Meniscal tears are the most common knee injuries, occurring in acute ruptures or in chronic degenerative conditions. Meniscectomy and meniscal repair are two surgical treatment options. Meniscectomy is easier, faster, and the patient can return to their normal activities earlier. However, this procedure has long-term consequences in the development of degenerative changes in the knee, potentially leading to knee replacement. On the other hand, meniscal repair can offer prolonged benefits to the patients, but it is difficult to perform and requires longer rehabilitation. Sutures are used for meniscal repairs, but they have limitations. They induce tissue damage when passing through the meniscus. Furthermore, under dynamic loading of the knee, they can cause tissue shearing and potentially lead to meniscal repair failure. Our team has developed a new technology of resistant adhesive hydrogels to coat the suture used to repair meniscal tissue. The objective of this study is to biomechanically compare two suture types on
Meniscal tears are the most common knee injuries, occurring in acute ruptures or in chronic degenerative conditions. Meniscectomy and meniscal repair are two surgical treatment options. Meniscectomy is easier, faster, and the patient can return to their normal activities earlier. However, this procedure has long-term consequences in the development of degenerative changes in the knee, potentially leading to knee replacement. On the other hand, meniscal repair can offer prolonged benefits to the patients, but it is difficult to perform and requires longer rehabilitation. Sutures are used for meniscal repairs, but they have limitations. They induce tissue damage when passing through the meniscus. Furthermore, under dynamic loading of the knee, they can cause tissue shearing and potentially lead to meniscal repair failure. Our team has developed a new technology of resistant adhesive hydrogels to coat the suture used to repair meniscal tissue. The objective of this study is to biomechanically compare two suture types on
Bone cement reaches high temperatures while polymerising. Bone has been shown to be sensitive to thermal injury with osteonecrosis reported after one minute at 47°C. Necrosis during cementing might compromise the bone-cement interface. Some surgeons fill the joint cavity with irrigation fluid to provide a heatsink during cementing, but this has not been supported by research. We used a model acetabulum in a
Testing potential therapeutics in the regeneration of the disc requires the use of model systems. Although several animal models have been developed to test intervertebral disc (IVD) regeneration, application becomes costly when used as a screening method. The
Aim. Periprosthetic joint infections follow 1-3% of arthroplasty surgeries, with the biofilm nature of these infections presenting a significant treatment challenge. 1. Prevention strategies include antibiotic-loaded bone cement; however, increases in cementless procedures means there is an urgent need for alternative local antimicrobial delivery methods. 2. A novel, ultrathin, silica-based sol-gel technology is evaluated in this research as an anti-infective coating for orthopaedic prosthetic devices, providing local antibiotic release following surgery. Method. Reduction in clinically relevant microbial activity and biofilm reduction by antimicrobial sol-gel coatings, containing a selection of antibiotics, were assessed via disc diffusion and microdilution culture assays using the Calgary biofilm device. 3. Proliferation, morphology, collagen, and calcium production by primary
Introduction. Orthopedic implants are subject to wear and release ultra-high molecular weight polyethylene (UHMWPE) debris. Analysis of UHMWPE wear particles is critical in determining the safety and effectiveness of novel orthopedic implants. Complete digestion of periprosthetic tissue and wear fluid is necessary to ensure accurate morphological and quantitative particle analysis. Acid digestion methods are more effective than enzymatic and base digestion approaches [Baxter+ 2009]. However, optimal digestion times, quantity, and type of acid are unclear for particle isolation. In addition, imaging and analysis techniques are critical to ensure accurate reporting of particle characteristics. Here, we 1) compared the efficacy of three acid-based digestion methods in isolating particles from a)
ZrN-multilayer coating is clinically well established in total knee arthroplasty [1-3] and has demonstrated significant reduction in polyethylene wear and metal ion release [4,5]. The goal of our study was to analyze the biotribological behaviour of the ZrN-multilayer coating on a polished cobalt-chromium cemented hip stem. CoCr28Mo6 alloy hip stems with ZrN-multilayer coating (CoreHip®AS) were tested versus an un-coated version. In a worst-case-scenario the stems with ceramic heads have been tested in
Tungsten has been increasing in demand for use in manufacturing and recently, medical devices, as it imparts flexibility, strength, and conductance of metal alloys. Given the surge in tungsten use, our population may be subjected to elevated exposures. For instance, embolism coils made of tungsten have been shown to degrade in some patients. In a cohort of breast cancer patients who received tungsten-based shielding for intraoperative radiotherapy, urinary tungsten levels remained over tenfold higher 20 months post-surgery. In vivo models have demonstrated that tungsten exposure increases tumor metastasis and enhances the adipogenesis of bone marrow-derived mesenchymal stem cells while inhibiting osteogenesis. We recently determined that when mice are exposed to tungsten [15 ppm] in their drinking water, it bioaccumulates in the intervertebral disc tissue and vertebrae. This study was performed to determine the toxicity of tungsten on intervertebral disc.
