Advertisement for orthosearch.org.uk
Results 1 - 19 of 19
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 61 - 61
11 Apr 2023
Wendlandt R Herchenröder M Hinz N Freitag M Schulz A
Full Access

Vacuum orthoses are being applied in the care of patients with foot and lower leg conditions, as ankle fractures or sprains. The lower leg is protected and immobilized, which increases mobility. Due to the design, the orthoses lead to a difference in leg length, i.e. the side with the orthosis becomes longer, which changes the gait kinematics. To prevent or mitigate the unfavourable effects of altered gait kinematics, leg length-evening devices (shoe lifts) are offered that are worn under the shoe on the healthy side. Our aim was to evaluate the effect of such a device on the normality of gait kinematics. Gait analysis was conducted with 63 adult, healthy volunteers having signed an informed consent form that were asked to walk on a treadmill at a speed of 4.5km/h in three different conditions:. barefoot - as reference for establishing the normality score baseline. with a vacuum orthosis (VACOPed, OPED GmbH, Germany) and a sport shoe. with a vacuum orthosis and a shoe lift (EVENup, OPED GmbH, Germany). Data was sampled using the gait analysis system MCU 200 (LaiTronic GmbH, Austria). The positions of the joint markers were exported from the software and evaluated for the joint angles during the gait cycle using custom software (implemented in DIAdem 2017, National Instruments). A normality score using a modification of the Gait Profile Score (GPS) was calculated in every 1%-interval of the gait cycle and evaluated with a Wilcoxon signed rank test. The GPS value was reduced by 0.33° (0.66°) (median and IQR) while wearing the shoe lift. The effect was statistically significant, and very large (W = 1535.00, p < .001; r (rank biserial) = 0.52, 95% CI [0.29, 0.70]). The significant reduction of the GPS value indicates a more normal gait kinematics while using the leg length-evening device on the contralateral shoe. This rather simple and inexpensive device thus might improve patient comfort and balance while using the vacuum orthoses


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 88 - 88
11 Apr 2023
Souleiman F Heilemann M Hennings R Hepp P Gueorguiev B Richards G Osterhoff G Gehweiler D
Full Access

The aim of this study was to investigate the effect of different loading scenarios and foot positions on the configuration of the distal tibiofibular joint (DTFJ). Fourteen paired human cadaveric lower legs were mounted in a loading frame. Computed tomography scans were obtained in unloaded state (75 N) and single-leg loaded stand (700 N) of each specimen in five foot positions: neutral, 15° external rotation, 15° internal rotation, 20° dorsiflexion, and 20° plantarflexion. An automated three-dimensional measurement protocol was used to assess clear space (diastasis), translational angle (rotation), and vertical offset (fibular shortening) in each foot position and loading condition. Foot positions had a significant effect on the configuration of DTFJ. Largest effects were related to clear space increase by 0.46 mm (SD 0.21 mm) in loaded dorsal flexion and translation angle of 2.36° (SD 1.03°) in loaded external rotation, both versus loaded neutral position. Loading had no effect on clear space and vertical offset in any position. Translation angle was significantly influenced under loading by −0.81° (SD 0.69°) in internal rotation only. Foot positioning noticeably influences the measurement when evaluating the configuration of DTFJ. The influence of the weightbearing seems to have no relevant effect on native ankles in neutral position


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 141 - 141
2 Jan 2024
Wendlandt R Volpert T Schroeter J Schulz A Paech A
Full Access

Gait analysis is an indispensable tool for scientific assessment and treatment of individuals whose ability to walk is impaired. The high cost of installation and operation are a major limitation for wide-spread use in clinical routine. Advances in Artificial Intelligence (AI) could significantly reduce the required instrumentation. A mobile phone could be all equipment necessary for 3D gait analysis. MediaPipe Pose provided by Google Research is such a Machine Learning approach for human body tracking from monocular RGB video frames that is detecting 3D-landmarks of the human body. Aim of this study was to analyze the accuracy of gait phase detection based on the joint landmarks identified by the AI system. Motion data from 10 healthy volunteers walking on a treadmill with a fixed speed of 4.5km/h (Callis, Sprintex, Germany) was sampled with a mobile phone (iPhone SE 2nd Generation, Apple). The video was processed with Mediapipe Pose (Version 0.9.1.0) using custom python software. Gait phases (Initial Contact - IC and Toe Off - TO) were detected from the angular velocities of the lower legs. For the determination of ground truth, the movement was simultaneously recorded with the AS-200 System (LaiTronic GmbH, Innsbruck, Austria). The number of detected strides, the error in IC detection and stance phase duration was calculated. In total, 1692 strides were detected from the reference system during the trials from which the AI-system identified 679 strides. The absolute mean error (AME) in IC detection was 39.3 ± 36.6 ms while the AME for stance duration was 187.6 ± 140 ms. Landmark detection is a challenging task for the AI-system as can clearly be seen be the rate of only 40% detected strides. As mentioned by Fadillioglu et al., error in TO-detection is higher than in IC-detection


