Introduction. The incidence of distal femoral fractures in the geriatric population is growing and represents the second most common insufficiency fracture of the femur following fractures around the hip joint. Fixation of fractures in patients with poor bone stock and early mobilisation in feeble and polymorbide patients is challenging. Development of a fixation approach for augmentation of conventional LISS (less invasive stabilization system) plating may result in superior long-term clinical outcomes and enhance safe weight bearing. Objectives. The aim of this study was to investigate the biomechanical competence of two different techniques of augmented LISS plating for treatment of osteoporotic fractures of the distal femur in comparison to
We aimed to further evaluate the biomechanical characteristics
of two locking screws Synthetic tubular bone models representing normal bone density
and osteoporotic bone density were used. Artificial fracture gaps
of 1 cm were created in each specimen before fixation with one of
two constructs: 1) two locking screws using a five-hole locking
compression plate (LCP) plate; or 2) three non-locking screws with
a seven-hole LCP plate across each side of the fracture gap. The
stiffness, maximum displacement, mode of failure and number of cycles
to failure were recorded under progressive cyclic torsional and
eccentric axial loading.Objectives
Methods
Introduction. The main postoperative complications in fixation of ulna shaft fractures are non-union and implant irritation using currently recommended 3.5-mm locking compression plates. An alternative approach using a combination of two smaller plates in orthogonal configuration has been proposed. The aim of this study was to compare the biomechanical properties of a single 3.5-mm locking compression plate versus double plating using one 2.5-mm and one 2.0-mm mandible plate in a human ulna shaft fracture model. Method. Eight pairs human ulnar specimens with a standardized 10-mm fracture gap were pairwise assigned for instrumentation with either a single 3.5-mm plate placed posteriorly, or for double plating using a 2.5-mm and a 2.0-mm mandible plate placed posteriorly under the flexor muscles and laterally under the extensor muscles. All constructs were initially non-destructively biomechanically tested in axial compression, torsion, and bending, which was followed by cyclic torsional loading to failure. Interfragmentary movements were monitored by means of optical motion tracking. Result. There were no significant differences between the two plating techniques for axial stiffness (p=0.335), torsional stiffness in supination (p=0.462), torsional stiffness in pronation (p=0.307), medio-lateral bending stiffness (p=0.522), and antero-posterior bending stiffness (p=0.143). During cyclic torsional loading over the first 3000 cycles, there were no significant differences between the two plating techniques for shear displacement across the fracture gap, p=0.324. The numbers of cycles until clinically relevant failure of 5° angular deformation were 1366±685 for double plating and 2024±958 for single plating, which was statistically non-significantly different, p>0.05. The constructs treated with both plating techniques failed due to bone breakage at the most distal screw. Conclusion. From a biomechanical perspective double plating of ulna shaft fractures using a 2.5-mm and a 2.0-mm locking mandible plate demonstrated equivalent fixation strength as
New concepts in plate fixation have led to an evolution in plate design for olecranon fractures. The purpose of this study was. to compare the stiffness and strength of a contoured Locking Compression Plate (LCP) with a
Locking plates have led to important changes in bone fracture management, allowing flexible biological fracture fixation based on the principle of an internal fixator. The technique of locking plate fixation differs fundamentally from
Introduction and Objective. Distal femoral fractures are commonly treated with a straight plate fixed to the lateral aspects of both proximal and distal fragments. However, the lateral approach may not always be desirable due to persisting soft-tissue or additional vascular injury necessitating a medial approach. These problems may be overcome by pre-contouring the plate in helically shaped fashion, allowing its distal part to be fixed to the medial aspect of the femoral condyle. The objective of this study was to investigate the biomechanical competence of medial femoral helical
The Vancouver classification separates periprosthetic femur fractures after THA into three regions (A - trochanteric, B - around or just below the stem, and C - well below the stem), with fractures around or just below the stem further separated into those with a well-fixed (B1) or loose stem and good (B2) or poor (B3) bone stock. Trochanteric fractures may be associated with osteolysis and require treatment that addresses osteolysis as well as ORIF of displaced fractures. Fractures around a well-fixed stem can be treated with ORIF using cerclage or cable plating, while those around a loose stem require implant revision usually to a longer cementless tapered or distally porous coated cementless stem. Fractures around a loose stem with poor bone stock in which salvage of the proximal femur is not possible require replacement of the proximal femur with an allograft prosthetic composite or proximal femoral replacement. Fractures well below the stem can be treated with
