Advertisement for orthosearch.org.uk
Results 1 - 50 of 270
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 13 - 13
1 Apr 2018
Knowles N Langohr G Athwal G Ferreira L
Full Access

BACKGROUND. Stability of the glenoid component is essential to ensure successful long-term outcomes following Total shoulder arthroplasty (TSA), and may be improved through better glenoid component design. As such, this study assessed identical all-polyethylene glenoid components stability, having various fixation types, using component micromotion under simulated joint loading in an osteoarthritic patient cohort. METHODS. Five all-polyethylene glenoid component designs were compared (Keel, Central-Finned 4-Peg, Peripheral 4-Peg, Cross-Keel, and Inverted-Y). A cement mantle surrounded each fixation type, except the Central-Finned 4-Peg which was surrounded by bone. The humeral component had a non-conforming radius of curvature. Scapular models of six type A1 osteoarthritic male patients (mean: 61 years old, range: 48 to 76 years old) were assigned heterogeneous bone properties based on CT intensity. Each of the 30 scapula models were truncated and fully constrained on the medial scapular border. The bone/cement interface was fully bonded, and the fixation feature/cement interface was frictionally constrained. A ‘worst case’ load magnitude of 125% BW of a 50th percentile male was used. A purely compressive load was applied to the center of the glenoid component, followed by superior, superior-posterior, posterior, inferior-posterior, and inferior loads. Stability of the glenoid component based solely on the fixation type was determined using the mean and maximum normal (liftoff) and tangential (sliding) micromotion in six regions of the glenoid component. RESULTS. The greatest mean normal micromotion occurred for the Inverted-Y (90 ± 36 μm) in the anterior- inferior region of the component under a posterior-superior directed load. The mean normal micromotions were significantly less for the same region and loading direction in the Peripheral 4-peg (48 ± 16 μm; p < .001) and Central-Finned 4-Peg (35 ± 13 μm; p < .001), but not significantly different for the Keel (78 ± 37 μm; p = .029), or Cross-Keel (82 ± 32 μm; p = .143). The same region and loading direction produced the maximum normal micromotion in the Inverted-Y (109 ± 43 μm), which was significantly greater than the other four components (Peripheral 4-peg, 61 ± 25 μm; p < .001, Keel, 89 ± 36 μm; p < .001, Central-Finned 4-Peg, 47 ± 19 μm; p < .001, and Cross-Keel, 92 ± 37 μm; p = .002). The greatest mean tangential micromotion occurred for the Cross-Keel (100 ± 36 μm) in the posterior-superior region of the glenoid component under a posterior-superior directed load. The mean tangential micromotions for all other components were significantly less (p < .001) for the same region and loading direction (Peripheral 4-peg, 73 ± 19 μm, Keel, 73 ± 22 μm, Central-Finned 4-Peg, 73 ± 26 μm, and Inverted-Y, 83 ± 24 μm). The same region and loading direction for the maximum tangential micromotion was also in the Cross-Keel (146 ± 46 μm), which was significantly greater (p < .001) from the other four components (Peripheral 4-peg, 111 ± 21 μm, Keel, 115 ± 34 μm, Central-Finned 4-Peg, 111 ± 39 μm, and Inverted-Y, 117 ± 34 μm). DISCUSSION. This study addressed the contribution of all-polyethylene glenoid component fixation types on component stability under simulated joint loading. Pegged components were significantly more stable than keeled components. An inverse relationship between normal and tangential micromotion was observed, with the greatest sliding (tangential micromotion) occurring in the direction of the applied load, and the greatest liftoff (normal micromotion) occurring opposite the applied load. This likely occurs due to polyethylene deformation of both the fixation features and the component as a whole


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 21 - 21
1 Nov 2015
Romeo A
Full Access

Total shoulder arthroplasty (TSA) is an excellent surgical solution for patients with shoulder arthritis, providing good to excellent results in the vast majority of patients. Complications are rare, however, when they occur, can be devastating for both the patient and surgeon. An increasingly recognised complication of TSA is glenoid component failure. In a recent review of nearly 4000 shoulder arthroplasties, symptomatic glenoid component loosening occurs at a rate of 1.2% per year, while asymptomatic radiolucent lines occur at a rate of 7.3% per year. In addition, keeled glenoid components have been found to have an increased incidence of radiolucent lines compared to pegged glenoid components at both short and longer-term follow-up. Further, pegged glenoid components are associated with a lower risk of revision arthroplasty compared to keeled glenoid components. In a separate study of approximately 4600 shoulder arthroplasties, metal-backed glenoid components were found to have significantly lower rates of radiolucent lines, radiographic loosening, and component failure compared to all-polyethylene glenoid components. Despite these findings, however, metal-backed components are significantly more likely to require revision surgery (3:1) compared to all-polyethylene components. For the failed TSA due to glenoid component failure, revision with glenoid reimplantation may be considered, but is associated with a high rate of recurrent glenoid loosening. Alternatively, revision to a reverse shoulder arthroplasty, is feasible, but is technically demanding with high complication and reoperation rates. This paper will discuss the etiology, work-up, and treatment of patients with glenoid component failure following TSA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 83 - 83
1 May 2016
Karelse A Van Tongel A Verstraeten T Poncet D De Wilde L
Full Access

