Abstract
Anterior approach total hip arthroplasty (AA-THA) has a steep learning curve, with higher complication rates in initial cases. Proper surgical case selection during the learning curve can reduce early risk. This study aims to identify patient and radiographic factors associated with AA-THA difficulty using Machine Learning (ML).
Consecutive primary AA-THA patients from two centres, operated by two expert surgeons, were enrolled (excluding patients with prior hip surgery and first 100 cases per surgeon). K- means prototype clustering – an unsupervised ML algorithm – was used with two variables - operative duration and surgical complications within 6 weeks - to cluster operations into difficult or standard groups.
Radiographic measurements (neck shaft angle, offset, LCEA, inter-teardrop distance, Tonnis grade) were measured by two independent observers. These factors, alongside patient factors (BMI, age, sex, laterality) were employed in a multivariate logistic regression analysis and used for k-means clustering. Significant continuous variables were investigated for predictive accuracy using Receiver Operator Characteristics (ROC).
Out of 328 THAs analyzed, 130 (40%) were classified as difficult and 198 (60%) as standard. Difficult group had a mean operative time of 106mins (range 99–116) with 2 complications, while standard group had a mean operative time of 77mins (range 69–86) with 0 complications. Decreasing inter-teardrop distance (odds ratio [OR] 0.97, 95% confidence interval [CI] 0.95–0.99, p = 0.03) and right-sided operations (OR 1.73, 95% CI 1.10–2.72, p = 0.02) were associated with operative difficulty. However, ROC analysis showed poor predictive accuracy for these factors alone, with area under the curve of 0.56. Inter-observer reliability was reported as excellent (ICC >0.7).
Right-sided hips (for right-hand dominant surgeons) and decreasing inter-teardrop distance were associated with case difficulty in AA-THA. These data could guide case selection during the learning phase. A larger dataset with more complications may reveal further factors.