Advertisement for orthosearch.org.uk
Results 1 - 50 of 55
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 121 - 121
1 May 2012
Sonnabend D Smith M Little C
Full Access

R Appleyard, Murray Maxwell Biomechanics Lab, Royal North Shore Hospital, Sydney. The fundamental mechanisms that underlie tendon breakdown are ill understood. There is an emerging hypothesis that altered mechanical strain modulates the metabolism and/or phenotype of tenocytes, disrupting the balance of matrix synthesis and degradation, and that rupture then occurs through an abnormal tendon matrix. The critically regulated genes have not yet been determined. We have developed sheep model in sheep where both stress-deprived and over-stressed areas can be examined in the one tendon, to evaluate the pathological and molecular changes over time. We have also used ‘wild type’ and genetically modified mice to determine the role of specific enzymes and proteoglycans in tendon degeneration. Stress-deprived and over-stressed regions showed classical changes of increased cellularity and vascularity, rounded tenocytes and interfascicular matrix infiltration. These structural changes resolved for up to one year after injury. Resolution was more rapid in over-stressed regions. Irrespective of the initiating stress, proteoglycan staining and chondroid metaplasia increased in tendon with time. There were distinct molecular and temporal differences between regions, which are reviewed here. While tendon degeneration has traditionally been regarded as a single field of change, our studies show that at a molecular level, the injured tendon may be regarded as a number of distinct regions—overloaded and underloaded, adjacent to bone or adjacent to muscle. Each region manifests distinct molecular changes, driven by relevant gene expression. While collagen metabolism in pathological tendon has received much attention, accumulation of proteoglycan is also consistently induced by altered mechanical loading. We suggest that ADAMTS enzymes, which cleave aggrecan, versican and small proteoglycans, may play a significant role in tendon homeostasis and pathology. Regulating proteoglycan turnover may represent a novel target for treating tendon degeneration. We have initiated studies using mesenchymal stem cells (MSC), not to directly augment healing but to modify the molecular pathology in tendon resulting from altered loading. Preliminary data indicates that injection of MSC into an acute tendon defect significantly abrogates the increase in expression of aggrecan and collagen degrading metalloproteinases in the adjacent over-stressed tendon. This may decrease the resultant degeneration. The effects of MSC in treating tendon degeneration are reviewed here, as are the possible benefits of radiofrequency microtenotomy


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 503 - 504
1 Oct 2010
Gunes T Bostan B Erdem M Resid DK Seyyid AS Sen C
Full Access

Coblation is supposed to enhance healing due to increasing vascularity in the degenerated tendon. In the present study the effect of coblation treatment on tendon degeneration was investigated. A total of 32 New Zealand rabbit were enrolled in the current study. Experimental degeneration was performed by injecting prostaglandin E1 (PGE1) to bilateral achilles tendons of rabbits. Four rabbits were excluded by different reasons. Coblation and control groups were composed of 12 rabbits in each. Coblation device only touched to tendon in the control group whereas in the coblation group coblation treatment was performed through 2 cm segment to form grids with 0.5 mm apart with level four energy lasted for 500 ms. 6 rabbits in control and coblation groups were sacrificed in 6th and 12th weeks. Achilles tendons were evaluated histopathologically by modified Movin scale and immunohistopathologic examination was performed using vascular endothelial growth factor (VEGF) and type 4 collagen. After injection of PGE1, findings similiar to chronic tendinosis were revealed. Coblation group revealed significant increment in vascularity with histopathological and immunohistochemical examination. However difference regarding healing of tendon degeneration was not significant between control and coblation group. Coblation treatment increases vascularity in degenerated tendon, but doesn’t increase healing process


Bone & Joint Research
Vol. 13, Issue 9 | Pages 474 - 484
10 Sep 2024
Liu Y Li X Jiang L Ma J

Aims. Rotator cuff tear (RCT) is the leading cause of shoulder pain, primarily associated with age-related tendon degeneration. This study aimed to elucidate the potential differential gene expressions in tendons across different age groups, and to investigate their roles in tendon degeneration. Methods. Linear regression and differential expression (DE) analyses were performed on two transcriptome profiling datasets of torn supraspinatus tendons to identify age-related genes. Subsequent functional analyses were conducted on these candidate genes to explore their potential roles in tendon ageing. Additionally, a secondary DE analysis was performed on candidate genes by comparing their expressions between lesioned and normal tendons to explore their correlations with RCTs. Results. We identified 49 genes in torn supraspinatus tendons associated with advancing age. Among them, five age-related genes showed DE in lesioned tendons compared to normal tendons. Functional analyses and previous studies have highlighted their specific enrichments in biological functions, such as muscle development (e.g. myosin heavy chain 3 (MYH3)), transcription regulation (e.g. CCAAT enhancer binding brotein delta (CEBPD)), and metal ion homeostasis (e.g. metallothionein 1X (MT1X)). Conclusion. This study uncovered molecular aspects of tendon ageing and their potential links to RCT development, offering insights for targeted interventions. These findings enhance our understanding of the mechanisms of tendon degeneration, allowing potential strategies to be made for reducing the incidence of RCT. Cite this article: Bone Joint Res 2024;13(9):474–484


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 13 - 13
1 Oct 2015
Tan G Pryce B Keene D Brigande J Schweitzer R
Full Access

Introduction. We previously reported that disruption of TGFβ signaling in limb mesenchyme resulted in complete failure of tendon differentiation. Materials and Methods. To bypass this early function and study additional roles of TGFβ signaling in tendon development we disrupted TGFβ signaling in tenocytes after they assumed the tendon cell fate by using the tendon deletor ScxCre to target the floxed type2 TGFβ receptor. Results. Most mutant (Tgfbr2;ScxCre) pups appeared normal at birth but exhibited movement difficulties and splayed limbs by P3. ScxGFP signal revealed that tendon formation was not affected in CKO embryos. Nonetheless, three distinct tendon phenotypes were manifested later in development: (a) a single flexor tendon consistently snapped at late embryonic stage; whereas at post-natal stage, some tendons that appeared intact at birth were (b) eventually eliminated or (c) retained structural integrity with a substantial loss of the ScxGFP signal. Interestingly, the ScxGFP-negative cells also lost other tendon marker genes. Lineage tracing revealed that these cells were derived from Scx-expressing cells, suggesting a disruption of the tendon cell fate (dedifferentiation) but we found no evidence of transdifferentiation. Varying degrees of tendon degeneration were also seen in CKO pups, as indicated by disrupted collagen fibrils, septation of the tendon and altered epitenon. Another striking feature we identified in the Tgfbr2;ScxCre tendon phenotype was recruitment of new cells into the degenerating tendon. Finally, our data also indicates that the Tgfbr2f;ScxCre tendon phenotype is not due to a direct requirement for TGFβ signaling in tenocytes. Discussion. This analysis thus highlights an unexpected possibility for loss of differentiated characteristics in tenocytes as a key factor in a tendon degenerative process. We hypothesize that the tendon phenotypes may represent a disruption of cell-cell or cell-matrix interactions, and investigations are currently underway to test this hypothesis. Moreover, this is the first demonstration of active cell recruitment into a non-injured tendon that may be used to identify the origin and activation mechanisms for tendon stem/progenitor cells. Taken together, our findings reveal an essential and non-cell autonomous role of TGFβ signaling in maintenance of the tendon cell fate


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 131 - 131
4 Apr 2023
Korcari A Nichols A Loiselle A
Full Access

Depletion of Scleraxis-lineage (ScxLin) cells in adult tendon recapitulates age-related decrements in cell density, ECM organization and composition. However, depletion of ScxLin cells improves tendon healing, relative to age-matched wildtype mice, while aging impairs healing. Therefore, we examined whether ScxLin depletion and aging result in comparable shifts in the tendon cell environment and defined the intrinsic programmatic shifts that occur with natural aging, to define the key regulators of age-related healing deficits.

ScxLin cells were depleted in 3M-old Scx-Cre+; Rosa-DTRF/+ mice via diphtheria toxin injections into the hindpaw. Rosa-DTRF/+ mice were used as wildtype (WT) controls. Tendons were harvested from 6M-old ScxLin depleted and WT mice, and 21-month-old (21M) C57Bl/6 mice (aged). FDL tendons (n=6) were harvested for single-cell RNAseq, pooled, collagenase digested, and sorted for single cell capture. Data was processed using Cell Ranger and then aligned to the annotated mouse genome (mm10). Filtering, unsupervised cell clustering, and differential gene expression (DEG) analysis were performed using Seurat.

Following integration and sub-clustering of the tenocyte populations, five distinct subpopulations were observed. In both ScxLin depletion and aging, ‘ECM synthesizers’ and ‘ECM organizers’ populations were lost, consistent with disruptions in tissue homeostasis and altered ECM composition. However, in ScxLin depleted mice retention of a ‘specialized ECM remodeler’ population was observed, while aging tendon cells demonstrated inflammatory skewing with retention of a ‘pro-inflammatory tenocyte population’. In addition, enrichment of genes associated with protein misfolding clearance were observed in aged tenocytes. Finally, a similar inflammatory skewing was observed in aged tendon-resident macrophages, with this skewing not observed in ScxLin depleted tendons.