BACKGROUND. Abnormal glenoid version positioning has been recognized as a cause of glenoid component failure caused by the rocking horse phenomenon. In contrast, the importance of the glenoid inclination has not been investigated. MATERIALS AND METHODS. The computed tomography scans of 152 healthy shoulders were evaluated. A virtual glenoid component was positioned in 2 different planes: the maximum circular plane (MCP) and the inferior circle plane (ICP). The MCP was defined by the best fitting circle of the most superior point of the glenoid and 2 points at the lower glenoid rim. The ICP was defined by the best fitting circle on the rim of the inferior quadrants. The inclination of both planes was measured as the intersection with the scapular plane. We defined the force vector of the rotator force couple and calculated the magnitude of the shear force vector on a virtual glenoid component in both planes during glenohumeral abduction. RESULTS. The inclination of the component positioned in the MCP averaged 95° (range, 84°–108°) and for the ICP averaged 111° (range, 94°–126°). A significant reduction in shear forces was calculated for the glenoid component in the ICP vs the MCP: 98% reduction in 60° of abduction to 49% reduction in 90° of abduction. CONCLUSION. Shear forces are significantly higher when the glenoid component is positioned in the MCP compared with the ICP, and this is more pronounced in early abduction. Positioning the glenoid component in the inferior circle might reduce the risk of a rocking horse phenomenon. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 75 - 80
1 Jan 2016
Merolla G Chin P Sasyniuk TM Paladini P Porcellini G

Aims. We evaluated clinical and radiographic outcomes of total shoulder arthroplasty (TSA) using the second-generation Trabecular Metal (TM) Glenoid component. The first generation component was withdrawn in 2005 after a series of failures were reported. Between 2009 and 2012, 40 consecutive patients with unilateral TSA using the second-generation component were enrolled in this clinical study. The mean age of the patients was 63.8 years (40 to 75) and the mean follow-up was 38 months (24 to 42). Methods. Patients were evaluated using the Constant score (CS), the American Shoulder and Elbow Surgeons (ASES) score and routine radiographs. Results. Significant differences were found between the pre- and post-operative CS (p = 0.003), ASES (p = 0.009) scores and CS subscores of pain (p < 0.001), strength (p < 0.001) and mobility items (p < 0.05). No glenoid or humeral components migrated. Posterior thinning of the keel and slight wear at the polyethylene-TM interface was observed in one patient but was asymptomatic. Radiolucent lines were found around three humeral (< 1.5 mm) and two glenoid components (< 1 mm) and all were asymptomatic. Discussion. TSA with the second-generation TM Glenoid component results in satisfactory to excellent clinical performance, function, and subjective satisfaction at a mean follow-up of about three years. Radiographic changes were few and did not affect the outcome. Take home message: This paper highlights that the second generation Trabecular Metal Glenoid has better outcomes than those reported with the first-generation component.  . Cite this article: Bone Joint J 2016;98-B:75–80


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 79 - 79
1 Jan 2003
Nagels J Valstar ER Stokdijk M Rozing PM
Full Access

The incidence of loosening of a cemented glenoid component in total shoulder arthroplasty, detected by means of radiolucent lines or positional shift of the component on true antero-posterior radiographs, has been reported to be between 0% to 44%. These numbers depend on the criteria used for loosening and on the length of follow-up. Radiolucent lines are however difficult to detect and to interpret, because of the mobility of the shoulder girdle and the obliquity of the glenoid, which hinder standardisation of radiographs. After review of radiolucencies around cemented glenoid components with a mean follow-up of 5. 3 years in 48 patients we found progressive changes to be present predominantly at the inferior pole of the component. This may hold a clue for the mechanism behind loosening of this implant. Since loosening is generally defined as a complete radiolucent line around the glenoid component and is difficult to assess as a result of the oblique orientation of the glenoid, an underestimation of the loosening rate using radiological data was suspected. Therefore a pilot study using Roentgen Stereophotogrammatric Analysis (RSA) was performed. In five patients an additional analysis of glenoid component loosening using digital Roentgen Stereophotogrammetric Analysis (RSA) was performed. The relative motion of the glenoid component with respect to the scapula was assessed and the length of this translation vector was used to represent migration. Loosening was defined as a migration of the component, exceeding the pessimistic estimate of the accuracy of RSA 0. 3 mm for this study. After three years of follow-up, three out of five glenoid components had loosened (1. 2 – 5. 5 mm migration). In only one patient with a gross loosened glenoid, the radiological signs were consistent with the RSA findings. It was concluded that when traditional radiographs are used for assessment of early loosening, the loosening rate is underestimated. We recommend that RSA be used for this