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 50 - 50
11 Apr 2023
Souleiman F Zderic I Pastor T Gehweiler D Gueorguiev B Galie J Kent T Tomlinson M Schepers T Swords M
Full Access

The quest for optimal treatment of acute distal tibiofibular syndesmotic disruptions is still in progress. Using suture-button repair devices is one of the dynamic stabilization options, however, they may not be always appropriate for stabilization of length-unstable syndesmotic injuries. Recently, a novel screw-suture repair system was developed to address such issues. The aim of this study was to investigate the performance of the novel screw-suture repair system in comparison to a suture-button stabilization of unstable syndesmotic injuries. Eight pairs of human cadaveric lower legs were CT scanned under 700 N single-leg axial loading in five foot positions – neutral, 15° external/internal rotation and 20° dorsi-/plantarflexion – in 3 different states: (1) pre-injured (intact); (2) injured, characterized by complete syndesmosis and deltoid ligaments cuts simulating pronation-eversion injury types III and IV as well as supination-eversion injury type IV according to Lauge-Hansen; (3) reconstructed, using a screw-suture (FIBULINK, Group 1) or a suture-button (TightRope, Group 2) implants for syndesmotic stabilization, placed 20 mm proximal to the tibia plafond. Following, all specimens were: (1) biomechanically tested over 5000 cycles under combined 1400 N axial and ±15° torsional loading; (2) rescanned. Clear space (diastasis), anterior tibiofibular distance, talar dome angle and fibular shortening were measured radiologically from CT scans. Anteroposterior (AP), axial, mediolateral and torsional movements at the distal tibiofibular joint level were evaluated biomechanically via motion tracking. In each group clear space increased significantly after injury (p ≤ 0.004) and became significantly smaller in reconstructed compared with both pre-injured and injured states (p ≤ 0.041). In addition, after reconstruction it was significantly smaller in Group 1 compared to Group 2 (p < 0.001). AP and axial movements were significantly smaller in Group 1 compared with Group 2 (p < 0.001). No further significant differences were identified/detected between the groups (p ≥ 0.113). Although both implant systems demonstrate ability for stabilization of unstable syndesmotic injuries, the screw-suture reconstruction provides better anteroposterior translation and axial stability of the tibiofibular joint and maintains it over time under dynamic loading. Therefore, it could be considered as a valid option for treatment of syndesmotic disruptions


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 22 - 22
4 Apr 2023
Souleiman F Zderic I Pastor T Gehweiler D Gueorguiev B Galie J Kent T Tomlinson M Schepers T Swords M
Full Access