These data suggest that loss of ‘ECM synthesizer’ populations underpins disruptions in tendon homeostasis. However, retention of ‘specialized remodelers’ promotes enhanced healing (ScxLin depletion), while inflammatory skewing may drive the impaired healing response in aged tendons.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 136 - 136
1 Nov 2018
Traweger A
Full Access

There is a growing socio-economic need (i.e. “ageing society”) for effective and reproducible strategies to repair musculoskeletal tissue. In particular, acute tendon injury and chronic tendinopathies remain clinically challenging and novel treatment modalities are urgently needed. Tendons resemble a connective tissue rich in highly organized collagen fibers, displaying a remarkably high tensile strength. However, partly due to the low number of cells and their more or less avascular nature tendons heal relatively slowly. Ultimately, tendon regeneration encompasses the full restoration of the biological, biochemical and biomechanical properties, which are often impaired by endogenous healing cascades. Usually, a connective scar tissue forms at the injury site and the replaced tissue does not function adequately at high strain levels, increasing the chance of re-rupture. Despite significant advancements in tissue regeneration and engineering strategies, the clinical impact for the regeneration of tendon remains limited. For the development of novel methods to repair tendons we need to pin down the molecular and cellular mechanisms amenable to modulate endogenous (or exogenous) cell behaviour towards functional tissue regeneration. By comparing the gene expression profile of Achilles tendon tissue harvested from young-mature and old mice we demonstrate profound changes in the expression of ECM-related proteins and a previously unknown role of Secreted protein acidic and rich in cysteine (Sparc; also known as BM-40 or osteonectin) in tendons. Sparc levels in tendons are critical for proper collagen fibril maturation and its age-related decrease, together with a change in ECM properties potentially drives adipogenic differentiation of tendon stem and progenitor cells (TDSPCs) and consequently lipid accretion in tendons. Generally, the fate of stem/ progenitor cells is largely determined by stimuli from the stem cell niche. In tendons, we describe a novel cellular barrier, most likely preventing the leakage of blood-borne products into the tendon proper. We propose that this “blood-tendon barrier” is part of the stem cell niche in tendons controlling TDSCP fate, preventing erroneous differentiation. By investigating the developmental programs driving tendon tissue formation and on the other hand the mechanisms contributing to the senescence of tendons, ultimately resulting in decreased quality of tendons in the elderly, novel targets for clinical intervention potentially can be discovered.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 1 - 1
1 Nov 2018
Docheva D
Full Access

Tendon and ligament tissues are fascinating in their simplistic appearance of tissue architecture coupled with outstanding biomechanical properties. In the last decade, the mechanisms governing their development, degenerative disease progression and step-wise repair process are becoming better understood. In this talk, I will present an overview of our basic research work on these following points. (i) Tendon generation: I will discuss our finding on the role of growth and biomechanical factors influencing tendon stem/progenitor cells; (ii) Tendon degeneration: I will provide evidences how disturbed cell-cell and cell-matrix contacts are involved in loss of tissue integrity; (iii) Tendon regeneration: I will present in vivo data on the application and performance of various cell populations in tendon repair


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 132 - 132
1 Nov 2018
Argentieri E Shah P Koff M Lin B Potter H Nwawka O
Full Access

Patellar tendinosis (PT) is common and can result in prolonged disability, especially in jumping athletes. Recently developed ultra-short-echo (UTE) MRI sequences allow for quantitative evaluation of tendon biostructure with T2* relaxometry. This study evaluated the relationships between changes over time (COT) in quantitative T2*-metrics, qualitative PT grades, and patient reported symptoms within 10 male basketball players from a single collegiate basketball team. All subjects completed weekly VISA-P symptomology questionnaires over the basketball season. Bilateral 3-Tesla MRIs (GE Healthcare) were obtained at pre- and post-season study visits. High-resolution, PD-weighted, FSE sequences were used to qualitatively grade PT. Quantitative T2*-metrics were evaluated using high-resolution, 3D, multi-echo, UTE-MRI sequences. Bilinear exponential fits of SI to corresponding echo time were used to calculate T2*-metrics. All qualitative and quantitative evaluations were region specific (proximal, middle, distal). Linear mixed effects models assessed associations of side and region with T2*-metrics. Spearman correlations evaluated relationships between outcome measures. Within and between study visits, significant side-to-side differences in T2*-metrics were found and were significantly impacted by leg dominance (p<0.05). Pre-season T2*-metrics correlated with COT in T2*-metrics, COT in T2*-metrics correlated with COT in qualitative PT grades, and post-season T2*-metrics correlated with max changes in VISA-P scores (ρ≥0.64). Quantitative T2*-metrics can detect PT and may be capable of predicting the onset of pathology. T2*-metrics could benefit the clinical management of PT: it is sensitive to changes in pathologic severity over time, and therefore can serve as a quantitative metric to guide treatment and evaluate intervention efficacy.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 107 - 107
2 Jan 2024
Park H
Full Access

The rotator cuff tendinopathy is one of the most common shoulder problems leading to full-thickness rotator cuff tendon tear and, eventually, to degenerative arthritis. Recent research on rotator cuff tendon degeneration has focused on its relationship to cell death. The types of cell death known to be associated with rotator cuff tendon degeneration are apoptosis, necrosis, and autophagic cell death. The increased incidence of cell death in degenerative tendon tissue may affect the rates of collagen synthesis and repair, possibly weakening tendon tissue and increasing the risk of tendon rupture. The biomolecular mechanisms of the degenerative changes leading to apoptotic cell death in rotator cuff tenofibroblasts have been identified as oxidative-stress-related cascade mechanisms. Furthermore, apoptosis, necrosis, and autophagic cell death are all known to be mediated by oxidative stress, a condition in which ROS (reactive oxygen species) are overproduced. Lower levels of oxidative stress trigger apoptosis; higher levels mediate necrosis. Although the signaltransduction pathway leading to autophagy has not yet been fully established, ROS are known to be essential to autophagy. A neuronal theory regarding rotator cuff degeneration has been developed from the findings that glutamate, a neural transmitter, is present in increased concentrations in tendon tissues with tendinopathy and that it induces rat supraspinatus tendon cell death. Recent studies have reported that hypoxia involved in rotator cuff tendon degeneration. Because antioxidants are known to scavenge for intracellular ROS, some studies have been conducted to determine whether antioxidants can reduce cell death in rotator cuff tendon-origin fibroblasts. The first study reported that an antioxidant has the ability to reduce apoptosis in oxidative-stressed rotator cuff tenofibroblasts. The second study reported that antioxidants have both antiapoptotic effects and antinecrotic effects on rotator cuff tendon-origin fibroblasts exposed to an oxidative stimulus. The third study reported that an antioxidant has antiautophagic-cell-death effects on rotator cuff tendon-origin fibroblasts exposed to an oxidative stimulus. The fourth study reported that glutamate markedly increases cell death in rotator cuff tendonorigin fibroblasts. The glutamate-induced cytotoxic effects were reduced by an antioxidant, demonstrating its cytoprotective effects against glutamate-induced tenofibroblast cell death. The fifth study reported that hypoxia significantly increases intracellular ROS and apoptosis. The hypoxia-induced cytotoxic effects were markedly attenuated by antioxidants, demonstrating their cytoprotective effects against hypoxia-induced tenofibroblast cell death. In conclusion, antioxidants have cytoprotective effects on tenofibroblasts exposed in vitro to an oxidative stressor, a neurotransmitter, or hypoxia. These cytoprotective effects result from antiapoptotic, antinecrotic, and antiautophagic actions involving the inhibition of ROS formation. These findings suggest that antioxidants may have therapeutic potential for rotator cuff tendinopathy. Further studies must be conducted in order to apply these in vitro findings to clinical situations


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 74 - 74
2 Jan 2024
Lehner C Benedetti B Tempfer H Traweger A
Full Access

Tendinopathy is a disease associated with pain and tendon degeneration, leading to a decreased range of motion and an increased risk of tendon rupture. The etiology of this frequent disease is still unknown. In other musculoskeletal tissues like cartilage and intervertebral discs, transient receptor potential channels (TRP- channels) were shown to play a major role in the progression of degeneration. Due to their responsiveness to a wide range of stimuli like temperature, pH, osmolarity and mechanical load, they are potentially relevant factors in tendon degeneration as well. We therefore hypothesize that TRP- channels are expressed in tendon cells and respond to degeneration inducing stimuli. By immunohistochemistry, qRT-PCR and western blot analyses, we found three TRP channel members, belonging to the vanilloid (TRPV), and ankyrin (TRPA) subfamily, respectively, to be expressed in healthy human tendon tissue as well as in rodent tendon, with expression being located to cells within the dense tendon proper, as well as to endotenon resident cells. In vitro-inflammatory and ex vivo-mechanical stimulation led to a significant upregulation of TRPA1 expression in tendon cells, which correlates well with the fact that TRPA1 is considered as mechanosensitive channel being sensitized by inflammatory mediators. This is the first description of TRP- channels in human and rodent tendon. As these channels are pharmacologically targetable by both agonists and antagonists, they may represent a promising target for novel treatments of tendinopathy


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 120 - 120
4 Apr 2023
Joumah A Cowling P
Full Access