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1410 - 1415
1 Oct 2010
Castagna A Randelli M Garofalo R Maradei L Giardella A Borroni M

Total shoulder replacement is a successful procedure for degenerative or some inflammatory diseases of the shoulder. However, fixation of the glenoid seems to be the main weakness with a high rate of loosening. The results using all-polyethylene components have been better than those using metal-backed components. We describe our experience with 35 consecutive total shoulder replacements using a new metal-backed glenoid component with a mean follow-up of 75.4 months (48 to 154). Our implant differs from others because of its mechanism of fixation. It has a convex metal-backed bone interface and the main stabilising factor is a large hollow central peg. The patients were evaulated with standard radiographs and with the Constant Score, the Simple Shoulder Test and a visual analogue scale. All the scores improved and there was no loosening, no polyethylene-glenoid disassembly and no other implant-related complications. We conclude that a metal-backed glenoid component is a good option in total shoulder replacement with no worse results than of those using a cemented all-polyethylene prosthesis


Aims. To report early (two-year) postoperative findings from a randomized controlled trial (RCT) investigating disease-specific quality of life (QOL), clinical, patient-reported, and radiological outcomes in patients undergoing a total shoulder arthroplasty (TSA) with a second-generation uncemented trabecular metal (TM) glenoid versus a cemented polyethylene glenoid (POLY) component. Methods. Five fellowship-trained surgeons from three centres participated. Patients aged between 18 and 79 years with a primary diagnosis of glenohumeral osteoarthritis were screened for eligibility. Patients were randomized intraoperatively to either a TM or POLY glenoid component. Study intervals were: baseline, six weeks, six-, 12-, and 24 months postoperatively. The primary outcome was the Western Ontario Osteoarthritis Shoulder QOL score. Radiological images were reviewed for metal debris. Mixed effects repeated measures analysis of variance for within and between group comparisons were performed. Results. A total of 93 patients were randomized (46 TM; 47 POLY). No significant or clinically important differences were found with patient-reported outcomes at 24-month follow-up. Regarding the glenoid components, there were no complications or revision surgeries in either group. Grade 1 metal debris was observed in three (6.5%) patients with TM glenoids at 24 months but outcomes were not negatively impacted. Conclusion. Early results from this RCT showed no differences in disease-specific QOL, radiographs, complication rates, or shoulder function between uncemented second-generation TM and cemented POLY glenoids at 24 months postoperatively. Revision surgeries and reoperations were reported in both groups, but none attributed to glenoid implant failure. At 24 months postoperatively, Grade 1 metal debris was found in 6.5% of patients with a TM glenoid but did not negatively influence patient-reported outcomes. Longer-term follow-up is needed and is underway. Cite this article: Bone Jt Open 2021;2(9):728–736


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 487 - 488
1 Apr 2004
Page R Haines J Trail I
Full Access

Introduction The aim of this study was to investigate the potential of impaction bone grafting for the restoration of glenoid bone stock in revision shoulder arthroplasty. Methods There was significant osteolysis around the glenoid component in four rheumatoid patients who underwent revision shoulder arthroplasty using this technique. The criteria was a contained or containable defect. Femoral head allograft and iliac crest autograft harvested at the time of revision were used. Pre and post-operative radiographs, tomograms and fluoroscopic views aided in bone-stock analysis. Images were analysed for osteolysis, graft survival, incorporation and component loosening. Patients were followed using Constant-Murley scoring pre-operatively, and at a minimum of 12 months. The average patient age was 56 years (range 42 to 76), with three females and one male patient. Results Glenoid component survivorship pre-revision averaged 9.5 years (range 8 to 12). The pre-operative Constant-Murley average was 11 (range 4 to 20) versus 64 post-operatively, a significant improvement over an average follow-up of 19.5 months (range 12 to 40). Radiological assessment demonstrated all grafts had incorporated with minimal subsidence and no radio-lucency at the graft-bone interface. Two of the glenoid components demonstrated static lucency at the component-graft interface, but no component movement on serial x-rays. In both patients the significant improvement in functional was maintained. Conclusions To our knowledge this technique has not been described in glenoid component revision. It successfully provided bone for glenoid component insertion. This would not have been possible using standard techniques. The early results for this technique are encouraging and justify the continued application and follow-up of glenoid impaction grafting


