Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

PATIENT-SPECIFIC CALIBRATION OF PREOPERATIVE CT SCANS PROVIDE OBJECTIVE CLASSIFICATION OF BONE DENSITY SUBGROUPS FROM PATIENTS UNDERGOING REVERSE SHOULDER ARTHROPLASTY

The European Orthopaedic Research Society (EORS) 32nd Annual Meeting, Aalborg, Denmark, 18–20 September 2024.



Abstract

Introduction

The increased prevalence of osteoporosis in the patient population undergoing reverse shoulder arthroplasty (RSA) results in significantly increased complication rates. Mainly demographic and clinical predictors are currently taken into the preoperative assessment for risk stratification without quantification of preoperative computed tomography (CT) data (e.g. bone density). It was hypothesized that preoperative CT bone density measures would provide objective quantification with subsequent classification of the patients’ humeral bone quality.

Methods

Thirteen bone density parameters from 345 preoperative CT scans of a clinical RSA cohort represented the data set in this study. The data set was divided into testing (30%) and training data (70%), latter included an 8-fold cross validation. Variable selection was performed by choosing the variables with the highest descriptive value for each correlation clustered variables. Machine learning models were used to improve the clustering (Hierarchical Ward) and classification (Support Vector Machine (SVM)) of bone densities at risk for complications and were compared to a conventional statistical model (Logistic Regression (LR)).

Results

Clustering partitioned this cohort (training data set) into a high bone density subgroup consisting of 96 patients and a low bone density subgroup consisting of 146 patients. The optimal number of clusters (n = 2) was determined based on optimization metrics. Discrimination of the cross validated classification model showed comparable performance for the training (accuracy=91.2%; AUC=0.967) and testing data (accuracy=90.5 %; AUC=0.958) while outperforming the conventional statistical model (Logistic Regression (LR)). Local interpretable model-agnostic explanations (LIME) were created for each patient to explain how the predicted output was achieved.

Conclusion

The trained and tested model provides preoperative information for surgeons treating patients with potentially poor bone quality. The use of machine learning and patient-specific calibration showed that multiple 3D bone density scores improved accuracy for objective preoperative bone quality assessment.


Corresponding author: Daniel Ritter