Introduction. Knee arthroplasty (KA), encompassing Total Knee Replacement (TKR) and Unicompartmental Knee Replacement (UKR), is one of the most common orthopedic procedures, aimed at alleviating severe knee arthritis. Postoperative KA management, especially radiographic imaging, remains a substantial financial burden and lacks standardised protocols for its clinical utility during follow-up. Method. In this retrospective multicentre cohort study, data were analysed from January 2014 to March 2020 for adult patients undergoing primary KA at Imperial NHS Trust. Patients were followed over a five-year period. Four
Precision health aims to develop personalised and proactive strategies for predicting, preventing, and treating complex diseases such as osteoarthritis (OA). Due to OA heterogeneity, which makes developing effective treatments challenging, identifying patients at risk for accelerated disease progression is essential for efficient clinical trial design and new treatment target discovery and development. To create a reliable and interpretable precision health tool that predicts rapid knee OA progression over a 2-year period from baseline patient characteristics using an advanced automated
Anterior approach total hip arthroplasty (AA-THA) has a steep learning curve, with higher complication rates in initial cases. Proper surgical case selection during the learning curve can reduce early risk. This study aims to identify patient and radiographic factors associated with AA-THA difficulty using
Abstract. Introduction. Precision health aims to develop personalised and proactive strategies for predicting, preventing, and treating complex diseases such as osteoarthritis (OA), a degenerative joint disease affecting over 300 million people worldwide. Due to OA heterogeneity, which makes developing effective treatments challenging, identifying patients at risk for accelerated disease progression is essential for efficient clinical trial design and new treatment target discovery and development. Objectives. This study aims to create a trustworthy and interpretable precision health tool that predicts rapid knee OA progression based on baseline patient characteristics using an advanced automated
Access to health care, including physiotherapy, is increasingly occurring through virtual formats. At-home adherence to physical therapy programs is often poor and few tools exist to objectively measure low back physiotherapy exercise participation without the direct supervision of a medical professional. The aim of this study was to develop and evaluate the potential for performing automatic, unsupervised video-based monitoring of at-home low back physiotherapy exercises using a single mobile phone camera. 24 healthy adult subjects performed seven exercises based on the McKenzie low back physiotherapy program while being filmed with two smartphone cameras. Joint locations were automatically extracted using an open-source pose estimation framework. Engineered features were extracted from the joint location time series and used to train a support vector machine classifier (SVC). A convolutional neural network (CNN) was trained directly on the joint location time series data to classify exercises based on a recording from a single camera. The models were evaluated using a 5-fold cross validation approach, stratified by subject, with the class-balanced accuracy used as the performance metric. Optimal performance was achieved when using a total of 12 pose estimation landmarks from the upper and lower body, with the SVC model achieving a classification accuracy of 96±4% and the CNN model an accuracy of 97±2%. This study demonstrates the feasibility of using a smartphone camera and a supervised
Total knee and hip arthroplasty (TKA and THA) are the most commonly performed surgical procedures, the costs of which constitute a significant healthcare burden. Improving access to care for THA/TKA requires better efficiency. It is hypothesized that this may be possible through a two-stage approach that utilizes prediction of surgical time to enable optimization of operating room (OR) schedules. Data from 499,432 elective unilateral arthroplasty procedures, including 302,490 TKAs, and 196,942 THAs, performed from 2014-2019 was extracted from the American College of Surgeons (ACS) National Surgical and Quality Improvement (NSQIP) database. A deep multilayer perceptron model was trained to predict duration of surgery (DOS) based on pre-operative clinical and biochemical patient factors. A two-stage approach, utilizing predicted DOS from a held out “test” dataset, was utilized to inform the daily OR schedule. The objective function of the optimization was the total OR utilization, with a penalty for overtime. The scheduling problem and constraints were simulated based on a high-volume elective arthroplasty centre in Canada. This approach was compared to current patient scheduling based on mean procedure DOS. Approaches were compared by performing 1000 simulated OR schedules. The predict then optimize approach achieved an 18% increase in OR utilization over the mean regressor. The two-stage approach reduced overtime by 25-minutes per OR day, however it created a 7-minute increase in underutilization. Better objective value was seen in 85.1% of the simulations. With deep learning prediction and mathematical optimization of patient scheduling it is possible to improve overall OR utilization compared to typical scheduling practices. Maximizing utilization of existing healthcare resources can, in limited resource environments, improve patient's access to arthritis care by increasing patient throughput, reducing surgical wait times and in the immediate future, help clear the backlog associated with the COVID-19 pandemic.