Osteoarthritis (OA) is a multifactorial debilitating disease that affects over four million Canadians. Although the mechanism(s) of OA onset is unclear, the biological outcome is cartilage degradation. Cartilage degradation is typified by the progressive loss of extracellular matrix components - aggrecan and type II collagen (Col II) – partly due to the up-regulation of catabolic enzymes - aggrecanases a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS-) 4 and 5 and matrix metalloproteinases (MMPs). There is currently no treatment that will prevent or repair joint damage, and current medications are aimed mostly at pain management. When pain becomes unmanageable arthroplastic surgery is often performed. Interest has developed over the presence of calcium crystals in the synovial fluid of OA patients, as they have been shown to activate synovial fibroblasts inducing the expression of catabolic agents. We recently discovered elevated levels of free calcium in the synovial fluid of OA patients and raised the question on its role in cartilage degeneration. Articular cartilage was isolated from 5 donors undergoing total hip replacement. Chondrocytes were recovered from the cartilage of each femoral head or knee by sequential digestion with Pronase followed by Collagenase and expanded in DMEM supplemented with 10% heat-inactivated FBS. OA and normal human articular chondrocytes (PromoCell, Heidelberg, Germany) were transferred to 6-well plates in culture medium containing various concentrations of calcium (0.5, 1, 2.5, and 5 mM CaCl2), and IL-1β. Cartilage explants were prepared from the same donors and included cartilage with the cortical bone approximately 1 cm2 in dimension.
Residual strain development in biological tissue is believed to result from remodeling in response to repetitive loading. This study hypothesized that differences in in-vivo loading between levels of the
Introduction and Aims. A recent submission to ASTM, WK28778 entitled “Standard test method for determination of friction torque and friction factor for hip implants using an anatomical motion hip simulator”, describes a proposal for determining the friction factor of hip implant devices. Determination of a friction factor in an implant bearing couple using a full kinematic walking cycle as described in ISO14242-1 may offer designers and engineers valuable input to improve wear characteristics, minimize torque and improve long term performance of hip implants. The aim of this study was to investigate differences in friction factors between two commercially available polyethylene materials using the procedure proposed. Methods. Two polyethylene acetabular liner material test groups were chosen for this study: commercially available Marathon. ®. (A) and AltrX. ®. (B). All liners were machined to current production specifications with an inner diameter of 36mm and an outer diameter of 56mm. Surface roughness (Ra) of the liner inner diameters were measured using contact profilometry in the head-liner contact area, before and after 3Mcyc of wear testing. Liners were soaked in
Meniscus tears in adult patients do not heal spontaneously and represent a risk factor for OA development. PDGF is well known as an enhancer of meniscal cell biosynthetic activity and also has chemotactic activity for mesenchymal cells. PDGF incorporation into scaffolds should be efficient for recruitment of cells to initiate repair in the injured meniscus. We recently developed decellularized meniscus sheet for use in the treatment of meniscus tears. The aim of this study is to examine the potential of PDGF-coated decellularized meniscus scaffold in mediating integrative healing by endogenous cell migration. Fresh
Joint hemiarthroplasty replaces one side of a synovial joint and is a viable alternative to total joint arthroplasty when one side of the joint remains healthy. Most hemiarthroplasty implants used in current clinical practice are made from stiff materials such as cobalt chrome or ceramic. The substitution of one side of a soft cartilage-on-cartilage articulation with a rigid implant often leads to damage of the opposing articular cartilage due to the resulting reductions in contact area and increases in cartilage stress. The improvement of post-operative hemiarthroplasty articular contact mechanics is of importance in advancing the performance and longevity of hemiarthroplasty. The purpose of the present study was to investigate the effect of hemiarthroplasty surface compliance on early in-vitro cartilage wear and joint contact mechanics. Cartilage wear tests were conducted using a six-station pin-on-plate apparatus. Pins were manufactured to have a hemispherical radius of curvature of 4.7 mm using either Bionate (DSM Biomedical) having varying compliances (80A [E=20MPa], 55D [E=35MPa], 75D [E=222MPa], n=6 for each), or ceramic (E=310GPa, n=5). Cartilage plugs were cored from fresh unfrozen
