parameters and impingement
characteristics.

Variable

Patient undergoing
robotic arm-assisted
THA (n = 157)

Median planned offset versus opposite hip,
mm (IQR) -1 (-3 to 3)

Median planned offset versus preoperative
hip, mm (IQR) -2 (-5.75 to 1)

Mean planned acetabular component
obliquity, ° (SD) 40.4 (1.3)

Mean planned acetabular component
version, ° (SD) 20.4 (1.5)

Median planned femoral stem version, °
(IQR) 14 (10 to 15)

Impingement, n (%) 100 (64.1)

Impingement direction, n (%)

Anterior (in flexion) 77 (77)

Posterior (in extension) 23 (23)

Type of impingement, n (%)

Bone-on-bone 52 (52)

Implant-on-implant 7 (7)

Implant-on-bone 41 (41)

THA, total hip arthroplasty.
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steps. Figure 1 illustrates the workflow of the GBDT, with
three distinct prediction phases for impingement types, each
executed by a different decision tree in a consecutive manner.
Succeeding trees are trained to predict the residual between
the preceding tree’s prediction and the true values, until either
the residuals nullify or the pre-set maximum tree count is
met (in this case, 3). The LGBM represents a refined variant
of GBDT, designed with the intention of fine-tuning both
learning algorithms and engineering parameters for enhanced
precision. It also employs gradient-based one-side sampling to
adjust sample weights during training, focusing on underfitted
data while maintaining the original distribution.

In our second model, we integrated tabular data
with plain AP pelvis radiographs to assess for any potential
enhancement in prediction accuracy. To incorporate imaging
data, we combined the table multilayer perceptron (MLP)
with a deep convolutional neural network (CNN) using the
Widedeep framework.20 This approach efficiently processes
features from both data types. The radiological analysis
combined a CNN classifier and a MLP classifier. Out of
135 samples, each fold used 108 samples for training and the

Table V. Comparison of results of Light Gradient-Boosting Machine
with or without age, sex, and laterality.

Variable Impingement Direction Type

With baseline demographics 0.667265 0.858205 0.619402

Without baseline demograph-
ics 0.702177 0.85037 0.677778

remaining 27 for validation. Each sample consisted of a table
feeding its predictive components into the MLP classifier to
derive tabular features, and a radiograph feeding into the CNN
classifier to derive image features. These features from both
classifiers were merged and trained against the true category
labels of impingement information using cross-entropy loss.
The CNN segment was designed not to concentrate on specific
measurements, but rather to identify complex patterns in the
images that might be overlooked by medical professionals,
thereby complementing the precise measurements detailed in
the tabular data.

Results
Of the 196 adult patients screened for RO THA, 157 were
included in the primary analysis due to complete datasets
(Figure 2). The participants’ ages spanned from 32 to 88 years,
with an almost even sex representation: 49.4% males (n
= 77) and 50.6% females (n = 79). Analyzing anatomical
parameters, mean standing SS was 37.8° (SD 8.8°) and 15.2°
(SD 12°) when seated. Mean PI was 53.1° (SD 12.4°) and
mean standing spinopelvic tilt (SPT) was 15.5° (SD 8.4°). The
mean planned acetabular version and inclination were 20.4°
(SD 1.5°) and 40.4° (SD 1.3°), respectively, while the median
femoral stem version was 14° (IQR 10 to 15). Prior to employ-
ing AI for impingement prediction, each case underwent
manual impingement modelling using the robotic software
to establish baseline data. The vROM tool revealed that
over 60% of participants showed signs of impingement, with
anterior impingement in about three-quarters of participants.
Bone-on-bone impingement was the most common, seen in
nearly 50% of cases, followed by implant-on-bone at around
40%. These manually curated data were then used to train and

Table III. Variables used in the artificial intelligence model.

Predictors Outcomes

Sacral slope standing

Sacral slope sitting

Pelvic incidence

Pelvic tilt in standing position

Planned offset versus opposite hip

Planned offset versus preoperative hip

Planned acetabular component obliquity

Planned acetabular component version

Planned femoral stem version

Impingement

Impingement direction

Type of impingement

Table IV. Comparative accuracy of different models on predicting impingement, direction, and type.

Input Output LGBM LR SVM

Predictors Impingement 0.702177 0.630020161 0.652620968

Predictors impingement Direction 0.85037 0.853870968 0.818225806

Predictors + impingement + direction Type 0.677778 0.702540323 0.728689516

LGBM, Light Gradient-Boosting Machine; LR, linear regression; SVM, support vector machine.

Is it feasible to develop a supervised learning algorithm incorporating spinopelvic mobility to predict impingement in patients undergoing
THA?
A. Fontalis, B. Zhao, P. Putzeys, et al.

675



validate the AI models, enabling them to predict impinge-
ment based on the observed patterns and surgical planning
parameters.