Physiotherapy is a critical element in successful conservative management of low back pain (LBP). The aim of this study was to develop and evaluate a system with wearable inertial sensors to objectively detect sitting postures and performance of unsupervised exercises containing movement in multiple planes (flexion, extension, rotation). A set of 8 inertial sensors were placed on 19 healthy adult subjects. Data was acquired as they performed 7 McKenzie low-back exercises and 3 sitting posture positions. This data was used to train two models (Random Forest (RF) and XGBoost (XGB)) using engineered time series features. In addition, a convolutional neural network (CNN) was trained directly on the time series data. A feature importance analysis was performed to identify sensor locations and channels that contributed most to the models. Finally, a subset of sensor locations and channels was included in a hyperparameter grid search to identify the optimal sensor configuration and the best performing algorithm(s) for exercise classification. Models were evaluated using F1-score in a 10-fold cross validation approach. The optimal hardware configuration was identified as a 3-sensor setup using lower back, left thigh, and right ankle sensors with acceleration, gyroscope, and magnetometer channels. The XBG model achieved the highest exercise (F1=0.94±0.03) and posture (F1=0.90±0.11) classification scores. The CNN achieved similar results with the same sensor locations, using only the accelerometer and gyroscope channels for exercise classification (F1=0.94±0.02) and the accelerometer channel alone for posture classification (F1=0.91±0.03). This study demonstrates the potential of a 3-sensor lower body wearable solution (e.g. smart pants) that can identify proper sitting postures and exercises in multiple planes, suitable for low back pain. This technology has the potential to improve the effectiveness of LBP rehabilitation by facilitating quantitative feedback, early problem diagnosis, and possible remote monitoring.
To detect early signs of infection infrared thermography has been suggested to provide quantitative information. Our vision is to invent a pin site infection thermographic surveillance tool for patients at home. A preliminary step to this goal is the aim of this study, to automate the process of locating the pin and detecting the pin sites in thermal images efficiently, exactly, and reliably for extracting pin site temperatures. A total of 1708 pin sites was investigated with Thermography and augmented by 9 different methods in to totally 10.409 images. The dataset was divided into a training set (n=8325), a validation set (n=1040), and a test set (n=1044) of images. The Pin Detection Model (PDM) was developed as follows: A You Only Look Once (YOLOv5) based object detection model with a Complete Detection Intersection over Union (CDIoU), it was pre-trained and finetuned by the through transfer learning. The basic performance of the YOLOv5 with CDIoU model was compared with other conventional models (FCOS and YOLOv4) for deep and transition learning to improve performance and precision. Maximum Temperature Extraction (MTE) Based on Region of Interest (ROI) for all pin sites was generated by the model. Inference of MTE using PDM with infected and un-infected datasets was investigated. An automatic tool that can identify and annotate pin sites on conventional images using bounding boxes was established. The bounding box was transferred to the infrared image. The PMD algorithm was built on YOLOv5 with CDIoU and has a precision of 0.976. The model offers the pin site detection in 1.8 milliseconds. The thermal data from ROI at the pin site was automatically extracted. These results enable automatic pin site annotation on thermography. The model tracks the correlation between temperature and infection from the detected pin sites and demonstrates it is a promising tool for automatic pin site detection and maximum temperature extraction for further infection studies. Our work for automatic pin site annotation on thermography paves the way for future research on infection assessment using thermography.
Abstract. Objectives. Spinal disorders such as back pain incur a substantial societal and economic burden. Unfortunately, there is lack of understanding and treatment of these disorders are further impeded by the inability to assess spinal forces in vivo. The aim of this project is to address this challenge by developing and testing a novel image-driven approach that will assess the forces in an individual's spine in vivo by incorporating information acquired from multimodal imaging (magnetic resonance imaging (MRI) and biplane X-rays) in a subject-specific model. Methods. Magnetic resonance and biplane X-ray imaging are used to capture information about the anatomy, tissues, and motion of an individual's spine as they perform a range of everyday activities. This information is then utilised in a subject-specific computational model based on the finite element method to predict the forces in their spine. The project is also utilising novel
Introduction. The increased prevalence of osteoporosis in the patient population undergoing reverse shoulder arthroplasty (RSA) results in significantly increased complication rates. Mainly demographic and clinical predictors are currently taken into the preoperative assessment for risk stratification without quantification of preoperative computed tomography (CT) data (e.g. bone density). It was hypothesized that preoperative CT bone density measures would provide objective quantification with subsequent classification of the patients’ humeral bone quality. Methods. Thirteen bone density parameters from 345 preoperative CT scans of a clinical RSA cohort represented the data set in this study. The data set was divided into testing (30%) and training data (70%), latter included an 8-fold cross validation. Variable selection was performed by choosing the variables with the highest descriptive value for each correlation clustered variables.