The quest for optimal treatment of acute distal tibiofibular syndesmotic disruptions is still in full progress. Using suture-button repair devices is one of the dynamic stabilization options, however, they may not be always appropriate for stabilization of length-unstable syndesmotic injuries. Recently, a novel screw-suture repair system was developed to address such issues. The aim of this study was to investigate the performance of the novel screw-suture repair system in comparison to a suture-button stabilization of unstable syndesmotic injuries. Eight pairs of human cadaveric lower legs were CT scanned under 700 N single-leg axial loading in five foot positions – neutral, 15° external/internal rotation and 20° dorsi-/plantarflexion – in 3 different states: (1) pre-injured (intact); (2) injured, characterized by complete syndesmosis and deltoid ligaments cuts simulating pronation-eversion injury types III and IV, and supination-eversion injury type IV according to Lauge-Hansen; (3) reconstructed, using a screw-suture (FIBULINK, Group 1) or a suture-button (TightRope, Group 2) implants for syndesmotic stabilization, placed 20 mm proximal to the tibia plafond/joint surface. Following, all specimens were: (1) biomechanically tested over 5000 cycles under combined 1400 N axial and ±15° torsional loading; (2) rescanned. Clear space (diastasis), anterior tibiofibular distance, talar dome angle and fibular shortening were measured radiologically from CT scans. Anteroposterior, axial, mediolateral and torsional movements at the distal tibiofibular joint level were evaluated biomechanically via motion tracking. In each group clear space increased significantly after injury (p ≤ 0.004) and became significantly smaller in reconstructed compared with both pre-injured and injured states (p ≤ 0.041). In addition, after reconstruction it was significantly smaller in Group 1 compared to Group 2 (p < 0.001). Anteroposterior and axial movements were significantly smaller in Group 1 compared with Group 2 (p < 0.001). No further significant differences were detected between the groups (p ≥ 0.113). Conclusions. Although both implant systems demonstrate ability for stabilization of unstable syndesmotic injuries, the screw-suture reconstruction provides better anteroposterior translation and axial stability of the tibiofibular joint and maintains it over time under dynamic loading. Therefore, it could be considered as a valid option for treatment of syndesmotic disruptions


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 15 - 15
1 Dec 2021
Mohamed H
Full Access

Abstract. Background. Benign osteolytic lesions of bone represent a diverse group of pathological and clinical entities. The aim of this study is to highlight the importance of intraoperative endoscopic assessment of intramedullary osteolytic lesions in view of the rate of complications during the postoperative follow up period. Methods. 69 patients (median age 27 years) with benign osteolytic lesion had been prospectively followed up from December 2017 to December 2018 in a university hospital in Cairo, Egypt and in a level-1 trauma center in United Kingdom. All patients had been treated by curettage with the aid of endoscopy through a standard incision and 2 portals. Histological analysis was confirmed from intraoperative samples analysis. All patients had received bone allografts from different donor sites (iliac crest, fibula, olecranon, etc). None of them received chemo or radiotherapy. Results. Most of lesions were enchondroma (n=29), followed by Aneurysmal bone cyst (ABC) (n=16), Fibrodysplasia (n=13), Chondromyxoid fibroma (n=3), simple bone cyst (n= 3), non-ossifying fibroma (n= 3), giant cell tumour (n= 1) and chondromyxoid fibroma (n = 1). Site of lesion varied from metacarpals (n = 29), femur (n= 1), lower leg (n= 31), and upper limb (n=18). Complications happened only in 9 cases (pathological fractures (n=2), infection (n= 1), recurrence (n=3, all aneurysmal bone cyst), residual pain (n= 3, all in tibia). None of cases developed malignant transformation. Conclusion. Endoscopy is recommended in management of benign osteolytic bone lesions; as it aids in better visualization of the hidden lesions that are missed even after doing apparently satisfactory blind curettage. From our study the recurrence rate is 2% compared to the known 12–18% recurrence rate in the blind technique from literature


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 85 - 85
1 Dec 2020
Stefanov A Ivanov S Zderic I Baltov A Rashkov M Gehweiler D Richards G Gueorguiev B Enchev D
Full Access