Though retear rates following rotator cuff repair are well established, we set out to review current literature to determine when early retears occurred (defined as <12m following surgery), and examine which pre- and post-operative variables might affect outcome. Pubmed, Medline, and CINAHL were searched for literature published from 2011 to 2021 using specific search terms. The inclusion criteria were studies reporting retear rates within 12 months of initial surgical repair. Exclusionary criteria were studies that included partial thickness tears, and studies that did not use imaging modalities within 12 months to assess for retears. PRISMA guidelines were followed, identifying a total of 10 papers. A combined total of 3372 shoulders included (Mean age 56 −67 years). The most common modality used to identify early retears were ultrasound scan and MRI. 6 of the 10 studies completed imaging at 0-3 months, 6 studies imaged at 3-6 months and 6 studies imaged at 6-12 months. Across all studies, there was a 17% early retear rate (574 patients). Of these, 13% occurred by 3 months, whilst the peak for retears occurred at 3-6 months (82%) and 5% occurred at 6-12 months. The risk of retear was higher in larger tears and extensive tendon degeneration. All studies apart from one documented a return to work/sport at 6 months post-operatively. Postoperative rehabilitation does not appear to alter retear rate, although data is limited with only 1 of 10 studies allowing active range of movement before 6 weeks. Retorn tendons had poorer functional outcomes compared to intact tendons at 12m following initial repair. The majority of early retears occur at 3-6 months and this time period should be prioritised both in rehabilitation protocols and future research. Age, tear size, and tendon degeneration were found to influence likelihood of early retears


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 22 - 22
2 Jan 2024
Muller S
Full Access

Tendons mainly consist of collagen in order to withstand high tensile forces. Compared to other, high turnover tissues, cellularity and vascularity in tendons are low. Thus, the natural healing process of tendons takes long and can be problematic. In case of injury to the enthesis, the special transition from tendon over cartilage to bone is replaced by a fibrous scar tissue, which remains an unsolved problem in rotator cuff repair. To improve tendon healing, many different approaches have been described using scaffolds, stem cells, cytokines, blood products, gene therapy and others. Despite promising in vitro and in vivo results, translation to patient care is challenging. In clinics however, tendon auto- or allografts remain still first choice to augment tendon healing if needed. Therefore, it is important to understand natural tendon properties and natural tendon healing first. Like in other tissues, senescence of tenocytes seems to play an important role for tendon degeneration which is interestingly not age depended. Our in vivo healing studies have shown improved and accelerated healing by adding collagen type I, which is now used in clinics, for example for augmentation of rotator cuff repair. Certain cytokines, cells and scaffolds may further improve tendon healing but are not yet used routinely, mainly due to missing clinical data, regulatory issues and costs. In conclusion, the correct diagnosis and correct first line treatment of tendon injuries are important to avoid the necessity to biologically augment tendon healing. However, strategies to improve and accelerate tendon healing are still desirable. New treatment opportunities may arise with further advances in tendon engineering in the future


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 76 - 76
2 Jan 2024
Zamboulis D Ali F Thorpe C
Full Access

Energy storing tendons such as the human Achilles and equine superficial digital flexor tendon (SDFT) are prone to age-related injury. Tendons have poor healing capacity and a lack of effective treatments can lead to ongoing pain, reduced function and re-injury. It is therefore important to identify the mechanisms underpinning age-related tendinous changes in order to develop more effective treatments. Our recent single cell sequencing data has shown that tendon cell populations have extensive heterogeneity and cells housed in the tendon interfascicular matrix (IFM) are preferentially affected by ageing. There is, however, a lack of established surface markers for cell populations in tendon, limiting the capacity to isolate distinct cell populations and study their contribution to age-related tendon degeneration. Here, we investigate the presence of the cell surface proteins MET proto-oncogene (MET), integrin subunit alpha 10 (ITGA10), fibroblast activation protein alpha (FAP) and platelet derived growth factor receptor alpha (PDGFRA) in the equine SDFT cell populations and their co-localisation with known markers. Using Western blot we validated the specificity of selected antibodies in equine tissue before performing immunohistochemistry to establish the location of the respective proteins in the SDFT. We subsequently used double labelling immunofluorescence with the established mural cell marker desmin (DES) to distinguish between tenocyte and mural cell populations. In situ, MET, ITGA10, and FAP presence was found in cells throughout the tendon whereas PDGFRA was present in cells within the IFM. Double labelling immunofluorescence with the mural cell marker DES showed lack of co-localisation between PDGFRA and DES suggesting PDGFRA is labelling an IFM cell population distinct from those associated with blood vessels. PDGFRA is a promising target for the specific cell sorting of IFM-localised tenocytes, enabling their isolation and subsequent characterisation. Acknowledgments: The authors acknowledge the Biotechnology and Biological Sciences Research Council (BB/W007282/1) for funding this work


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_13 | Pages 18 - 18
17 Jun 2024
Andres L Donners R Harder D Krähenbühl N
Full Access

Background. Weightbearing computed tomography scans allow for better understanding of foot alignment in patients with Progressive Collapsing Foot Deformity. However, soft tissue integrity cannot be assessed via WBCT. As performing both WBCT and magnetic resonance imaging is not cost effective, we aimed to assess whether there is an association between specific WBCT and MRI findings. Methods. A cohort of 24 patients of various stages of PCFD (mean age 51±18 years) underwent WBCT scans and MRI. In addition to signs of sinus tarsi impingement, four three-dimensional measurements (talo-calcaneal overlap, talo-navicular coverage, Meary's angle axial/lateral) were obtained using a post processing software (DISIOR 2.1, Finland) on the WBCT datasets. Sinus tarsi obliteration, spring ligament complex and tibiospring ligament integrity, as well as tibialis posterior tendon degeneration were evaluated with MRI. Statistical analysis was performed for significant (P<0.05) correlation between findings. Results. None of the assessed 3D measurements correlated with spring ligament complex or tibiospring ligament tears. Age, body mass index, and TCO were associated with tibialis posterior tendon tears. 75% of patients with sinus tarsi impingement on WBCT also showed signs of sinus tarsi obliteration on MRI. Of the assessed parameters, only age and BMI were associated with sinus tarsi obliteration diagnosed on MRI, while the assessed WBCT based 3D measurements were, with the exception of MA axial, associated with sinus tarsi impingement. Conclusion. While WBCT reflects foot alignment and indicates signs of osseous impingement in PCFD patients, the association between WBCT based 3D measurements and ligament or tendon tears in MRI is limited. Partial or complete tears of the tibialis posterior tendon were only detectable in comparably older and overweight PCFD patients with an increased TCO. WBCT does not replace MRI in diagnostic value. Both imaging options add important information and may impact decision-making in the treatment of PCFD patients


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 72 - 72
2 Jan 2024
Loiselle A
Full Access

During aging, tendons demonstrate substantial disruptions in homeostasis, leading to impairments in structure-function. Impaired tendon function contributes to substantial declines quality of life during aging. Aged tendons are more likely to undergo spontaneous rupture, and the healing response following injury is impaired in aged tendons. Thus, there is a need to develop strategies to maintain tendon homeostasis and healing capacity through the lifespan. Tendon cell density sharply declines by ∼12 months of age in mice, and this low cell density is retained in geriatric tendons. Our data suggests that this decline in cellularity initiates a degenerative cascade due to insufficient production of the extracellular matrix (ECM) components needed to maintain tendon homeostasis. Thus, preventing this decline in tendon cellularity has great potential for maintaining tendon health. Single cell RNA sequencing analysis identifies two changes in the aged tendon cell environment. First, aged tendons primarily lose tenocytes that are associated with ECM biosynthesis functions. Second, the tenocytes that remain in aged tendons have disruptions in proteostasis and an increased pro-inflammatory phenotype, with these changes collectively termed ‘programmatic skewing'. To determine which of these changes drives homeostatic disruption, we developed a model of tenocyte depletion in young animals. This model decreases tendon cellularity to that of an aged tendon, including decreased biosynthetic tenocyte function, while age-related programmatic skewing is absent. Loss of biosynthetic tenocyte function in young tendons was sufficient to induce homeostatic disruption comparable to natural aging, including deficits in ECM organization, composition, and material quality, suggesting loss biosynthetic tenocytes as an initiator of tendon degeneration. In contrast, our data suggest that programmatic skewing underpins impaired healing in aged tendons. Indeed, despite similar declines in the tenocyte environment, middle-aged and young-depleted tendons mount a physiological healing response characterized by robust ECM synthesis and remodeling, while aged tendons heal with insufficient ECM


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 29 - 29
4 Apr 2023
Bolam S Konar S Zhu M Workman J Lim K Woodfield T Monk P Coleman B Cornish J Munro J Musson D
Full Access

