Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Hip

TOTAL HIP ARTHROPLASTY DISLOCATION RISK USING A MACHINE-LEARNING ALGORITHM

The Hip Society (THS) 2020 Members Meeting, held online, 1–2 October 2020.



Abstract

Introduction

Instability remains a common complication following total hip arthroplasty (THA) and continues to account for the highest percentage of revisions in numerous registries. Many risk factors have been described, yet a patient-specific risk assessment tool remains elusive. The purpose of this study was to apply a machine learning algorithm to develop a patient-specific risk score capable of dynamic adjustment based on operative decisions.

Methods

22,086 THA performed between 1998–2018 were evaluated. 632 THA sustained a postoperative dislocation (2.9%). Patients were robustly characterized based on non-modifiable factors: demographics, THA indication, spinal disease, spine surgery, neurologic disease, connective tissue disease; and modifiable operative decisions: surgical approach, femoral head size, acetabular liner (standard/elevated/constrained/dual-mobility). Models were built with a binary outcome (event/no event) at 1-year and 5-year postoperatively. Inverse Probability Censoring Weighting accounted for censoring bias. An ensemble algorithm was created that included Generalized Linear Model, Generalized Additive Model, Lasso Penalized Regression, Kernel-Based Support Vector Machines, Random Forest and Optimized Gradient Boosting Machine. Convex combination of weights minimized the negative binomial log-likelihood loss function. Ten-fold cross-validation accounted for the rarity of dislocation events.

Results

The 1-year model achieved an area under the curve (AUC)=0.63, sensitivity=70%, specificity=50%, positive predictive value (PPV)=3% and negative predictive value (NPV)=99%. The 5-year model achieved an AUC=0.62, sensitivity=69%, specificity=51%, PPV=7% and NPV=97%. All cohort-level accuracy metrics performed better than chance. The two most influential predictors in the model were surgical approach and acetabular liner.

Conclusions

This machine learning algorithm demonstrates high sensitivity and NPV, suggesting screening tool utility. The model is strengthened by a multivariable dataset portending differential dislocation risk. Two modifiable variables (approach and acetabular liner) were the most influential in dislocation risk. Calculator utilization in “app” form could enable individualized risk prognostication. Furthermore, algorithm development through machine learning facilitates perpetual model performance enhancement with future data input.