Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

PREPARING AN AUTOMATIC PIN SITE INFECTION DETECTION TOOL WITH MACHINE LEARNING FOR HOME-BASED SURVEILLANCE

The International Combined Orthopaedic Research Societies (ICORS), World Congress of Orthopaedic Research, Edinburgh, Scotland, 7–9 September 2022. Part 1 of 3.



Abstract

To detect early signs of infection infrared thermography has been suggested to provide quantitative information. Our vision is to invent a pin site infection thermographic surveillance tool for patients at home. A preliminary step to this goal is the aim of this study, to automate the process of locating the pin and detecting the pin sites in thermal images efficiently, exactly, and reliably for extracting pin site temperatures.

A total of 1708 pin sites was investigated with Thermography and augmented by 9 different methods in to totally 10.409 images. The dataset was divided into a training set (n=8325), a validation set (n=1040), and a test set (n=1044) of images. The Pin Detection Model (PDM) was developed as follows: A You Only Look Once (YOLOv5) based object detection model with a Complete Detection Intersection over Union (CDIoU), it was pre-trained and finetuned by the through transfer learning. The basic performance of the YOLOv5 with CDIoU model was compared with other conventional models (FCOS and YOLOv4) for deep and transition learning to improve performance and precision. Maximum Temperature Extraction (MTE) Based on Region of Interest (ROI) for all pin sites was generated by the model. Inference of MTE using PDM with infected and un-infected datasets was investigated.

An automatic tool that can identify and annotate pin sites on conventional images using bounding boxes was established. The bounding box was transferred to the infrared image. The PMD algorithm was built on YOLOv5 with CDIoU and has a precision of 0.976. The model offers the pin site detection in 1.8 milliseconds. The thermal data from ROI at the pin site was automatically extracted.

These results enable automatic pin site annotation on thermography. The model tracks the correlation between temperature and infection from the detected pin sites and demonstrates it is a promising tool for automatic pin site detection and maximum temperature extraction for further infection studies. Our work for automatic pin site annotation on thermography paves the way for future research on infection assessment using thermography.


Email: