Aims. This study investigates head-neck taper corrosion with varying head size in a novel
Abstract. BACKGROUND. Hemi-arthroplasty (HA) as a treatment for fractured neck of femur has slightly increased since 2019 and remarkably after the COVID pandemic. The main drawback of the treatment is ongoing cartilage deterioration that may require revision to THR. OBJECTIVE. This study assessed cartilage surface damage in hip HA by reproducing anatomical motion and loading conditions in a
Introduction. Edge loading in acetabular hip implants is generally due to mal-orientation or low tissue tension. It is known that edge loading of metal-on-metal THA may lead to higher metal wear and ion release with corresponding adverse body reactions. The inclination angle of the acetabular cup has been positively correlated with the wear rate of explanted components . 1. However, no data published is known about wear rates of edge loaded hard – soft hip bearings. Methods. For the
A new
Summary Statement. In the present
Introduction. The bearing surfaces of ceramic-on-ceramic (CoC) total hip replacements (THR) show a substantially lower wear rate than metal-on-polyethylene (MoP) THR in-vitro. However, revision rates for CoC THR are comparable with MoP. Our hypothesis that an explanation could be adverse reaction to metal debris (ARMD) from the trunnion led us to investigate the wear at both the bearing surfaces and the taper-trunnion interface of a contemporary CoC THR in an in-vitro study. Methods. Three 36mm CoC hips were tested in a
Introduction. Osteolysis and aseptic loosening in total hip replacement (THR) is often associated with polyethylene (PE) wear. This caused interest in alternative bearing surfaces. Since the mid nineties, research focused on hard-hard bearings like metal-on-metal (MOM) or ceramic-on-ceramic (COC). However, concerns remain about biological reactions to metallic wear debris or failure of the ceramic components. A new approach to reduce wear with a minimized risk of failure may be the use of a metallic cup in combination with a ceramic head, the so called ceramic-on-metal bearing (COM). The aim of this study was to estimate the wear behaviour at an early stage of this COM bearing type in comparison to COC bearings using a
INTRODUCTION. The reported revision rate for THA is below 10% at 10 years. Major factors for revision are aseptic loosening or dislocation of the articulating components. CoC bearings in total hip arthroplasty (THA) have demonstrated very low wear rates. Due to producing the least number of wear particles of any articular bearing used for THA, osteolysis is very rarely observed. Zirconia-platelet toughened alumina (ZPTA) has improved toughness and bending strength while maintaining all other advantageous properties of alumina. Consequently, its clinical fracture rate is minimal and wear resistance is superior to alumina. OBJECTIVES. Since a trend exists towards the usage of larger bearings the aim of this study was to compare the tribological behavior of different ZPTA/ZPTA THAs with respect to their ball head diameter. METHODS. Wear tests according to ISO14242-1 were performed in a servo-hydraulic
Burroughs et al showed that frictional torque increases with increasing head size in a simple in vitro model and showed differences in frictional torque with different polyethylene materials [1]. Therefore, the purpose of this study was to evaluate the influence of bearing material and bearing size on the frictional torque of hip bearings utilizing a more physiologically relevant
In
Bankston et. al. reported that the clinical wear rates of molded acetabular cups was 50% less than a group of machined UHMWPE cups. However, due to covariables between groups including different femoral stems, cement technique, polyethylene resins and surgeons, unequivocal attribution of the low wear rates to direct molding could not be made. In order to more directly assess the benefits of directly molded acetabular cups vs. machined cups, we report the comparison of hip simulation wear rates of machined and directly molded cups. These simulator results will then compared to two recent clinical reports on molded and machined cups of the same hip stem and cup design. The molded cups were made from 1900 resin and gamma sterilized in an inert atmosphere. The machined cups were made from HSS reference UHMWPE (4150) and gamma sterilized in air. The molded 1900 cups had a 55% lower wear rate after 5 million cycles on the
In vitro the introduction of microseparation and edge loading to
Introduction and Aims. A recent submission to ASTM, WK28778 entitled “Standard test method for determination of friction torque and friction factor for hip implants using an anatomical motion hip simulator”, describes a proposal for determining the friction factor of hip implant devices. Determination of a friction factor in an implant bearing couple using a full kinematic walking cycle as described in ISO14242-1 may offer designers and engineers valuable input to improve wear characteristics, minimize torque and improve long term performance of hip implants. The aim of this study was to investigate differences in friction factors between two commercially available polyethylene materials using the procedure proposed. Methods. Two polyethylene acetabular liner material test groups were chosen for this study: commercially available Marathon. ®. (A) and AltrX. ®. (B). All liners were machined to current production specifications with an inner diameter of 36mm and an outer diameter of 56mm. Surface roughness (Ra) of the liner inner diameters were measured using contact profilometry in the head-liner contact area, before and after 3Mcyc of wear testing. Liners were soaked in bovine serum for 48 hours prior to testing. Friction factor measurements were taken per ASTM WK28778 prior to, and after wear testing using an external six degrees of freedom load cell (ATI Industrial Automation) and a reduced maximum vertical load of 1900N. Friction factor and wear testing was conducted in bovine serum (18mg/mL total protein concentration) supplemented with 0.056% sodium azide (preservative) and 5.56mM EDTA (calcium stabilizer) on a 12-station AMTI (Watertown, MA) ADL
Variations in component positioning of total hip replacements can lead to edge loading of the liner, and potentially affect device longevity. These effects are evaluated using ISO 14242:4 edge loading test results in a dynamic system. Mediolateral translation of one of the components during testing is caused by a compressed spring, and therefore the kinematics will depend on the spring stiffness and damping coefficient, and the mass of the translating component and fixture. This study aims to describe the sensitivity of the liner plastic strain to these variables, to better understand how tests using different simulator designs might produce different amounts of liner rim deformation. A dynamic explicit deformable finite element model with 36mm Pinnacle metal-on-polyethylene bearing geometry (DePuy Synthes, Leeds, UK) was used with material properties for conventional UHMWPE. Setup was 65° clinical inclination, 4mm mismatch, 70N swing phase load, and 100N/mm spring. Fixture mass was varied from 0.5-5kg, spring damping coefficient was varied from 0-2Ns/mm. They were changed independently, and in combination. Maximum separation values were relatively insensitive to changes in the mass, damping coefficient, or both. The sensitivity of peak plastic strain, to this range of inputs, was similar to changing the swing phase load from 70N to approximately 150N – 200N. Increasing the fixture mass and/or damping coefficient increased the peak plastic strain, with values from 0.15-0.19. Liner plastic deformation was sensitive to the spring damping and fixture mass, which may explain some of the differences in fatigue and deformation results in UHMWPE liners tested on different machines or with modified fixtures. These values should be described when reporting the results of ISO14242:4 testing. Acknowledgements Funded by EPSRC grant EP/N02480X/1; CAD supplied by DePuy Synthes.