Re-rupture rates after rotator cuff repair remain high because of inadequate biological healing at the tendon-bone interface. Single-growth factor therapies to augment healing at the enthesis have so far yielded inconsistent results. An emerging approach is to combine multiple growth factors over a spatiotemporal distribution that mimics normal healing. We propose a novel combination treatment of insulin-like growth factor 1 (IGF-1), transforming growth factor β1 (TGF-β1) and parathyroid hormone (PTH) incorporated into a controlled-release tyraminated poly-vinyl-alcohol hydrogel to improve healing after rotator cuff repair. We aimed to evaluate this growth factor treatment in a rat chronic rotator cuff tear model. A total of 30 male Sprague-Dawley rats underwent unilateral supraspinatus tenotomy. Delayed rotator cuff repairs were then performed after 3 weeks, to allow tendon degeneration that resembles the human clinical scenario. Animals were randomly assigned to: [1] a control group with repair alone; or [2] a treatment group in which the hydrogel was applied at the repair site. All animals were euthanized 12 weeks after rotator cuff surgery and the explanted shoulders were analyzed for biomechanical strength and histological quality of healing at the repair site. In the treatment group had significantly higher stress at failure (73% improvement, P=0.003) and Young's modulus (56% improvement, P=0.028) compared to the control group. Histological assessment revealed improved healing with significantly higher overall histological scores (10.1 of 15 vs 6.55 of 15, P=0.032), and lower inflammation and vascularity. This novel combination growth factor treatment improved the quality of healing and strength of the repaired enthesis in a chronic rotator cuff tear model. Further optimization and tailoring of the growth factors hydrogel is required prior to consideration for clinical use in the treatment of rotator cuff tears. This novel treatment approach holds promise for improving biological healing of this clinically challenging problem


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 296 - 296
1 May 2009
Avella C Smith R Dudhia J
Full Access

Introduction: Tendon injury is an important cause of injury in racehorses, with flexor tendon and suspensory ligament injuries accounting for 46% of all musculoskeletal injuries at British racecourses (. 1. ). In the galloping horse the superficial digital flexor tendon (SDFT) undergoes strains that are close to the functional limit of the tendon (. 2. ) and it is hypothesised that exercise induces cumulative microdamage in the SDFT of skeletally mature horses which may predispose to clinical disease. We hypothesised that matrix metalloproteinases (MMPs) play a role in the process of tendon degeneration induced by cyclical loading and investigated this using an in vitro model. Methods: Mid-metacarpal SDFTs were harvested from Thoroughbred horses that were euthanased for non-orthopaedic reasons. Tendon explants (2mm x 2mm x 60mm) were maintained in DMEM and placed in custom designed loading cassettes which were cyclically loaded in an incubator using a Dartec materials testing device for 24 hours with 5% strain and at a frequency of 1Hz. Control explants were placed in similar cassettes but were not loaded. The ultimate tensile strength (UTS) of the tendon was assessed using a destructive test at the end of the 24 hour loading period. The experiments were repeated using non-viable tendon explants, or in the presence of a pan-MMP specific inhibitor (Illomastat, 25 μM). Results: Cyclical loading induced a 30% decrease in the UTS of tendons of immature and young mature (< 10 years of age) horses but this increased to a 50% reduction in older (10–30 years of age) horses compared to controls. This loss of UTS was prevented in tendon explants with non-viable cells or with a pan-MMP inhibitor applied to the live explants prior to cyclical loading. Conclusions: The results suggest that an MMP mediated mechanism plays a pivotal role in tendon degeneration following cyclical loading in vitro. Current work including analysis of gene expression and quantification of MMPs within the tendon tissue aims to identify the key MMPs responsible for the loss of tendon UTS following cyclical loading. This will hopefully enable therapeutic strategies to be developed to slow or stop the age-associated tendon degeneration that predisposes to overstrain injury, and thereby help prevent this common orthopaedic disease in horses


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 462 - 462
1 Sep 2012
Lakemeier S Reichelt J Foelsch C Fuchs-Winkelmann S Schofer M Paletta J
Full Access

Introduction. Differing levels of tendon retraction are found in full-thickness rotator cuff tears. The pathophysiology of tendon degeneration and retraction is unclear. Neoangiogenesis in tendon parenchyma indicates degeneration. Hypoxia inducible factor 1(HIF) and vascular endothelial growth factor (VEGF) are important inducers of neoangiogenesis. Rotator cuff tendons rupture leads to fatty muscle infiltration (FI) and muscle atrophy (MA). The aim of this study is to clarify the relationship between HIF and VEGF expression, neoangiogenesis, FI, and MA in tendon retraction found in full-thickness rotator cuff tears. Methods. Rotator cuff tendon samples of 33 patients with full-thickness medium-sized rotator cuff tears were harvested during reconstructive surgery. The samples were dehydrated and paraffin embedded. For immunohistological determination of VEGF and HIF expression, sample slices were strained with VEGF and HIF antibody dilution. Vessel density and vessel size were determined after Masson-Goldner staining of sample slices. The extent of tendon retraction was determined intraoperatively according to Patte's classification. Patients were assigned to 4 categories based upon Patte tendon retraction grade, including one control group. FI and MA were measured on standardized preoperative shoulder MRI. Results. HIF and VEGF expression, FI, and MA were significantly higher in torn cuff samples compared with healthy tissue (p<0.05). HIF and VEGF expression, and vessel density significantly increased with extent of tendon retraction (p<0.04). A correlation between HIF/VEGF expression and FI and MA could be found (p<0.04). There was no significant correlation between HIF/VEGF expression and neovascularity (p>0.05). Conclusion. Tendon retraction in full-thickness medium-sized rotator cuff tears is characterized by neovascularity, increased VEGF/HIF expression, FI, and MA. VEGF expression and neovascularity may be effective monitoring tools to assess tendon degeneration


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 71 - 71
1 Apr 2018
Wildemann B
Full Access

As we grow older, the risk of tendon degeneration and injuries increases, which can result in pain, disability, healthcare cost, and lost productivity. Even after surgical repair the results are often unsatisfactory. The cellular reasons for the differences in the healing potential, however, are not well studied. To get a deeper insight into the biological characteristics of tenocyte-like cells from different patient groups we established a biobank with material from over 150 human donors. The patients/donors suffered from rotator cuff tears and were operated to restore the function. A proportion of the isolated cells showed stem cell-like characteristics and was able to differentiate into the osteoblastic, chondrogenic and adipogenic linage. Investigating the differentiation potential of the cells with regard to donor characteristics, we were able to demonstrate that age, sex but also the “degeneration” has an impact of the cellular potential. A possibility to stimulate the cellular activity is the application of growth factors, as already clinically used for stimulation of bone healing. Therefore, the responsiveness of the cells to the growth factors Bone Morphogenetic protein-2/7 (BMP-2/7) was analysed in vitro. Independent of the donor characteristics, the cells responded to the BMP-stimulation by increased proliferation and collagen-1 synthesis. However, cells isolated from donors with high fatty infiltration of the muscle or older females were less responsive. Looking into the intracellular signalling pathway, the data showed that the BMP-signal is mainly mediated by the canonical-pathway with samd8 playing a major role. This basic research gives first information regarding the differences in tenocytes biology with respect to the donor and is important for the understanding of tendon regeneration and the future development of new treatment strategies


Bone & Joint Open
Vol. 4, Issue 8 | Pages 628 - 635
22 Aug 2023
Hedlundh U Karlsson J Sernert N Haag L Movin T Papadogiannakis N Kartus J

Aims

A revision for periprosthetic joint infection (PJI) in total hip arthroplasty (THA) has a major effect on the patient’s quality of life, including walking capacity. The objective of this case control study was to investigate the histological and ultrastructural changes to the gluteus medius tendon (GMED) in patients revised due to a PJI, and to compare it with revision THAs without infection performed using the same lateral approach.

Methods

A group of eight patients revised due to a PJI with a previous lateral approach was compared with a group of 21 revised THAs without infection, performed using the same approach. The primary variables of the study were the fibril diameter, as seen in transmission electron microscopy (TEM), and the total degeneration score (TDS), as seen under the light microscope. An analysis of bacteriology, classification of infection, and antibiotic treatment was also performed.


Bone & Joint 360
Vol. 11, Issue 5 | Pages 27 - 30
1 Oct 2022


Bone & Joint Research
Vol. 5, Issue 12 | Pages 602 - 609
1 Dec 2016
Muto T Kokubu T Mifune Y Inui A Sakata R Harada Y Takase F Kurosaka M

Objectives. Triamcinolone acetonide (TA) is widely used for the treatment of rotator cuff injury because of its anti-inflammatory properties. However, TA can also produce deleterious effects such as tendon degeneration or rupture. These harmful effects could be prevented by the addition of platelet-rich plasma (PRP), however, the anti-inflammatory and anti-degenerative effects of the combined use of TA and PRP have not yet been made clear. The objective of this study was to determine how the combination of TA and PRP might influence the inflammation and degeneration of the rotator cuff by examining rotator cuff-derived cells induced by interleukin (IL)-1ß. Methods. Rotator cuff-derived cells were seeded under inflammatory stimulation conditions (with serum-free medium with 1 ng/ml IL-1ß for three hours), and then cultured in different media: serum-free (control group), serum-free + TA (0.1mg/ml) (TA group), serum-free + 10% PRP (PRP group), and serum-free + TA (0.1mg/ml) + 10% PRP (TA+PRP group). Cell morphology, cell viability, and expression of inflammatory and degenerative mediators were assessed. Results. Exposure to TA significantly decreased cell viability and changed the cell morphology; these effects were prevented by the simultaneous administration of PRP. Compared with the control group, expression levels of inflammatory genes and reactive oxygen species production were reduced in the TA, PRP, and TA+PRP groups. PRP significantly decreased the expression levels of degenerative marker genes. Conclusions. The combination of TA plus PRP exerts anti-inflammatory and anti-degenerative effects on rotator cuff-derived cells stimulated by IL-1ß. This combination has the potential to relieve the symptoms of rotator cuff injury. Cite this article: T. Muto, T. Kokubu, Y. Mifune, A. Inui, R. Sakata, Y. Harada, F. Takase, M. Kurosaka. Effects of platelet-rich plasma and triamcinolone acetonide on interleukin-1ß-stimulated human rotator cuff-derived cells. Bone Joint Res 2016;5:602–609. DOI: 10.1302/2046-3758.512.2000582