As the intervertebral disc is largely avascular, needle injection is the most practical method for delivery of therapeutic agents used in treatments for degenerative disc disease. Intradiscal pressure increases during injection, and insufficient recovery time prior to needle retraction may result in injectate leakage. In order to determine the maximum pressure and post-injection recovery time for a given injection volume and rate, an analytical model of intradiscal injection was developed and calibrated experimentally. A governing equation was derived defining intradiscal pressure as a function of effective permeability, initial elastic stiffness, nonlinear stiffness term, and injection rate. The equation was solved using a fourth order Runge-Kutta routine with a 0.05s time step and a ramp-dwell injection. The model was calibrated by performing controlled intradiscal injections on five
Intervertebral disc (IVD) degeneration plays a major role in low back pain which is the leading cause of disability. Current treatments in severe cases require surgical intervention often leading to adjacent segment degeneration. Injectable hydrogels have received much attention in recent years as scaffolds for seeding cells to replenish disc cellularity and restore disc properties and function. However, they generally present poor mechanical properties. In this study, we investigated several novel thermosensitive chitosan hydrogels for their ability to mimic the mechanical properties of the nucleus pulposus (NP) while being able to sustain the viability of NP cells, and retain proteoglycans. CH hydrogels were prepared by mixing the acidic chitosan solution (2% w/v) with various combinations of three gelling agents: sodium hydrogen carbonate (SHC) and/or beta-glycerophosphate (BGP) and/or phosphate buffer (PB) (either BGP0.4M, SHC0.075M-BGP0.1M, SHC0.075M-PB0.02M or SHC0.075M-PB0.04M). The gelation speed was assessed by following rheological properties within 1h at 37°C (strain 5% and 1Hz). The mechanical properties were characterized and compared with that of human NP tissues. Elastic properties of the hydrogels were studied by evaluating the secant modulus in unconfined compression. Equilibrium modulus was also measured, using an incremental stress-relaxation test 24h after gelation in unconfined compression (5% strain at 5%/s followed by 5min relaxation, five steps). Cells from
Osteoarthritis (OA) is a debilitating disease characterised by degradation of articular cartilage and subchondral bone remodeling. Current therapies for early or midstage disease do not regenerate articular cartilage, or fail to integrate the repair tissue with host tissue, and therefore there is great interest in developing biological approaches to cartilage repair. We have shown previously that platelet-rich plasma (PRP) can enhance cartilage tissue formation. PRP is obtained from a patient's own blood, and is an autologous source of many growth factors and other molecules which may aid in healing. This raised the question as to whether PRP could enhance cartilage integration. We hypothesise that PRP will enhance integration of bioengineered cartilage with native cartilage. Chondrocytes were isolated from