Exploring the feasibility of an AI algorithm to predict
impingement
To examine the feasibility of a predictive algorithm, we
analyzed the baseline spinopelvic characteristics (Table I) and

the surgical planning and impingement parameters (Table II).
From those, we identified nine essential predictors for our
model (Table III). To ensure a rigorous training and validation
process given our dataset size, we used fivefold cross-valida-
tion. Acknowledging the potential variability, we incorpora-
ted ten random seeds to guide the train-validate data split
and to determine model parameters. In the primary model,
125 samples from each fold were used for training and 32

Fig. 4
Feature importance when training the Light Gradient-Boosting Machine with (below) and without (above) baseline characteristics.

Fig. 5
Illustrations of the tabular model, the convolutional neural network (CNN) model, and the model combining CNN and table multilayer perceptron
(MLP).
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for validation. The results presented are averages from ten
random seeds; each seed was further averaged across the five
folds. Based on previous studies,21 we opted for the LGBM
algorithm over deep-learning methods,19 given its robust
performance with tabular data. We opted for a set of 20 trees
for impingement prediction (Figure 3). The results from the
LGBM model for impingement occurrence, direction, and type
can be seen in Table IV. We also present a comparison with
other algorithms’ accuracy metrics. The logistic regression (LR)
model processes weighted input features and uses a sig-
moid function for predictions. In contrast, the support vector
machine (SVM) organizes input sample features in a high-
dimensional space, subsequently classifying these samples.22

Model accuracy
Using a dataset with nine spinopelvic characteristics and
surgical planning parameters, the LGBM yielded 70.2%
accuracy. When provided with impingement data, both LGBM
and LR estimated impingement direction with approxi-
mately 85% accuracy. When provided with the impinge-
ment direction, SVM reached an accuracy of 72.9% for type
prediction (Table IV). Since impingement prediction was
crucial, we selected the LGBM as our primary model. Sub-
sequently, we explored the impact of integrating baseline
demographics to our model. We noted that adding these
characteristics (age, sex, laterality) neither improved prediction
accuracy nor added value. Instead, they seemed to introduce
potential misclassification risks. Variable importance assess-
ment in LGBM, shown in Figure 4, indicated that age, laterality,
and sex were non-dominant during training. Given these
findings and a slight drop in accuracy (Table V), we omitted
age, sex, and laterality from the final model.

Tabular data and radiograph-based impingement prediction
To evaluate the impact of integrating imaging data on
prediction accuracy, we tested both a MLP and a CNN. For
each tabular data entry, a corresponding radiograph was used.
This combined dataset underwent fivefold cross-validation,
with ten unique random seed settings. Of the 135 sam-
ples, each fold employed 108 samples for training and the
remaining 27 for validation (Figure 5). Table VI presents the
comparative performance of all models. The main observa-
tions were first that the LGBM on tabular data achieved
the highest impingement prediction accuracy of 68.1%, with
the combined image and tabular approach following closely
at 67.5%, surpassing other tabular methods and the CNN

(imaging only). Second, both the image-tabular combination
and the LGBM performed similarly on impingement direction
prediction, with accuracies of 84.39% and 84.54%, respectively.
Lastly, the combined method achieved the highest impinge-
ment type prediction accuracy at 66.4%.

The image-based CNN demonstrated low precision,
likely due to the limited dataset of 135 images and minimal
radiograph annotations.

Discussion
In our pilot study, we demonstrated the viability of a deep-
learning algorithm for predicting impingement based on
individual spinopelvic mechanics and patient phenotype.
The pilot algorithm exhibited good accuracy in predicting
impingement and type (bone-on-bone, implant-on-implant,
implant-on-bone) and excellent accuracy in determining its
direction. The algorithm’s input consisted of preoperative data,
accessible from any 2D or 3D surgical planning software. This
encompassed projected changes in offset, planned femoral
stem version, cup orientation, and spinopelvic metrics. For
arthroplasty surgeons without access to CT-based navigation
or robotic systems offering vROM,23,24 a refined AI algo-
rithm predicting impingement based on individual patient
phenotypes could be instrumental. This prediction tool
could guide preoperative planning and prepare surgeons for
potential intraoperative challenges.

While various studies have delved into the risks of
hip dislocation following THA, to the best of our knowledge
our research is the first attempt to harness AI for impinge-
ment prediction in THA.25 Parallel to our work but distinct in
not utilizing AI, Pryce et al26 pioneered a geometrical model
through computer-aided design (CAD). Widmer,27 in another
related endeavour, employed a 3D CAD model, analyzing
hip movements to identify an impingement-free zone that
was tailored to the individual prosthesis. Elkins et al28 used
a validated metal-on-metal THA finite element model to
delineate optimal acetabular orientations that would both
minimize wear and enhance component stability. Despite
these commendable attempts to visualize impingement,
previous studies have neither fully integrated the spinopelvic
parameters into their predictive models, nor expanded on the
potential of AI.

Our algorithm exhibited good accuracy in impinge-
ment and type prediction, and excellent accuracy in deter-
mining the direction. We used fivefold cross-validation, a
recognized method to ensure model reliability and prevent

Table VI. Prediction accuracies obtained from combining imaging and tabular data versus imaging alone.