Wear in polyethylene liners appears to be exacerbated by 3rd-body abrasion effects with the CoCr ball combinations used for total hip replacements. This has implications for various wear modes encountered in patients. Yet clinical and laboratory studies have offered weak and sometimes contradictory wear relationships with respect to crosslinking, ball diameter and roughness, and 3rd-body wear effects. Our
Introduction. Over 40-years the dominant form of implant fixation has been bone cement (PMMA). However the presence of circulating PMMA debris represents a 3rd-body wear mechanism for metal-on-polyethylene (MPE). Wear studies using PMMA slurries represent tests of clinical relevance (Table 1). Cup designs now use many varieties of highly-crosslinked polyethylene (HXPE) of improved wear resistance. However there appears to be no adverse wear studies of vitamin-E blended cups.1–4 The addition of vitamin E as an anti-oxidant is the currently preferred method to preserve mechanical properties and ageing resistance of HXPE. Therefore the present study examined the response of vitamin-E blended liners to PMMA abrasion combined with CoCr and ceramic heads. The
With the boom in metal-on-metal hip resurfacing and hard-on-hard total hip replacements (THRs) with extremely low wear, accurate tribological measurements become difficult. Characterizing THR friction can help in this, especially if the progress of such friction can be tracked during wear tests. Friction measurement can also be used as a tool to study the effects of acetabular-liner deformation during insertion, and possible femoral head “clamping”. This study presents estimates of friction during extended wear testing on THRs of the same size but with different material combinations, using a technique (previously introduced) based on equilibrium of forces and moments measured in the simulator. All tests were based on five million cycles (Mc) and samples of size-44mm (head diameter). Samples included 6 metal-on-UHMWPE (MOP) (3 with conventional UHMWPE and 3 with highly-cross-linked (HXL) UHWMPE liners), 6 metal-on-metal (MOM) (3 TiN-coated and 3 uncoated), 6 MOM resurfacing (3 standard and 3 with small pockets for lubrication transport), and 3 ceramic-on-UHMWPE (COP) THRs (MOM resurfacing and COPs for 2Mc only). All were lubricated with diluted bovine serum with 20g/l protein concentration at 37°C, and subjected to the loading and rotations of the walking cycle in ISO-14242-1 on a twelve-station
Ceramic-on-ceramic alumina bearings (ALX) have demonstrated low wear with minimal biological consequences for almost four decades. An alumina-zirconia composite (BIOLOX-DELTATM) was introduced in 2000 as an alternative ceramic. This contains well-distributed zirconia grains that can undergo some surface phase transformations from tetragonal to monoclinic. We analyzed 5 cases revised at 1–7 years to compare to our simulator wear studies. For the retrieved DELTA bearings, two important questions were. how much tetragonal to monoclinic transformation was there in the zirconia phase and. how much did the articular surfaces roughen, either as a result of this transformation or from formation of stripe wear zones?. The retrieval cases were photographed and logged with respect to clinical and revision details. The DELTA balls varied from 22mm to 36mm diameters. These had been mated with liner inserts varying by UHMWPE, BIOLOX-FORTE and BIOLOX-DELTA materials. Bearing features were analyzed for roughness by white-light interferometry, for wear by SEM, for dimensions by CMM and for transfer layers by EDS technique. Surface transformations on DELTA retrievals were mapped by XRD. The four combinations of 36mm diameter BIOLOX-FORTE and BIOLOX-DELTA were studied in a
Damage to metallic femoral heads can occur in vivo. Testing of hip prostheses under abrasive conditions is one among various efforts needed towards more realistic and harsher testing. Abrasion likely increases both wear and friction at the head/liner interface. This study investigates if our novel friction measurement technique can detect damage to femoral heads during extended wear testing of metal-on-plastic (MOP) THRs of various material combinations using both scratched and as-new femoral heads. Friction was measured based on equilibrium of forces and moments measured by a 6-DOF load cell on each test station of an AMTI
Artificial hip joints have been in use for a number of years; various combinations of metals and polymers have been tested both in vitro and in vivo. Modern ceramics have found application as bearings in hip replacement due to the enhanced wear and friction that they offer. It has been hypothesised that during the swing phase of gait it is possible for the Femoral head and the Acetabular cup to dislocate, before relocating during heel contact. Severe loading such as this could cause greater levels of wear to occur in artificial hip joints. This study provides comparative analysis between ceramic-on-ceramic hip joint pairings under both severe and standard loading profiles. Five zirconia-toughened alumina (ZTA) 28mm diameter bearing pairs were tested on a ProSim