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 15 - 15
1 Jan 2017
Popov C Wu F Docheva D
Full Access

The exact pathways of collagen remodeling in tendon tissue are not well understood. Therefore, we have established an ex vivo 3D collagen gel-based system and we studied the remodeling capacity of two different TSPC lines from young, Y-TSPC and aged/degenerative, A-TSPC donors. Here, we specifically focused on investigating the involvement of integrin receptors in the remodeling process. Integrins are transmembrane receptors consisting of alpha (a) and beta (b) subunits, which form cell-to-matrix bonds, activate various pathways and thereby control cell proliferation, differentiation and survival. Y- and A-TSPC were derived from human Achilles tendons and are fully described in Kohler et al. 2013. RT-PCR was used to assess the expression of collagen-binding integrins in the TSPC cultivated in collagen gels. Next, a1 and a11 integrins were silenced by stable lentiviral delivery of target-specific shRNA in the Y-TSPC. Control (con-shRNA), integrin (a1-shRNA) and integrin a11 (a11-shRNA) virus-containing supernatant was given for 24h and then cells were selected with 50 microg./ml zeocin for 10 days. The integrin knockdown (KD) efficiency was assessed by quantitative PCR and western blotting. Last, functional tests were carried out by time-lapse recording gel contraction of four cell groups (Y-TSPC+con, Y-TSPC+a1KD, Y-TSPC+a11KD, and A-TSPC). Among the screened integrins we found that integrin a1 and a11 were significantly downregulated in A-TSPC with 3.8 and 5.6 folds, correspondingly. Therefore, to mimic the A-TSPC we carried out a gene KD of a1 and a11 in Y-TSPC. PCR and western blot clearly validated the efficient KD. Analyses of collagen contraction, revealed that Y-TSPC+a11KD significantly reduced collagen contractability comparable to A-TSPC. This indicated the indispensable role of this integrin in the signaling pathway of collagen matrix remodeling. In respect to integrin a1, we found that this receptor did not affect the contraction rate of Y-TSPC, which was similar to Y-TSPC+con. To our knowledge we have now identified for the first time the critical role of a11 integrin receptor in tendon collagen remodeling, and a follow up analysis of its exact downstream cascade is on the way. Future efforts in deciphering how tendon matrix makeover is regulated can lead to innovation in preventive strategies for tendon degeneration


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 40 - 40
1 Jan 2017
Korntner S Lehner C Kunkel N Traweger A Tempfer H
Full Access

Metabolic disorders are frequently associated with tendon degeneration and impaired healing after acute injury. However, the underlying cellular and molecular mechanisms remain largely unclear. We have previously shown that human and rat tendon cells responde to glucose stimulation in vitro by secretion of insulin. Therefore, we now hypothesize that nutritional glucose uptake affects tendon healing in a rat model. In female rats (n=30/group), unilateral full-thickness Achilles tendon defects were created. Immediately after surgery animals were either fed a glucose rich- or a control diet for up to 4 weeks. Gait analysis (Catwalk, Noldus) was performed at three time points. In addition, tendon thickness measurements, biomechanical testing and immunohistochemical analysis were conducted. Subsequently, gene expression analysis, comparing cDNA pools (n=5) prepared from repair tissues of both groups was performed. The repair tissues of the high glucose group were significantly thicker compared to the control group (p<0.001). The intermediate toe spread, an indicator of pain, were significantly improved in the high glucose group one and two weeks post surgery. Biomechanical analysis revealed that the repair tissues of the high glucose group were significantly stiffer (p<0.05) compared to the control group, no significant difference was detected for maximum tensile load…. The proportion of Ki67+ cells in the repair tissue was 3.3% in the control diet group and 9,8% in the high glucose group, indicating increased cell proliferation (p<0.001). Finally, gene expression analysis revealed the chondrogenic marker genes Collagen II, Aggrecan, COMP and SOX9 to be upregulated and genes involved in lipid metabolism like PPARgamma and Fabp2 to be downregulated in the glucose diet group. Here we show fort he first time that a high-glucose diet affects gait pattern and tendon biomechanics, influences tendon thickness and cell proliferation. Gene expression analysis reveals a regulation of chondrogenic as well as adipogenic marker genes. The molecular mechanisms underlying these effects on cells and extracellular matrix are currently under investigation, potentially revealing targets for developing a dietary intervention scheme to support tendon regeneration after trauma or tendon disease


Bone & Joint Research
Vol. 3, Issue 12 | Pages 328 - 334
1 Dec 2014
Harada Y Kokubu T Mifune Y Inui A Sakata R Muto T Takase F Kurosaka M

Objectives. To investigate the appropriate dose and interval for the administration of triamcinolone acetonide (TA) in treating tendinopathy to avoid adverse effects such as tendon degeneration and rupture. Methods. Human rotator cuff-derived cells were cultured using three media: regular medium (control), regular medium with 0.1 mg/mL of TA (low TA group), and with 1.0 mg/mL of TA (high TA group). The cell morphology, apoptosis, and viability were assessed at designated time points. Results. In the low TA group, the cells became flattened and polygonal at seven days then returned to normal at 21 days. The cell apoptosis ratio and messenger ribonucleic acid expression of caspase-3, 7, 8, and 9 increased, and viability was reduced in the low and high groups at seven days. In the low TA group, apoptosis and viability returned to normal at 21 days, however, in the high TA group, the cell morphology, apoptosis ratio, caspase-3, 7, 8, and 9 and viability did not return by day 21. Re-administration was performed in the low TA group at 7-, 14-, and 21-day intervals, and cell viability did not return to the control level at the 7- and 14-day intervals. Conclusion. A 0.1 mg/mL dose of TA temporarily decreased cell viability and increased cell apoptosis, which was recovered at 21 days, however, 1 mg/mL of TA caused irreversible damage to cell morphology and viability. An interval > three weeks was needed to safely re-administer TA. These findings may help determine the appropriate dose and interval for TA injection therapy. Cite this article: Bone Joint Res 2014;3:328–34


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1180 - 1188
1 Oct 2022
Qu H Mou H Wang K Tao H Huang X Yan X Lin N Ye Z

Aims

Dislocation of the hip remains a major complication after periacetabular tumour resection and endoprosthetic reconstruction. The position of the acetabular component is an important modifiable factor for surgeons in determining the risk of postoperative dislocation. We investigated the significance of horizontal, vertical, and sagittal displacement of the hip centre of rotation (COR) on postoperative dislocation using a CT-based 3D model, as well as other potential risk factors for dislocation.

Methods

A total of 122 patients who underwent reconstruction following resection of periacetabular tumour between January 2011 and January 2020 were studied. The risk factors for dislocation were investigated with univariate and multivariate logistic regression analysis on patient-specific, resection-specific, and reconstruction-specific variables.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 561 - 574
10 Aug 2022
Schulze-Tanzil GG Delgado Cáceres M Stange R Wildemann B Docheva D

Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors.

Cite this article: Bone Joint Res 2022;11(8):561–574.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 173 - 173
1 Jul 2014
Papalia R Vadalà G Moro L Franceschi F Vasta S Albo E Tecame A Maffulli N Denaro V
Full Access

Introduction. recent studies recognised metabolic abnormalities as additional factors in the development of rotator cuff (RC) tendinopathy. It has been hypothesised that the insertional area of this tendon is susceptible to degenerative changes due to intrinsic hypovascularization. The mechanisms underlying this process are not yet clear. In this study we attempted to confirm if larger lesions of the RC are related to impaired vasodilatatory response of the local circulation in conditions of “hemodynamic stress”. Patients & Methods. it was assumed that impaired vasal reaction to “hemodynamic stress” was a systemic condition. This phenomenon should therefore be not limited to the critical area of the tendon tear. Given this assumption post-ischemic vasodilation of brachial artery was studied through an echo-doppler (US) evaluation. 50 patients (mean 61 ± 4, range 50–65) all scheduled for surgical rotator cuff repair following a tendon tear, were enrolled. Three preoperative measurements of the brachial artery diameter before and after application of an ischemic band were collected. The size of the lesions was later assessed at the time of surgery. A statistical analysis was carried on to investigate the correlation between US assessment of brachial artery diameter and the corresponding size of the RC lesions. UCLA and ASES scores were also measured to assess clinical and functional outcomes. Results. Patients were classified into 4 groups according to Cofield's classification of tear size; respectively, 4 patients had massive lesions, 32 large, 10 medium and 4 had finally small lesions. The extent of the RC lesion showed an inverse correlation with the diameter of brachial artery after an ischemic stimulus: an increase in size of the lesion corresponded to lower mean post-ischemic diameter of the vessel (p <0.0001). UCLA and ASES data showed no statistically significant differences between the subgroups (p > 0.534). Discussion/Conclusion. It is not clear why the insertional area of tendons composing the RC is hypovascularised. We hypothesised there is an imbalance between local vasodilator and vasoconstrictor factors. The prevalence of vasoconstrictor substances determines a reduced post-ischemic vasodilation. The data presented provide the basis for the future identification of vascular impairment that could underlie the beginning of tendon degeneration in patients that are not yet affected by injury. This would be beneficial for effective prevention of this type of injury. An imbalance between vasodilator and vasoconstrictor factors could be the basis for vascular distress of RC eventually evolving into tendon lesions when other risk factors are associated. More specific vascular pathophysiological studies are however needed to further understand this mechanism and its potential in prevention of rotar cuff lesion


