header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

NUTRITIONAL GLUCOSE AFFECTS TENDON HEALING IN A RAT MODEL

European Orthopaedic Research Society (EORS) 2016, 24th Annual Meeting, 14–16 September 2016. Part 1.



Abstract

Metabolic disorders are frequently associated with tendon degeneration and impaired healing after acute injury. However, the underlying cellular and molecular mechanisms remain largely unclear. We have previously shown that human and rat tendon cells responde to glucose stimulation in vitro by secretion of insulin. Therefore, we now hypothesize that nutritional glucose uptake affects tendon healing in a rat model.

In female rats (n=30/group), unilateral full-thickness Achilles tendon defects were created. Immediately after surgery animals were either fed a glucose rich- or a control diet for up to 4 weeks. Gait analysis (Catwalk, Noldus) was performed at three time points. In addition, tendon thickness measurements, biomechanical testing and immunohistochemical analysis were conducted. Subsequently, gene expression analysis, comparing cDNA pools (n=5) prepared from repair tissues of both groups was performed.

The repair tissues of the high glucose group were significantly thicker compared to the control group (p<0.001). The intermediate toe spread, an indicator of pain, were significantly improved in the high glucose group one and two weeks post surgery. Biomechanical analysis revealed that the repair tissues of the high glucose group were significantly stiffer (p<0.05) compared to the control group, no significant difference was detected for maximum tensile load…. The proportion of Ki67+ cells in the repair tissue was 3.3% in the control diet group and 9,8% in the high glucose group, indicating increased cell proliferation (p<0.001). Finally, gene expression analysis revealed the chondrogenic marker genes Collagen II, Aggrecan, COMP and SOX9 to be upregulated and genes involved in lipid metabolism like PPARgamma and Fabp2 to be downregulated in the glucose diet group.

Here we show fort he first time that a high-glucose diet affects gait pattern and tendon biomechanics, influences tendon thickness and cell proliferation. Gene expression analysis reveals a regulation of chondrogenic as well as adipogenic marker genes. The molecular mechanisms underlying these effects on cells and extracellular matrix are currently under investigation, potentially revealing targets for developing a dietary intervention scheme to support tendon regeneration after trauma or tendon disease.