The outcome of 77 high energy tibial plateau fractures treated by locking or
Aims: Does PHILOS (Proximal Humeral Internal Locking system) construct provides better þxation than Clover leaf plate and T-plate in a simulated 2-part fracture of proximal humerus, in an osteoporotic bone model?Materials and Methods: Biomechanical laboratory study. Third generation composite Humerus model was used, with short e-glass epoxy þbres forming cortex and polyurethane cancellous core. Low density polyure-thane core (1.2gm/cc) was used to simulate an osteoporotic model. Osteotomy at surgical neck of humerus was carried out to create 2-part fracture of proximal humerus. Samples were randomised to receive one of the implants. Following þxation samples were placed in a custom made jig to þx proximal and distal ends without interfering with implants and osteotomy site. All samples were subjected to cyclical torque, Torque to failure, Cyclical compression and Compression loading to failure. Results were entered in a database. Results: PHILOS provided signiþcantly better þxation in ÔTorque to failureñ experiment. PHILOS construct shows less plastic deformation in cyclical torque and cyclical compression. Locking screws did not Ôback offñ in any of the experiments involving PHILOS construct, however ordinary screws did back off both in Ôtoque and compressionñ testing. Conclusions: PHILOS construct provides better stability in Torque and compression as compared to
Aim: To compare of strength of constructs using the newer and part specific nail systems: Polarus and European Humeral Nail with that using PHILOS and Conventional plate systems in a simulated 2-part fracture of proximal humerus, in an osteoporotic bone model. Materials and Methods: A Biomechanical laboratory study was undertaken. Third generation composite Humerus model was used, with short e-glass epoxy fibres forming cortex and polyurethane cancellous core. Low-density polyurethane core (1.2gm/cc) was used to simulate an osteoporotic model. Osteotomy at surgical neck of humerus was carried out to create 2-part fracture of proximal humerus. Samples were fixed using one of the implants- the Polarus nail, the European Humeral Nail, PHILOS Plate, Clover Leaf Plate or T-Plate. Following fixation samples were placed in a custom made jig to fix proximal and distal ends without interfering with implants and osteotomy site. All samples were subjected to cyclical torque, torque to failure, cyclical compression and Compression loading to failure. Results: The two Nail systems that are specifically designed for fixation of proximal humerus fracture provided significantly better fixation in all the test modalities. PHILOS construct shows less plastic deformation in cyclical torque and cyclical compression when compared to the other plates but the 2 nail systems were far superior. Locking screws did not ‘back off’ in any of the experiments involving the Polarus, European Humeral Nail and PHILOS construct, however ordinary screws used with the conventional plates did back off both in ‘torque and compression’ testing. Conclusions: Polarus and European Humeral Nail constructs provide better stability in torque and compression as compared to PHILOS, which in turn is a more stable construct in comparison to
Biomechanical stability is important for fracture healing. With standard plate and screw constructs, longer plates with screws well spaced, near and far from the fracture site, are biomechanically superior. Newer locked plates have been shown to be superior to
Introduction: Since the introduction of periarticular locking plates (PLP) open reduction and internal fixation of periarticular fractures has gained popularity. Although initial trials have shown encouraging results, no studies to date has focused on its use for metaphyseal fractures. The purpose of this study is to report on the performance of PLP for fixation of periarticular fractures. Material and Methods: 49 with at least one year follow up were included in this prospective review. All fractures involved the metaphyseal area and 39 had an intraarticular extension as well. Fixation was performed by a combined locking-regular screws technique. The parameters included in the analysis were fracture displacement, type of callus formation, healing of the fracture, screw pull-out, screw breakage, plate breakage, stress rising and stress shielding with subsequent bone loss. Results: At one year follow up the results showed that: 1 fracture had lost reduction in the early post op; 2 locking screws had backed up despite being initially locked to the plate; 1 screw broke, 1 plate broke. There were no problems with stress rising or stress fractures at the end of the plate. The most impressive finding was the high rate of stress shielding with subsequent bone loss within the range delimited by the locking screws (27 %). Callus formation: 18 % had no visible callus on plain radiographs despite being clinically healed. 62% had very little callus. 15 % had moderate callus and 5% had robust callus formation. Discussion and conclusion: The use of PLP appears to have some unique characteristics, different than