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 26 - 26
1 Mar 2006
Costa M Robinson A Donell S Curry V Riley G
Full Access

Aims: 1 To assess the histological changes in patients with Achilles tendinopathy. 2 To map the distribution of nerves and nerve endings within the Achilles tendon. Methods: Tendon biopsy specimens were taken from patients with spontaneous (ie previously painless) Achilles rupture patients and chronic painful tendinopathy patients. ‘Normal’ cadaveric /lacerated tendon biopsies were used for comparison. Sections were stained with H& E for basic histology. Immunolocalisation of nerve tissue was performed with 2 anti-neurofilament antibodies. Non-specific immunoglobulin was used as a negative control. Results: The number of nerves and nerve endings found within the normal tendons and both groups of degenerate tendons was very low. Only 30% of the normal tendon sections showed any positive staining at all. Compared to 36% of ruptured tendon and 43% of the painful tendinopathy sections. Conclusions: Tendon rupture and chronic painful tendinopathy biopsies ALL show widespread degenerative changes. There is a paucity of nerve tissue within these tendons, which may have implications for the neurogenic hypothesis of tendon degeneration. There appear be more nerve fibres in vascular areas of the painful tendinopathy biopsies. There may be more nerve fibres in the peritendinous tissue


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 211 - 211
1 Mar 2003
Papadelis P Christoforidis N Antonis K Mahaira E Hanioti C Lyritis G
Full Access

Achilles tendinitis can result, through inflammatory procedures, to tendon degeneration with microtears and nodules. Current conservative or surgical treatment of this lesion proved to be not effective enough. The reason for this is the absence of sufficient oxygenation in the area. In this study we report the results of a novel technique which tries to improve local vascularity. We operated on 15 mature rabbits after they were anasthetized. Soleus fibers were trasplanted in the right achilles tendon. A lesion, 10mm long and 2mm wide was created in the inner band of the tendon simulating tendinitis. In the left achilles tendon the same procedure was done without transplantation. The rabbits were divided in three equal groups and were sacrificed in the first week, the 2nd and 3rd month after the operation. Histopathologic examination was done in both achilles tendons. The following parameters were assessed: transplanted muscle viability, inflammation and neoangiogenesis. We also evaluated the contact between muscle and tendon and the quality of tissue that was formed in the tendinitis simulating area. Inflammatory process was noticed only in the 1st week after surgery. In the other groups viable muscle fibers and tendon tissue was observed. Muscle fibers were in contact with the tendon. The quality of tissue in the tendinitis simulating area was of better quality than in the control group. We conclude that soleus transplanted muscle fibers in the rabbits achilles tendon seem to be oxygen carriers and improve the healing potential of the area. This fact results in tendon reinforcement


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 450 - 450
1 Sep 2009
Pasternak B Schepull T Aspenberg P
Full Access

Local dysregulation of the proteolytic matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is a feature of tendon degeneration and rupture. 1. ,. 2. To assess the role of systemic MMPs and TIMPs in tendon rupture we compared serum MMPs and TIMPs between patients who have previously suffered Achilles tendon rupture and healthy controls. We also followed serum MMPs and TIMPs prospectively in patients with acute tendon rupture. At three years after injury, we measured serum MMP-1, -2, -3, -7, -8, -9 and -13 and TIMP-1 and -2 in eight patients who had suffered Achilles tendon rupture. Serum was also obtained from 12 blood donors with similar age and sex distribution. In another eight patients, MMPs and TIMPs were followed over time, with samples taken at the time of Achilles tendon injury, and after 4, 8 and 24 weeks. MMPs were determined using Fluorokine Multi Analyte Profiling kits while TIMPs were analysed using ELISA (R& D systems). The study was approved by the ethics committee and written informed consent was obtained from all patients. Patients who had previously suffered tendon rupture had increased levels of MMP-2 (median difference (m.d.) 10 %; p = 0.01), MMP-7 (m.d. 15 %; p = 0.02) and TIMP-2 (m.d. 36%; p = 0.02), as compared to controls. In patients with acute tendon rupture, MMP-2 was the only MMP or TIMP to change significantly over time (p = 0.009). MMP-7 appeared to be higher than control values already at the time of rupture. MMP-13 could not be detected in any sample. In conclusion, patients with a history of tendon rupture had elevated serum levels of MMP-2, MMP-7 and TIMP-2. Changes in MMP-7 might be present already at the time of rupture. This suggests that disturbances in proteolytic control might render tendons prone to rupture


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 289 - 289
1 May 2009
Millar N Wei A Molloy T Bonar F Murrell G
Full Access

Aim: The purpose of this study was to evaluate the cytokine molecules present in a rat tendinopathy model and in the torn edge of human rotator cuff tendon in an attempt to understand their role in tendon degeneration. Methods: A rat tendon overuse model was used with custom microarrays consisting of 5760 rat oligonucleotide features in duplicate. Seventeen torn supraspinatus tendon and matched intact subscapularis tendon samples were collected from patients undergoing arthroscopic shoulder surgery.Control samples of subscapularis tendon were collected from ten patients undergoing arthroscopic stabilisation surgery.Specimens were analysed for the presence of interleukins 18, 15, 12, 11, 6, 2, macrophage inhibitory factor (MIF), and tumour necrosis factor ƒÑ by semiquantitative RT-PCR and immunohistochemistry. Tendinopathy was assessed on a basic histological scale. Results: Rat Microarray analysis: Upregulation of IL-6, IL-11 and IL18 receptor was noted in the degenerated rat supraspinatus tendon. Downregulation of IL-2 was noted. No other cytokine signal was expressed. Histological analysis: All torn human supraspinatus tendons changes consistent with marked tendinopathy. Matched subscapularis tendon showed appearances of moderate-advanced degenerative change. Cytokine mRNA expression: TNF-£\ mRNA expression was found to be significantly elevated (p< 0.01) in subscapularis tendon compared to torn supraspinatus samples. The expression levels of IL-18, IL-15, IL-6 and MIF was significantly higher in the torn edges of supraspinatus when compared to matched subscapularis tendon and normal control tendon (p< 0.001). Immunohistochemical analysis: Presence of IL-18, IL-15, Il-6, MIF and TNF-£\ was confirmed in all samples of torn supraspinatus tendon. Significantly increased levels of IL-18, IL-15, IL-6 and MIF were found in torn supraspinatus. (p< 0.01) compared to matched and normal subscapularis. Conclusions: Cytokines have been shown to promote the intensive production of reactive O2 metabolites . 1. and are potent agonists of protein kinases . 2. Our finding of significantly increased cytokine levels may suggest that these molecules when expressed during the degenerate and healing phases of tendon injury result in the subsequent production of reactive O2 species and protein kinases. 3. causing tendon damage or failure of the normal reparative process. Our finding of marked tendinopathy in matched subscapularis tendon may also provide a useful human tendinopathy model


The Journal of Bone & Joint Surgery British Volume
Vol. 52-B, Issue 3 | Pages 540 - 553
1 Aug 1970
Rathbun JB Macnab I

1. The avascular zone in the tendon of the supraspinatus near its insertion was not seen in the other tendons comprising the rotator cuff, except for the superior portion of the insertion of the infraspinatus which, on occasions, showed a small avascular area. The biceps tendon, however, also showed an avascular zone as it coursed over the head of the humerus. It is suggested that the anatomical disposition of these tendons makes them subject to constant pressure from the head of the humerus, which tends to wring out the blood supply to these tendons when the arm is held in the resting position of adduction and neutral rotation. 2. Although this study did not produce any evidence that the relative avascularity of the tendons over a prolonged period could be indicted as the sole cause of the degenerative changes that so commonly occur, it was noted that the degenerative changes occurred first and that they were always most extensive in the areas of avascularity. It was also observed that the zones of relative avascularity preceded, and were not the result of, the degenerative changes. 3. With the onset of tendon degeneration, secondary vascular phenomena were observed. Firstly, there was a reaction that appeared to be a foreign body inflammatory response with the development of vascular tufts of granulation tissue. It was thought that these vascular changes were secondary to the breakdown in the tendons and were not the cause of the breakdown as previously suggested by Anderson and Moore. it was noted, moreover, that with the progression of degenerative changes in the supraspinatus tendon, the tendon became much attenuated and, as it did so, the zone of relative avascularity appeared to extend. This secondary shut-down of the vascular bed might well be caused by an increased tension in the tendon. In those tendons in which spontaneous rupture had occurred, it was noted that the major part of the tendon proximal to the rupture was avascular and showed evidence of much degenerative change. This study therefore suggests that in the operative repair of such lesions it is necessary to excise the degenerate avascular tendon in order to effect a sound repair. It is also suggested that detachment of the supraspinatus muscle from the supraspinous fossa in order to advance the whole muscle belly is the only technique possible to enable the surgeon to replace healthy tendon directly into bone, as suggested by Debeyre and his colleagues


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 11 - 12
1 Jan 2003
Roebuck M Kalogrianitis S Mohamed K Rossi M Helliwell T Frostick S
Full Access