Treatment of comminuted intraarticular calcaneal fractures remains controversial and challenging. Anatomic reduction with stable fixation has demonstrated better outcomes than nonoperative treatment of displaced intraarticular fractures involving the posterior facet and anterior calcaneocuboid joint (CCJ) articulating surface of the calcaneus. The aim of this study was to investigate the biomechanical performance of three different methods for fixation of comminuted intraarticular calcaneal fractures. Comminuted calcaneal fractures, including Sanders III-AB fracture of the posterior facet and Kinner II-B fracture of the CCJ articulating calcaneal surface, were simulated in 18 fresh-frozen human cadaveric lower legs by means of osteotomies. The ankle joint, medial soft tissues and midtarsal bones along with the ligaments were preserved. The specimens were randomized according to their bone mineral density to 3 groups for fixation with either (1) 2.7 mm variable-angle locking anterolateral calcaneal plate in combination with one 4.5 mm and one 6.5 mm cannulated screw (Group 1), (2) 2.7 mm variable-angle locking lateral calcaneal plate (Group 2), or (3) interlocking calcaneal nail with 3.5 mm screws in combination with 3 separate 4.0 mm cannulated screws (Group 3). All specimens were biomechanically tested until failure under axial loading with the foot in simulated midstance position. Each test commenced with an initial quasi-static compression ramp from 50 N to 200 N, followed by progressively increasing cyclic loading at 2Hz. Starting from 200 N, the peak load of each cycle increased at a rate of 0.2 N/cycle. Interfragmentary movements were captured by means of optical motion tracking. In addition, mediolateral X-rays were taken every 250 cycles with a triggered C-arm. Varus deformation between the tuber calcanei and lateral calcaneal fragments, plantar gapping between the anterior process and tuber fragments, displacement at the plantar aspect of the CCJ articular calcaneal surface, and Böhler angle were evaluated. Varus deformation of 10° was reached at significantly lower number of cycles in Group 2 compared to Group 1 and Group 3 (P ≤ 0.017). Both cycles to 10° plantar gapping and 2 mm displacement at the CCJ articular calcaneal surface revealed no significant differences between the groups (P ≥ 0.773). Böhler angle after 5000 cycles (1200 N peak load) had significantly bigger decrease in Group 2 compared to both other groups (P ≤ 0.020). From biomechanical perspective, treatment of comminuted intraarticular calcaneal fractures using variable-angle locked plate with additional longitudinal screws or interlocked nail in combination with separate transversal screws seems to provide superior stability as opposed to variable-angle locked plating only


Bone & Joint Research
Vol. 3, Issue 7 | Pages 230 - 235
1 Jul 2014
van der Jagt OP van der Linden JC Waarsing JH Verhaar JAN Weinans H

Objectives. Electromagnetic fields (EMF) are widely used in musculoskeletal disorders. There are indications that EMF might also be effective in the treatment of osteoporosis. To justify clinical follow-up experiments, we examined the effects of EMF on bone micro-architectural changes in osteoporotic and healthy rats. Moreover, we tested the effects of EMF on fracture healing. Methods. EMF (20 Gauss) was examined in rats (aged 20 weeks), which underwent an ovariectomy (OVX; n = 8) or sham-ovariectomy (sham-OVX; n = 8). As a putative positive control, all rats received bilateral fibular osteotomies to examine the effects on fracture healing. Treatment was applied to one proximal lower leg (three hours a day, five days a week); the lower leg was not treated and served as a control. Bone architectural changes of the proximal tibia and bone formation around the osteotomy were evaluated using in vivo microCT scans at start of treatment and after three and six weeks. Results. In both OVX and sham-OVX groups, EMF did not result in cancellous or cortical bone changes during follow-up. Moreover, EMF did not affect the amount of mineralised callus volume around the fibular osteotomy. Conclusions. In this study we were unable to reproduce the strong beneficial findings reported by others. This might indicate that EMF treatment is very sensitive to the specific set-up, which would be a serious hindrance for clinical use. No evidence was found that EMF treatment can influence bone mass for the benefit of osteoporotic patients. Cite this article: Bone Joint Res 2014;3:230–5


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 28 - 28
1 Aug 2013
Quinn M Deakin A McDonald D Cunningham I Payne A Picard F
Full Access

Local infiltration analgesia is a relatively novel technique developed for effective pain control following total knee replacement, reducing requirements of epidural or parenteral post-operative analgesia. The study aimed to investigate the anatomical spread of Local Infiltration Analgesia (LIA) used intra-operatively in total knee arthroplasty (TKA) and identify the nerve structures reached by the injected fluid. Six fresh-frozen cadaveric lower limbs were injected with 180ml of a solution of latex and India ink to enable visualisation. Injections were done according to our standardised LIA technique. Wounds were closed and limbs were placed flat in a freezer at −20°C for two weeks. Limbs were then either sliced or dissected to identify solution locations. Injected solution was found from the proximal thigh to the middle of the lower leg. The main areas of concentration were the popliteal fossa, the anterior aspect of the femur and the subcutaneous tissue of the anterior aspect of the knee. There was less solution in the lower popliteal fossa. The solution was found to reach the majority of the terminal branches of the tibial, fibular and obturator nerves. Overall, there was good infiltration of nerves supplying the knee. The lack of infiltration into the lower popliteal fossa suggests more fluid or a different injection point could be used. The solution that travelled distally to the extensor muscles of the lower leg probably has no beneficial analgesic effect for a TKA patient. This LIA technique reached most nerves that innervate the knee joint which supports the positive clinical results from this LIA technique. However, there may be scope to optimise the injection sites


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 70 - 70
1 Aug 2012
Monda M McCarthy I Thornton M Smitham P Goldberg A
Full Access

Introduction. Knowledge of knee kinetics and kinematics contributes to our understanding of the patho-mechanics of knee pathology and rehabilitation and a mobile system for use in the clinic is desirable. We set out to assess validity and reliability of ambulatory Inertial Motion Unit (IMU) Sensors (Pegasus¯) against an established optoelectronic system (CODA¯). Pegasus¯ uses inertial sensors placed on subjects' thighs and lower leg segments to directly measure orientation of these segments with respect to gravity. CODA¯) models the position of joint centres based on tracked positions of optical markers placed on a subject, providing 3D kinematics of the subject's hips, knees and ankles in all three planes. Methods. Intra observer reliability of the Pegasus¯ system was tested on 6 volunteers (4 male; 2 female) with no previous lower limb or knee pathology. IMU's were placed on the long axis of the lateral aspects of both thighs and lower leg segments. A test re-test protocol was used with sagittal data angle collected around a standard circuit. Inter-observer reliability was tested by placement of IMU's by 5 different testers on a single volunteer. To test validity, we collected simultaneous sagittal knee angle data from Pegasus¯ and CODA¯ in two subjects. The presence of IMU's did not compromise positioning of optical markers. Results. Analysis of triplicate measurements showed that intra-observer error is +/− 5°. Inter-observer difference in measurements varied from 3° to 20° absolute values. Positional error of the Pegasus¯ IMU's was significant in comparison to CODA¯, with absolute offsets in knee angles typically of 10° to 25°. Range of motion differences between the two systems calculated as root mean square (rms) difference of the zero meaned signals were 3.8°-4.8°. Conclusion. The Pegasus¯ system is useful in ambulatory measurement of the range of knee motion in the sagittal plane. In the current configuration there was poor intra and inter-observer reliability possibly related to positional error using the Pegasus¯ system and may be due to fixation method, operator factors, body shape and variability of clothing. Recommendations have been made to the manufacturer


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 254 - 257
1 Feb 2008
Nakajima T Ohtori S Inoue G Koshi T Yamamoto S Nakamura J Takahashi K Harada Y

Using a rat model the characteristics of the sensory neurones of the dorsal-root ganglia (DRG) innervating the hip were investigated by retrograde neurotransport and immunohistochemistry. Fluoro-Gold solution (FG) was injected into the left hip of ten rats. Seven days later the DRG from both sides between T12 and L6 were harvested. The number of FG-labelled calcitonin gene-related peptide-immunoreactive or isolectin B4-binding neurones were counted. The FG-labelled neurones were distributed throughout the left DRGs between T13 and L5, primarily at L2, L3, and L4. Few FG-labelled isolectin B4-binding neurones were present in the DRGs of either side between T13 and L5, but calcitonin gene-related peptide-immunoreactive neurones made up 30% of all FG-labelled neurones. Our findings may explain the referral of pain from the hip to the thigh or lower leg corresponding to the L2, L3 and L4 levels. Since most neurones are calcitonin gene-related peptide-immunoreactive peptide-containing neurones, they may have a more significant role in the perception of pain in the hip as peptidergic DRG neurones


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 232 - 232
1 Jul 2014
Ouellette E Elliott W Latta L Milne E Kaimrajh D Lowe J Makowski A Herndon E Kam C Sawardeker P
Full Access