Unstable fractures of the forearm in children present problems in management and in the indications for operative treatment. In children, unlike adults, the fractures nearly always unite, and up to 10° of angulation is usually considered to be acceptable. If surgical intervention is required the usual practice in the UK is to plate both bones as in an adult. We studied, retrospectively, 32 unstable fractures of the forearm in children treated by compression plating. Group A (20 children) had
We investigated patient characteristics and outcomes of Vancouver type B periprosthetic fractures treated with femoral component revision and/or osteosynthesis. The study utilized data from the Swedish Hip Arthroplasty Register (SHAR) and information from patient records. We included all primary total hip arthroplasties (THAs) performed in Sweden since 1979, and undergoing further surgery due to Vancouver type B periprosthetic femoral fracture between 2001 and 2011. The primary outcome measure was any further reoperation between 2001 and 2013. Cross-referencing with the National Patient Register was performed in two stages, in order to identify all surgical procedures not recorded on the SHAR.Aims
Patients and Methods
The primary aim of this study was to determine if delayed clavicular fixation results in a greater risk of operative complications and revision surgery. A retrospective case series was undertaken of all displaced clavicular fractures that underwent plate fixation over a ten-year period (2007 to 2017). Patient demographics, time to surgery, complications, and mode of failure were collected. Logistic regression was used to identify independent risk factors contributing towards operative complications. Receiver operating characteristic (ROC) curve analysis was used to determine if a potential ‘safe window’ exists from injury to delayed surgery. Propensity score matching was used to construct a case control study for comparison of risk.Aims
Patients and Methods
Systemic antibiotics reduce infection in open
fractures. Local delivery of antibiotics can provide higher doses
to wounds without toxic systemic effects. This study investigated
the effect on infection of combining systemic with local antibiotics
via polymethylmethacrylate (PMMA) beads or gel delivery. An established Combined local and systemic antibiotics were superior to systemic
antibiotics alone at reducing the quantity of bacteria recoverable
from each group (p = 0.002 for gel; p = 0.032 for beads). There
was no difference in the bacterial counts between bead and gel delivery
(p = 0.62). These results suggest that local antibiotics augment the antimicrobial
effect of systemic antibiotics. Although no significant difference
was found between vehicles, gel delivery offers technical advantages
with its biodegradable nature, ability to conform to wound shape
and to deliver increased doses. Further study is required to see
if the gel delivery system has a clinical role. Cite this article:
It is unclear whether there is a limit to the amount of distal bone required to support fixation of supracondylar periprosthetic femoral fractures. This retrospective multicentre study evaluated lateral locked plating of periprosthetic supracondylar femoral fractures and compared the results according to extension of the fracture distal with the proximal border of the femoral prosthetic component. Between 1999 and 2008, 89 patients underwent lateral locked plating of a supracondylar periprosthetic femoral fracture, of whom 61 patients with a mean age of 72 years (42 to 96) comprising 53 women, were available after a minimum follow-up of six months or until fracture healing. Patients were grouped into those with fractures located proximally (28) and those with fractures that extended distal to the proximal border of the femoral component (33). Delayed healing and nonunion occurred respectively in five (18%) and three (11%) of more proximal fractures, and in two (6%) and five (15%) of the fractures with distal extension (p = 0.23 for delayed healing; p = 0.72 for nonunion, Fisher’s exact test). Four construct failures (14%) occurred in more proximal fractures, and three (9%) in fractures with distal extension (p = 0.51). Of the two deep infections that occurred in each group, one resolved after surgical debridement and antibiotics, and one progressed to a nonunion. Extreme distal periprosthetic supracondylar fractures of the femur are not a contra-indication to lateral locked plating. These fractures can be managed with internal fixation, with predictable results, similar to those seen in more proximal fractures.