Input Output
Table MLP + CNN
(image + tabular) LGBM (tabular)

Table MLP
(tabular) CNN (image) SVM (tabular)

Predictors Impingement 0.675328 0.681225 0.645613 0.64188 0.6375783475783476

Predictors +
impingement Direction 0.843903 0.845499 0.840741 0.388889 0.8134757834757835

Predictors +
impingement +
direction Type 0.664217 0.645014 0.643621 0.3218 0.6583475783475784

CNN, convolutional neural network; LGBM, Light Gradient-Boosting Machine; MLP, multilayer perceptron; SVM, support vector machine.
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overfitting.29–32 Although no universal accuracy benchmark
for AI models exists, domains like healthcare unquestionably
require higher precision. Balagurunathan et al33 outlined an
AI system’s evolution in medicine, from inception to market
introduction. This journey starts with an idea and moves onto
a discovery phase where the algorithm is established based on
an initial cohort study. The subsequent mid-phase encom-
passes system refinement and broader population testing
(clinical trials). The culmination is the late phase, where the
AI product is deemed suitable for widespread deployment.
Within this framework, our work resonates with the early,
proof-of-concept phase.

Our model demonstrated good accuracy in predicting
impingement and its direction, offering valuable insights for
arthroplasty surgeons during the preoperative stage. Such
information can direct necessary adjustments concerning
component positioning and prepare the surgeon for potential
intraoperative challenges. Nevertheless, our model’s perform-
ance in predicting the impingement type showed room for
improvement. Several reasons could account for this: a need
for a more comprehensive and representative dataset, or a
potential revision of the input variables specific to impinge-
ment type prediction. For instance, Chandler et al,34 in a
cadaveric study, indicated that factors such as the head/
neck ratio and neck length influence impingement-free ROM.
Therefore, integrating these parameters might enhance our
model’s accuracy.

When we incorporated imaging into our predictive
deep-learning algorithm using a plain weightbearing AP pelvis
radiograph, we observed no enhancement in accuracy. We
intentionally limited our imaging input to a single preoper-
ative AP pelvis radiograph to ensure broader applicability.
This constraint, however, comes at the expense of conduct-
ing more comprehensive evaluations, such as volumetric
assessments of anatomical structures or precise distance
measurements. Additionally, a complete understanding of
how the morphology and volume of anatomical structures,
particularly the greater trochanter, influence impingement
remains elusive. While CT reconstruction views and axial slices
could offer a pathway to these precise measurements, the
implications of adopting CT scans should be considered and
weighed against their broader applicability.35 Future stud-
ies could leverage detailed annotations, such as landmark
markings or distance measurements, to enhance predictive
accuracy. Furthermore, it is important to acknowledge that
owing to some patients opting out of having their images
used, our sample size for the AI model utilizing both tabular
and imaging data was slightly reduced. This could potentially
have introduced attrition bias and made our sample less
generalizable.

Our study possesses several potential limitations.
Although our comprehensive, prospectively collected data
strengthen our conclusions, a larger sample could further
refine the external validity and performance of our algorithm.
Another consideration is that missing data are inevitable
in real-world, everyday clinical practice. For this study, we
chose to use only patients with a complete dataset. Yet, the
efficiency of our algorithm could be enhanced by incorpo-
rating imputation models to accommodate and adjust for
missing data.36 Moreover, the algorithm’s accuracy could
vary internationally and between different ethnic groups

due to phenotypic differences,37 underscoring the need for
broader validation. We relied on standing and relaxed-seated
position spinal radiographs to evaluate spinopelvic motion;
recent research suggests that this method might overesti-
mate spinal stiffness.38,39 It has also been reported that
approximately 20% of osteoarthritic hips exhibit features of
spinopelvic hypermobility owing to limited hip motion and
a compensatory posterior pelvic tilt in the relaxed-seated
position.40–42 Therefore, integrating flexed-seated radiographs
into the algorithm might enable a more accurate impinge-
ment prediction. Additionally, predicting impingement using
our virtual ROM tool may not fully replicate impingement as
experienced by patients, as not all aspects of impingement
can be modelled with CT scans. This discrepancy highlights a
potential area for future research and algorithm refinement.
Moreover, we confined our imaging input to a single preoper-
ative AP pelvis radiograph to promote broader applicability,
especially for surgeons not utilizing enhanced CT preopera-
tive planning. Future efforts could consider CT reconstruction
views and axial slices for more detailed anatomical insights
and measurements. Another limitation is our exclusive use of
a specific femoral stem and acetabular component, necessitat-
ing validation with other prosthetic designs. It should also
be acknowledged that the specific parameters chosen for
hip motion in this study, aimed at assessing more extreme
functional positions,43 may not be universally applicable.
Variations in impingement and accuracy results could occur
if more conservative parameters are selected, potentially
influencing the generalizability of our findings.

In summary, we used a high-quality, comprehensive,
prospectively collected dataset emulating real-world clinical
scenarios to develop a machine-learning algorithm aiming to
predict impingement, its direction, and type in THA.44 Our
research represents the first study to examine the use of
AI in impingement prediction and external validation of this
algorithm and testing at a larger scale is imperative.
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