Summary. For injuries to the lower leg or forearm, supplemental support from soft tissue compression (STC) with a splint or brace-like system and combined with external fixation could be done effectively and quickly with a minimal of facilities in the field. Introduction. Soft tissue compression (STC) in functional braces has been shown to provide rigidity and stability for most closed fractures, selected open fractures and can supplement some other forms of fracture fixation. However, soft tissue injuries are compromised in war injuries. This study was designed to evaluate if STC can provide adequate rigidity and stability either with, or without other forms of fixation techniques of simple fractures or bone defects after standardised soft tissue defects. The load was applied either axially or in bending as the bending configuration is more like conditions when positioned on a stretcher in the field. Methods. A simple, oblique fracture was created in 23 cadaveric femurs, 23 tibiae and fibulae, 22 humeri and 22 radii and ulnae of intact limb segments. The weight of each intact limb segment was measured. Cyclic axial loads (12 – 120N) were applied for each progressive condition: intact limb, mid shaft osteotomy, a lateral 1/4 circumferential soft tissue defect, 1/3 circumferential defect and finally, 3 cm bone defect. Limbs were randomly assigned to be stabilised be either plate and screw (PS), intramedullary rod (IR) or external fixation (EF). Testing with and without STC in a brace was performed after each condition. In an additional 36 forearms, bending rigidity was measured using a modular fracture brace with external fixation. The bone and the soft tissue weighed separately and the ratio of soft tissue to bone was calculated. ANOVA multi-variant analysis corrected for multiple comparisons was used to compare the axial rigidity between the different conditions tested. Results. There was no significant difference in axial rigidity for humerus or femoral shaft fractures treated by any of the methods related to the degree of soft tissue damage. Femurs, tibias and humeri with a 3 cm bone defect were best stabilised with IR. Forearms with a 3 cm bone defect were best stabilised with PS. Progressive increase in soft tissue defects did create progressive loss in rigidity in forearms and legs, but the most dramatic loss occurred with the bone defect and ST defect. The rigidity of IR and EF in legs decreased over 50% with bone defect, and about 20% of that was restored with STC. The rigidity of IR and EF in forearms decreased almost 79%, and about 21% of that was restored with STC. The increase in resistance to bending in the forearm was most significantly improved by STC. Discussion/Conclusions. Invasive types of surgical intervention provide the best rigidity to fractures, regardless of the presence of or size of a soft tissue defect. In general, use of PS and IR and application of conventional types of braces to achieve STC is not practical in the field. EF, however, can be applied quickly and easily with a minimal of facilities in the field and can be applied in such a way that no foreign bodies end up in the contaminated wound. For injuries to the leg or forearm, supplemental support from STC with a splint or brace-like system could be effective


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 162 - 168
1 Jan 1998
Rosenbaum D Becker HP Wilke H Claes LE

To study the effect of ligament injuries and surgical repair we investigated the three-dimensional kinematics of the ankle joint complex and the talocrural and the subtalar joints in seven fresh-frozen lower legs before and after sectioning and reconstruction of the ligaments. A foot movement simulator produced controlled torque in one plane of movement while allowing unconstrained movement in the remainder. After testing the intact joint the measurements were repeated after simulation of ligament injuries by cutting the anterior talofibular and calcaneofibular ligaments. The tests were repeated after the Evans, Watson-Jones and Chrisman-Snook tenodeses. The range of movement (ROM) was measured using two goniometer systems which determined the relative movement between the tibia and talus (talocrural ROM) and between the talus and calcaneus (subtalar ROM). Ligament lesions led to increased inversion and internal rotation, predominantly in the talocrural joint. The reconstruction procedures reduced the movement in the ankle joint complex by reducing subtalar movement to a non-physiological level but did not correct the instability of the talocrural joint


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 1 | Pages 141 - 144
1 Jan 2002
Petersen W Hohmann G Stein V Tillmann B

We studied the vascular pattern of human posterior tibial tendons by injection techniques and immunohistochemically using antibodies against laminin. The intravascular volume of the posterior tibial tendon was determined using a new method of injection of a solution of . 99m. Tc and gelatin ink into the lower legs of cadavers. Three segments of 1 cm length from different regions of the human posterior tibial tendon were measured using a gamma well counter. The main blood supply arises from the posterior tibial artery. Blood vessels enter the paratenon of the posterior tibial tendon via a mesotenon from the posterior aspect. From the paratenon, the blood vessels penetrate the posterior tibial tendon and anastomose with a longitudinally orientated intratendinous network. The number of vessels in the substance of the tendon is consistently less than that in the surrounding paratenon. The distribution of blood vessels within the posterior tibial tendon is not homogeneous. In the retromalleolar region the intravascular volume was significantly reduced with a mean value of 15 μl/g of tendon tissue. There was no significant difference between the mean intravascular volumes of the proximal and distal areas (distal, 27.7 μl/g tendon tissue; proximal, 30 μl/g tendon tissue). The immunohistochemical investigation showed that there was no immunostaining for laminin in the anterior part of the tendon in the region where it passes behind the medial malleolus. This region is avascular. The most frequent site of rupture of the posterior tibial tendon is in the region behind the medial malleolus. A potential endogenous risk factor may be the limited healing potential of avascular tissue