The overall incidence of cuff tears increases with age, individuals over 80years having a 51% incidence of a tear. Currently, the aetiology of rotator cuff tears remains unclear and successful repair is achieved in only 30% patients. Matrix metalloproteinases (MMPs) have roles in a wide range of physiological processes including placentation and embryogenesis, tissue remodelling and wound healing. However, the ability of MMPs to dissolve extracellular matrix has been linked to a variety of pathological processes including rheumatoid arthritis, osteoarthritis, periodontitis and multiple sclerosis, which involve excessive matrix destruction. Production of gelatinase MMPs by torn rotator cuff has been demonstrated. The objectives of this study were to examine the expression of MMPs and their association with histological changes in full thickness tears of the rotator cuff. Rotator cuff tissue was obtained from ten patients (age 40–80years) undergoing surgical repair. The size of tear was 1–4.5cm; time from presentation to surgery was 1 month (acute) to between 0.5–4years (chronic). Immunohistochemical staining with commercial monoclonal antibodies to a range of MMPs, endothelial, macrophage and fibroblast markers was performed. Production of gelatinase MMPs was measured by gelatin zymography on tissue culture supernatant. Visualisation used a standard DAB chromagen technique. In the acute specimens there was an infiltrate of macrophages with little collagen degeneration; the fibro-blasts were MMP1 positive and endothelial cells MMP2 positive. At 12 months post-tear mature collagen, plump fibroblasts and proliferating endothelial cells were identified adjacent to the resection edge. Towards the torn edge areas of lower cellularity, sparse vascularity and collagen degeneration were observed. Vimentin positive, CD68 negative cells within this matrix were rounded with foamy cytoplasm, and intensely positive for MMP1 and MMP2, and positive for MMP-3, -10, -11, -13 and -14. Tissue culture supernatant demonstrated active and latent MMP2 production in all cases. The prolonged interval between trauma and surgical repair, with potential pharmacological intervention, remedial physiotherapy and disuse immobility, make assessment of the factors contributing to tendon degeneration difficult to determine. Fatty infiltration, dystrophic calcification and patchy collagen degeneration were common. However, clear evidence of cellular activities typical of wound repair were also identified, including fibroblast and endothelial cell proliferation. The most striking finding was the association between areas of poor collagen structure with fibroblasts staining intensely for both MMP1 and MMP2 and positive for other matrix metalloproteinases. The production of MMP1 and MMP2 may contribute to active remodelling of the tendon matrix. Success of repair could be influenced by both the quality of the matrix and the cell types and activities in the tissue at the resection edge


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 12 - 12
1 Oct 2015
Legerlotz K Jones E Riley G
Full Access

Introduction. The exact mechanisms leading to tendinopathies and tendon ruptures remain poorly understood while their occurrence is clearly associated with exercise. Overloading is thought to be a major factor contributing to the development of tendon pathologies. However, as animal studies have shown, heavy loading alone won't cause tendinopathies. It has been speculated, that malfunctioning adaptation or healing processes might be involved, triggering tendon tissue degeneration. By analysing the expression of the entirety of degrading enzymes (degradome) in pathological and non-pathological, strained and non-strained tendon tissue, the aim of this study was to identify common or opposite patterns in gene regulation. This approach may generate new targets for future studies. Materials and Methods. RNA was extracted from different tendon tissues: normal (n=7), tendinopathic (n=4) and ruptured (n=4) Achilles tendon; normal (n=4) and tendinopathic (n=4) posterior tibialis tendon; normal hamstrings tendon with or without subjection to static strain (n=4). The RNA was reverse transcribed, then pooled per group The expression of 538 protease genes was analysed using Taqman low-density array quantitative RT-PCR. To be considered relevant, changes had to be at least 4fold and measurable at a level below 36 Cts. Results. In general, there was little common regulation when exercised was compared with pathological tissue. The expression of PAMR1 and TNFαIP3 was upregulated with exercise (169-fold and 78-fold), Achilles tendinopathy (9724-fold and 7-fold) and Achilles tendon rupture (1809-fold and 10-fold), while DDI1, PSMB11 and PSH2 which were down-regulated with exercise were upregulated with Achilles pathology. Discussion. The newly found targets may deliver insights into the initiation and progression of tendon pathologies: PAMR1, a regeneration associated muscle protease which has been shown to be downregulated in Duchenne muscular dystrophy and upregulated in regenerating muscle fibers, might also be involved in tendon regeneration; TNFαIP3, which negatively regulates the NF-κB/pro-inflammatory pathway, could have anti-inflammatory function in tendon regeneration. PSMB11 and PSH2 are for the first time shown to be expressed in tendon and regulated in tendon pathology. Using this approach we were able to generate new targets and to add information on function, regulation and expression sites of recently identified proteins


The Bone & Joint Journal
Vol. 101-B, Issue 5 | Pages 603 - 609
1 May 2019
Aagaard KE Lunsjö K Frobell R

Aims

Failure of healing is a well-known problem after repair of the rotator cuff. This study aimed to investigate if early repair of trauma-related full-thickness rotator cuff tears (FTRCTs) could prevent this failure.

Patients and Methods

In this prospective trial, 62 consecutive patients (14 women (23%), 48 men (77%); median age 61 years (interquartile range (IQR) 54 to 65)) with trauma-related FTRCT underwent arthroscopic single-row repair within six weeks of trauma. Tendon integrity was assessed one year after surgery using the Sugaya score on MR images. Patients were followed up with Western Ontario Rotator Cuff (WORC) index, EuroQol visual analogue scale (EQ VAS), and the Constant–Murley score (CS) two years after repair.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages 90 - 90
1 Mar 2002
de Beer J van Rooyen K Harvey R du Toit D Muller C Matthysen J
Full Access

The supraspinatus tendon (SP) often ruptures. Gray established that the tendinous insertion always attaches to the highest facet of the greater tubercle of the humerus. Our osteological study of 124 shoulders in men and women between the ages of 35 and 94 years refocuses on the humeral insertion of the SP in relation to infraspinatus (IS) and teres minor (TM). We found type-I SFs (cubic) in 53 shoulders (43%) and type-II SFs (rectangular or oblong) in 21 (17%). Type-III (ellipsoid) SFs were present in 20 shoulders (16%) and type-IV (angulated or sloping) in 11 (9%). SFs were type V (with tuberosity) in 12 shoulders (10%) and type VI (pitted) in three (2%). The facet area of the SP, IP and TM varied from 49 mm, 225 mm and 36mm2. Of the three muscles, the IS facet was consistently the largest (p < 0.05) and shaped rectangularly. The SP inserted in a cubic or rectangular facet format in 75% of people. SP facet-size may relate to tendon strength, degeneration and rupture. This information may contribute to the understanding of tears of the rotator cuff


Bone & Joint 360
Vol. 8, Issue 5 | Pages 27 - 30
1 Oct 2019


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 90
1 Mar 2002
de Beer J van Rooyen K Harvie R du Toit D Muller C Matthysen J
Full Access

The rotator cuff is sited on the anatomical neck of the humerus and is formed by the insertion of the supraspinatus (SP), infraspinatus (IS), teres minor (TM) and subscapularis. All play a vital role in the movement of the glenohumeral joint, and the anatomy is of critical importance in arthroscopic rotator cuff repair. We undertook an osteological and gross anatomical dissection study of the insertion mechanism of these tendons, in particular the SP . The SP inserts by a triple or quadruple mechanism. The ‘heel’ (medial) and capsule fuse, inserting into the anatomical neck proximal to the anterior facet of the greater humeral tubercle. The ‘foot arch’ inserts as a strong, flat, fibrous tendon into the facet. This area is cuboidal, rectangular, or ellipsoid, and measures 36 mm. 2. to 64 mm. 2. In about 5%, the insertion is fleshy (pitted), rendering it weaker than a tendinous attachment. The ‘toe’ lips over the edge of the facet laterally and fuses with the periosteum, fibres of the inter-transverse ligament and the IS. A proximal ‘hood’ of about 4 mm stretches down inferiorly and fuses with the periosteum of the humeral shaft. The subacromial or subdeltoid synovial bursa are sited laterally. The IS and TM insert into the middle and posterior facets (225 mm and 36 mm. 2. ) at respective angles of 80° and 115°. The inferior portion of the TM facet is not fused with the shoulder capsule. The subscapularis inserts broadly into the lesser tubercle, and the superior fibres fuse with the shoulder capsule and intertransverse ligament. The insertion of the subscapularis does not contribute directly to the formation of the ‘hood’, which belongs exclusively to the SP, IP and TM. This study confirms the complexity of the SP insertion and suggests that an unfavourable attachment or biomechanical anatomical malalignment may lead to eventual tendon/cuff degeneration


Bone & Joint Research
Vol. 7, Issue 5 | Pages 362 - 372
1 May 2018
Ueda Y Inui A Mifune Y Sakata R Muto T Harada Y Takase F Kataoka T Kokubu T Kuroda R

Objectives

The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy.

Methods

Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined.


Bone & Joint 360
Vol. 3, Issue 5 | Pages 41 - 43
1 Oct 2014
Roberts D Cole AS


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1662 - 1667
1 Dec 2015
Weber-Spickschen TS Alfke D Agneskirchner JD

If a modular convertible total shoulder system is used as a primary implant for an anatomical total shoulder arthroplasty, failure of the prosthesis or the rotator cuff can be addressed by converting it to a reverse shoulder arthroplasty (RSA), with retention of the humeral stem and glenoid baseplate. This has the potential to reduce morbidity and improve the results.

