Abstract
Meniscus tears in adult patients do not heal spontaneously and represent a risk factor for OA development. PDGF is well known as an enhancer of meniscal cell biosynthetic activity and also has chemotactic activity for mesenchymal cells. PDGF incorporation into scaffolds should be efficient for recruitment of cells to initiate repair in the injured meniscus. We recently developed decellularized meniscus sheet for use in the treatment of meniscus tears. The aim of this study is to examine the potential of PDGF-coated decellularized meniscus scaffold in mediating integrative healing by endogenous cell migration.
Fresh bovine meniscus was chemically decellularized. Round sheets were made from the decellularized tissue. Heparin was covalently conjugated with decellularized meniscus scaffold (DMS). PDGF-BB was immobilized by binding to the heparin-conjugated DMS. In vitro, PDGF release kinetics was analyzed by ELISA. DMS was transplanted into the injured meniscus explants and cultured for 2 and 4 weeks. The numbers of migrated cells at the border between DMS and injured explant were counted on DAPI stained sections and PDGFRb expressing cells were counted after immunohistochemical staining. The newly produced ECM and collagen fiber alignment was detected by histology on Safranin-O and picrosirius red stained sections. The explants were also tested for tensile properties.
PDGF release kinetics showed sustained slow release in heparin-conjugated DMS, with 11.2% release at day- 16th compared to 26.1% release from the DMS without heparin. Insertion of the PDGF-treated DMS into the meniscus tears in bovine meniscus explants led to the migration of endogenous meniscus cells to the defect zone. The migrated cells expressed PDGFRb and produced new ECM in the defect area. Safranin-O and pircrosirius red staining showed tissue integration between DMS and injured explants. Moreover, the higher concentration of PDGF promoted cell integration into the DMS. Tensile properties of injured explants treated with PDGF coated DMS were significantly higher than in DMS without PDGF.
Heparin-conjugated DMS showed strong immobilization of PDGF, which was released slowly. PDGF coated DMS promoted migration of endogenous meniscus cells to the defect area and into the scaffold. New matrix was formed that bridged the space between the native meniscus and the scaffold and this was associated with improved biomechanical properties. The PDGF coated DMS is a novel, feasible and efficient approach for the treatment of meniscus tears.