Bone & Joint Research
Vol. 6, Issue 8 | Pages 514 - 521
1 Aug 2017
Mannering N Young T Spelman T Choong PF

Objectives

Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D in vivo knee kinematics has not been fully described. The purpose of this prospective study was to understand better the spatiotemporal and 3D knee kinematic changes induced by slow compared with normal self-selected walking speeds within young healthy adults.

Methods

A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired t-tests, Wilcoxon signed-rank tests, Mann-Whitney U tests and Spearman’s rank correlation coefficients were conducted using Stata/IC 14 to compare kinematics of slow versus self-selected walking speed.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 323 - 330
1 May 2017
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Objectives

Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load in vitro?

Methods

Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Staphylococcus epidermidis; Staphylococcus aureus; Pseudomonas aeruginosa; spore-forming Bacillus cereus; and yeast Candida albicans. The cylinders were exposed to incremental target temperatures (35°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C) for up to 3.5 minutes.


Bone & Joint Research
Vol. 2, Issue 9 | Pages 179 - 185
1 Sep 2013
Warwick DJ Shaikh A Gadola S Stokes M Worsley P Bain D Tucker AT Gadola SD

Objectives

We aimed to examine the characteristics of deep venous flow in the leg in a cast and the effects of a wearable neuromuscular stimulator (geko; FirstKind Ltd) and also to explore the participants’ tolerance of the stimulator.

Methods

This is an open-label physiological study on ten healthy volunteers. Duplex ultrasonography of the superficial femoral vein measured normal flow and cross-sectional area in the standing and supine positions (with the lower limb initially horizontal and then elevated). Flow measurements were repeated during activation of the geko stimulator placed over the peroneal nerve. The process was repeated after the application of a below-knee cast. Participants evaluated discomfort using a questionnaire (verbal rating score) and a scoring index (visual analogue scale).


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1660 - 1665
1 Dec 2007
Krause F Windolf M Schwieger K Weber M

A cavovarus foot deformity was simulated in cadaver specimens by inserting metallic wedges of 15° and 30° dorsally into the first tarsometatarsal joint. Sensors in the ankle joint recorded static tibiotalar pressure distribution at physiological load.

The peak pressure increased significantly from neutral alignment to the 30° cavus deformity, and the centre of force migrated medially. The anterior migration of the centre of force was significant for both the 15° (repeated measures analysis of variance (ANOVA), p = 0.021) and the 30° (repeated measures ANOVA, p = 0.007) cavus deformity. Differences in ligament laxity did not influence the peak pressure.

These findings support the hypothesis that the cavovarus foot deformity causes an increase in anteromedial ankle joint pressure leading to anteromedial arthrosis in the long term, even in the absence of lateral hindfoot instability.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1392 - 1400
1 Oct 2008
Hayashi R Kondo E Tohyama H Saito T Yasuda K

We report the effects of local administration of osteogenic protein-1 on the biomechanical properties of the overstretched anterior cruciate ligament in an animal model. An injury in the anterior cruciate ligament was created in 45 rabbits. They were divided into three equal groups. In group 1, no treatment was applied, in group II, phosphate-buffered saline was applied around the injured ligament, and in group III, 12.5 μg of osteogenic protein-1 mixed with phosphate-buffered saline was applied around the injured ligament. A control group of 15 rabbits was assembled from randomly-selected injured knees from among the first three groups. Each rabbit was killed at 12 weeks.

The maximum load and stiffness of the anterior cruciate ligament was found to be significantly greater in group III than either group 1 (p = 0.002, p = 0.014) or group II (p = 0.032, p = 0.025). The tensile strength and the tangent modulus of fascicles from the ligament were also significantly greater in group III than either group I (p = 0.002, p = 0.0174) or II (p = 0.005, p = 0.022).

The application of osteogenic protein-1 enhanced the healing in the injured anterior cruciate ligament, but compared with the control group the treated ligament remained lengthened. The administration of osteogenic protein-1 may have a therapeutic role in treating the overstretched anterior cruciate ligament.