In a retrospective study of 14 patients (15 shoulders) with a mean age of 70 years (47 to 83) we reviewed the clinical and radiological outcome of converting an anatomical shoulder arthroplasty (ASA) to a RSA using a convertible prosthetic system (SMR system, Lima, San Daniele, Italy).

The mean operating time was 64 minutes (45 to 75). All humeral stems and glenoid baseplates were found to be well-fixed and could be retained. There were no intra-operative or early post-operative complications and no post-operative infection.

The mean follow-up was 43 months (21 to 83), by which time the mean visual analogue scale for pain had decreased from 8 pre-operatively to 1, the mean American Shoulder and Elbow Surgeons Score from 12 to 76, the mean Oxford shoulder score from 3 to 39, the mean Western Ontario Osteoarthritis of the Shoulder Score from 1618 to 418 and the mean Subjective shoulder value from 15 to 61.

On radiological review, one patient had a lucency around the humeral stem, two had stress shielding. There were no fatigue fractures of the acromion but four cases of grade 1 scapular notching.

The use of a convertible prosthetic system to revise a failed ASA reduces morbidity and minimises the rate of complications. The mid-term clinical and radiological results of this technique are promising.

Cite this article: Bone Joint J 2015;97-B:1662–7.


Bone & Joint Research
Vol. 1, Issue 7 | Pages 158 - 166
1 Jul 2012
Dean BJF Franklin SL Carr AJ

Introduction

The pathogenesis of rotator cuff disease (RCD) is complex and not fully understood. This systematic review set out to summarise the histological and molecular changes that occur throughout the spectrum of RCD.

Methods

We conducted a systematic review of the scientific literature with specific inclusion and exclusion criteria.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 417 - 424
1 Mar 2009
Millar NL Wei AQ Molloy TJ Bonar F Murrell GAC

The role of inflammatory cells and their products in tendinopathy is not completely understood. Pro-inflammatory cytokines are upregulated after oxidative and other forms of stress. Based on observations that increased cytokine expression has been demonstrated in cyclically-loaded tendon cells we hypothesised that because of their role in oxidative stress and apoptosis, pro-inflammatory cytokines may be present in rodent and human models of tendinopathy. A rat supraspinatus tendinopathy model produced by running overuse was investigated at the genetic level by custom micro-arrays. Additionally, samples of torn supraspinatus tendon and matched intact subscapularis tendon were collected from patients undergoing arthroscopic shoulder surgery for rotator-cuff tears and control samples of subscapularis tendon from ten patients with normal rotator cuffs undergoing arthroscopic stabilisation of the shoulder were also obtained. These were all evaluated using semiquantitative reverse transcription polymerase chain-reaction and immunohistochemistry.

We identified significant upregulation of pro-inflammatory cytokines and apoptotic genes in the rodent model (p = 0.005). We further confirmed significantly increased levels of cytokine and apoptotic genes in human supraspinatus and subscapularis tendon harvested from patients with rotator cuff tears (p = 0.0008).

These findings suggest that pro-inflammatory cytokines may play a role in tendinopathy and may provide a target for preventing tendinopathies.


Bone & Joint Research
Vol. 2, Issue 7 | Pages 122 - 128
1 Jul 2013
Mukovozov I Byun S Farrokhyar F Wong I

Aims

We performed a systematic review of the literature to determine whether earlier surgical repair of acute rotator cuff tear (ARCT) leads to superior post-operative clinical outcomes.

Methods

The MEDLINE, Embase, CINAHL, Web of Science, Cochrane Libraries, controlled-trials.com and clinicaltrials.gov databases were searched using the terms: ‘rotator cuff’, or ‘supraspinatus’, or ‘infraspinatus’, or ‘teres minor’, or ‘subscapularis’ AND ‘surgery’ or ‘repair’. This gave a total of 15 833 articles. After deletion of duplicates and the review of abstracts and full texts by two independent assessors, 15 studies reporting time to surgery for ARCT repair were included. Studies were grouped based on time to surgery < 3 months (group A, seven studies), or > 3 months (group B, eight studies). Weighted means were calculated and compared using Student’s t-test.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 199 - 205
1 Feb 2013
Robinson PM Wilson J Dalal S Parker RA Norburn P Roy BR

This study reports the clinical and sonographic outcome of arthroscopic rotator cuff repair in patients aged ≥ 70 years and aimed to determine factors associated with re-tear. A total of 69 consecutive repairs were performed in 68 patients with a mean age of 77 years (70 to 86). Constant-Murley scores were collected pre-operatively and at one year post-operatively. The integrity of the repair was assessed using ultrasound. Re-tear was detected in 20 of 62 patients (32%) assessed with ultrasound. Age at operation was significantly associated with re-tear free survival (p = 0.016). The mean pre-operative Constant score was 23 (sd 14), which increased to 58 (sd 20) at one year post-operatively (paired t-test, p < 0.001). Male gender was significantly associated with a higher score at one year (p = 0.019).

We conclude that arthroscopic rotator cuff repair in patients aged ≥ 70 years is a successful procedure. The gender and age of the patient are important factors to consider when planning management.

Cite this article: Bone Joint J 2013;95-B:199–205.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 489 - 495
1 Apr 2006
Matthews TJW Hand GC Rees JL Athanasou NA Carr AJ

We have studied cellular and vascular changes in different stages of full thickness tears of the rotator cuff. We examined biopsies from the supraspinatus tendon in 40 patients with chronic rotator cuff tears who were undergoing surgery and compared them with biopsies from four uninjured subscapularis tendons. Morphological and immunocytochemical methods using monoclonal antibodies directed against leucocytes, macrophages, mast cells, proliferative and vascular markers were used.

Histological changes indicative of repair and inflammation were most evident in small sized rotator cuff tears with increased fibroblast cellularity and intimal hyperplasia, together with increased expression of leucocyte and vascular markers. These reparative and inflammatory changes diminished as the size of the rotator cuff tear increased. Marked oedema and degeneration was seen in large and massive tears, which more often showed chondroid metaplasia and amyloid deposition. There was no association between the age of the patient and the duration of symptoms. In contrast, large and massive tears showed no increase in the number of inflammatory cells and blood vessels.

Small sized rotator cuff tears retained the greatest potential to heal, showing increased fibroblast cellularity, blood vessel proliferation and the presence of a significant inflammatory component. Tissue from large and massive tears is of such a degenerative nature that it may be a significant cause of re-rupture after surgical repair and could make healing improbable in this group.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1377 - 1381
1 Oct 2011
Thomas WJC Jenkins EF Owen JM Sangster MJ Kirubanandan R Beynon C Woods DA

The effect of timing of a manipulation under anaesthetic (MUA) and injection of corticosteroid and local anaesthetic for the treatment of frozen shoulder has attracted little attention to date. All studies describe a period of conservative treatment before proceeding to an MUA. Delay has been associated with a poorer outcome.

We present a retrospective review of a prospectively collected, single-surgeon, consecutive series of 246 patients with a primary frozen shoulder treated by MUA within four weeks of presentation. The mean duration of presenting symptoms was 28 weeks (6 to 156), and time to initial post-operative assessment was 26 days (5 to 126). The Oxford shoulder score (OSS) improved by a mean of 16 points (Wilcoxon signed-ranks test, p < 0.001) with a mean OSS at this time of 43 (7 to 48). Linear regression analysis showed no correlation between the duration of presenting symptoms and OSS at initial follow-up (R2 < 0.001) or peri-operative change in OSS (R2 < 0.001) or OSS at long-term follow-up (R2 < 0.03). Further analysis at a mean of 42 months (8 to 127) revealed a sustained improvement with a mean OSS of 44 (16 to 48).

A good outcome follows an MUA and injection of corticosteroid and local anaesthetic in patients with primary frozen shoulder, independent of the duration of the presenting symptoms, and this improvement is maintained in the long term.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 1 | Pages 123 - 123
1 Jan 2008
HEMS TEJ


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 448 - 453
1 Mar 2010
Benson RT McDonnell SM Knowles HJ Rees JL Carr AJ Hulley PA

The aim of this study was to investigate the occurrence of tissue hypoxia and apoptosis at different stages of tendinopathy and tears of the rotator cuff.

We studied tissue from 24 patients with eight graded stages of either impingement (mild, moderate and severe) or tears of the rotator cuff (partial, small, medium, large and massive) and three controls. Biopsies were analysed using three immunohistochemical techniques, namely antibodies against HIF-1α (a transcription factor produced in a hypoxic environment), BNip3 (a HIF-1α regulated pro-apoptotic protein) and TUNEL (detecting DNA fragmentation in apoptosis).

The HIF-1α expression was greatest in mild impingement and in partial, small, medium and large tears. BNip3 expression increased significantly in partial, small, medium and large tears but was reduced in massive tears. Apoptosis was increased in small, medium, large and massive tears but not in partial tears.

These findings reveal evidence of hypoxic damage throughout the spectrum of pathology of the rotator cuff which may contribute to loss of cells by apoptosis. This provides a novel insight into the causes of degeneration of the rotator cuff and highlights possible options for treatment.