Introduction. Experimental bone research often generates large amounts of histology and histomorphometry data, and the analysis of these data can be time-consuming and trivial.
Artificial Intelligence (AI) is becoming more powerful but is barely used to counter the growth in health care burden. AI applications to increase efficiency in orthopedics are rare. We questioned if (1) we could train
Currently implemented accuracy metrics in open-source libraries for segmentation by supervised
Serial section electron microscopy (SSEM) was initially developed to map the neural connections in the brain. SSEM eventually led to the term ‘Connectomics’ to be coined to describe process of following a cell or structure through a volume of tissue. This permits the true three-dimensionality to be appreciated and relationships between cells and structures. The purpose of this study was to utilize this methodology to interrogate S. aureus infected bone. Bone samples were harvested from mice tibia infected with S. aureus and were fixed, decalcified, and osmicated. The samples were paraffin embedded and 5-micron sections were cut to identify regions of bacterial invasion into the osteocyte-lacuna-canalicular-network (OLCN). This area was cut from the paraffin block, deparaffinized, post-fixed and reprocessed into epoxy resin. Serial sections were cut at 60nm and collected onto Kapton tape utilizing the Automated Tape-collecting Ultramicrotome (ATUMtome) system. Samples were mounted onto 4” silicon wafers and post-stained with 2% uranyl acetate followed by 0.3% lead citrate and carbon coated. A ZEISS GeminiSEM 450 scanning electron microscope fitted with an electron backscatter diffusion detector was used to image the sections. The image stack was aligned and segmented using the open-source software, VASTlite. 264 serial sections were imaged, representing approximately 40 × 45 × 15-micron (x, y, z) volume of tissue. 70% of the canaliculi demonstrated infiltration by S. aureus. This study demonstrates that SSEM can be applied to the skeletal system and provide a new solution to investigate the OLCN system. It is feasible that this methodology could be implemented to investigate why some canaliculi are resistant to colonization and potentially opens up a new direction for the prevention of chronic osteomyelitis. In order to make this a realistic target, automated segmentation methodologies utilizing
Gait analysis is an indispensable tool for scientific assessment and treatment of individuals whose ability to walk is impaired. The high cost of installation and operation are a major limitation for wide-spread use in clinical routine. Advances in Artificial Intelligence (AI) could significantly reduce the required instrumentation. A mobile phone could be all equipment necessary for 3D gait analysis. MediaPipe Pose provided by Google Research is such a
Abstract. Objectives. Biomechanics is an essential form of measurement in the understanding of the development and progression of osteoarthritis (OA). However, the number of participants in biomechanical studies are often small and there is limited ways to share or combine data from across institutions or studies. This is essential for applying modern
During OA the homeostasis of healthy articular chondrocytes is dysregulated, which leads to a phenotypical transition of the cells, further influenced by external stimuli. Chondrocytes sense those stimuli, integrate them at the intracellular level and respond by modifying their secretory and molecular state. This process is controlled by a complex interplay of intracellular factors. Each factor is influenced by a myriad of feedback mechanisms, making the prediction of what will happen in case of external perturbation challenging. Hampering the hypertrophic phenotype has emerged as a potential therapeutic strategy to help OA patients (Ripmeester et al. 2018). Therefore, we developed a computational model of the chondrocyte's underlying regulatory network (RN) to identify key regulators as potential drug targets. A mechanistic mathematical model of articular chondrocyte differentiation was implemented with a semi-quantitative formalism. It is composed of a protein RN and a gene RN(GRN) and developed by combining two strategies. First, we established a mechanistic network based on accumulation of decades of biological knowledge. Second, we combined that mechanistic network with data-driven modelling by inferring an OA-GRN using an ensemble of
Our lab uses computer-aided design to build in silico libraries of surface topographies, which we reproduce on polymeric chips and analyse for cellular responses using high content imaging and