Background. The anatomy of the human knee is very different than the tibiofemoral surface geometry of most modern total knee replacements (TKRs). Many TKRs are designed with simplified articulating surfaces that are mediolaterally symmetrical, resulting in non-natural patterns of motion of the knee joint [1]. Recent orthopaedic trends portray a shift away from basic tibiofemoral geometry towards designs which better replicate natural knee kinematics by adding constraint to the medial condyle and decreasing constraint on the lateral condyle [2]. A recent design concept has paired this theory with the concept of guided kinematic motion throughout the flexion range [3]. The purpose of this study was to validate the kinematic pattern of motion of the surface-guided knee concept through in vitro, mechanical testing. Methods. Prototypes of the surface-guided knee implant were manufactured using cobalt chromium alloy (femoral component) and ultra-high molecular weight polyethylene (tibial component). The prototypes were installed in a force-controlled knee wear simulator (AMTI, Watertown, MA) to assess kinematic behavior of the tibiofemoral articulation (Figure 1). Axial joint load and knee flexion experienced during lunging and squatting exercises were extracted from literature and used as the primary inputs for the test. Anteroposterior and internal-external rotation of the implant components were left unconstrained so as to be passively driven by the tibiofemoral surface geometry. One hundred cycles of each exercise were performed on the simulator at 0.33 Hz using diluted
Introduction. Metal ion and particle release, particularly cobalt, has become an important subject in total hip arthroplasty, as it has shown to induce metal hypersensitivity, adverse local tissue reactions and systemic ion related diseases. The purpose of the following study was compare the ion release barrier function of a zirconium nitride (ZrN) multilayer coated hip stem for cemented use, designed for patients with metal ion hypersensitivity, against its uncoated version in a test configuration simulating the worst case scenario of a severely debonded hip stem. The ZrN multilayer coating is applied on a CoCrMo hip stem and consists of a thin adhesive chromium layer, five alternating intermediate layers out of chromium nitride (CrN) and chromium carbonitride (CrCN) and a final zirconium nitride (ZrN) shielding layer [1]. Methods. Hip stems with a ZrN multilayer coating (CoreHip AS, Aesculap AG, Germany) were tested in comparison with a cobalt-chrome uncoated version (CoreHip, Aesculap AG, Germany). In order to create a worst case scenario, the smallest stem size with the biggest offset in combination with an XL ceramic head (offset +7 mm) was used. The stems were embedded according to the ISO 7206-6 test in a bone cement sheet. Once the bone cement was bonded, the stem was pulled out and a PMMA grain was placed inside the femoral cavity in order to uprise the hip stem above its embedding line and simulate a debonded cemented hip stem with a severe toggling condition. The dynamic test was performed under
Aim. Allograft bone chips used in complex bone reconstruction procedures are associated with an increased infection risk. The perioperative use of systemic cefazolin is standard to prevent infection, but is less effective in the presence of avascular bone grafts. Bone chips have been described as a carrier for local delivery of antibiotics, but impregnation with cefazolin in a prophylactic setting has not been described. We aimed to obtain a prolonged cefazolin release from bone chips to maximize the prophylactic effect. Method. Three types of bone chips were evaluated: fresh frozen, decellularized frozen and decellularized lyophilized. Bone chips were incubated with 20 mg/ml cefazolin or treated with liquid hydrogel containing either 1 mg/ml fibrin or 1 mg/ml collagen and 20 mg/ml cefazolin. The cefazolin hydrogel was distributed in the porous structure by short vacuum treatment. Bone chips with cefazolin but without hydrogel were incubated for 20 min- 4h under atmospheric pressure or under vacuum. Cefazolin elution of bone chips was carried out in fetal
Background. Polyethylene (PE) wear is known as a limiting factor for total knee replacements (TKR). Thus, preclinical wear testing is an important tool to assess the suitability of new designs and new materials. However, standardized testing (e.g. according to ISO 14243) does not cover the individual situation in the patient. Consequentially, this study investigates the following two parameters:. a). Testing-Frequency: Patients with TKR's show a humiliated walking frequency (down to 0,5Hz) compared to standardized testing (1Hz±0.1). In the first part of this study, the influence of a decreased test frequency on the PE wear behavior is investigated. b). Interval of lubricant replacement: For in-vitro testing