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 8 - 8
1 Jul 2014
Flatow E
Full Access

The incidence of total shoulder arthroplasty continues to increase. The most common reason for failure of a total shoulder arthroplasty is the glenoid component. Two styles of cemented all-polyethylene components are commonly implanted. These two styles are pegged glenoid and keel glenoid components. Data regarding the superiority of the styles has focused on radiolucent lines, complete loosening and need for revision procedures. Several retrospective and randomised controlled trials have been published to examine these endpoints. There is a trend in the literature to demonstrate decreased rates of radiolucent lines with pegged glenoid components, but a recent systematic review of available trials did not demonstrate a significant difference in the rate of radiolucent lines between the two styles. A slightly increased rate of revision was noted for the keel components. Overall pegged and keel glenoids both still represent good options in total shoulder arthroplasty


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 757 - 761
1 Jun 2009
Nuttall D Haines JF Trail IA

In a prospective study between 2000 and 2005, 22 patients with primary osteoarthritis of the shoulder had a total shoulder arthroplasty with a standard five-pegged glenoid component, 12 with non-offset humeral head and ten with offset humeral head components. Over a period of 24 months the relative movement of the glenoid component with respect to the scapula was measured using radiostereometric analysis. Nine glenoids needed reaming for erosion. There was a significant increase in rotation about all three axes with time (p < 0.001), the largest occurring about the longitudinal axis (anteversion-retroversion), with mean values of 3.8° and 1.9° for the non-offset and offset humeral head eroded subgroups, respectively. There was also a significant difference in rotation about the anteversion-retroversion axis (p = 0.01) and the varus-valgus (p < 0.001) z-axis between the two groups. The offset humeral head group reached a plateau at early follow-up with rotation about the z-axis, whereas the mean of the non-offset humeral head group at 24 months was three times greater than that of the offset group accounting for the highly significant difference between them


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 674 - 679
1 May 2017
Nuttall D Birch A Haines JF Watts AC Trail IA

Aims. Radiostereometric analysis (RSA) allows an extremely accurate measurement of early micromotion of components following arthroplasty. . Patients and Methods. In this study, RSA was used to measure the migration of 11 partially cemented fluted pegged glenoid components in patients with osteoarthritis who underwent total shoulder arthroplasty using an improved surgical technique (seven men, four women, mean age 68). Patients were evaluated clinically using the American Shoulder and Elbow Surgeons (ASES) and Constant-Murley scores and by CT scans two years post-operatively. . Results. There were two patterns of migration, the first showing little, if any, migration and the second showing rotation by > 6° as early as three months post-operatively. At two years, these two groups could be confirmed on CT scans, one with osseointegration around the central peg, and the second with cystic changes. Patients with osteolysis around the central peg were those with early migration and those with osseointegration had minimal early migration. Both groups,however,had similar clinical results. . Conclusion. Rapid early migration associated with focal lucency and absence of osseointegration was observed in three of 11 glenoid components, suggesting that lack of initial stability leads to early movement and failure of osseointegration. Cite this article: Bone Joint J 2017;99-B:674–9


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 70 - 70
1 Apr 2018
Kim S Chae S Kang J
Full Access

Background. Use of a baseplate with a smaller diameter in reverse shoulder arthroplasty has been recommended, especially in patients with a small glenoid or insufficient bony stock due to severe glenoid wear. However, effect of a smaller baseplate on stability of the glenoid component has not been evaluated. The purpose of this study was to determine whether a smaller baseplate (25 mm) is beneficial to the initial primary stability of the glenoid component compared to that with a baseplate of a commonly used size (29 mm) by finite element analysis. Methods. Computed tomography (CT) scans of fourteen scapulae were acquired from cadavers with no apparent deformity or degenerative change. Glenoid diameter corresponding to the diameter of the inferior circle of glenoid was measured using a caliper and classified into the small and large glenoid groups based on 25mm diameter. CT slices were used to construct 3-dimensional models with Mimics (Materialise, Leuven, Belgium). A corresponding 3D Tornier Aequalis® Reversed Shoulder prosthesis model was generated by laser scanning (Rexcan 3D Laser Scanner, Solutionix, Seoul, Korea). Glenoid components with 25mm and 28mm diameter of the baseplate were implanted into the scapular of small and large glenoid group, respectively. Finite element models were constructed using Hypermesh 11.0 (Altair Engineering, Troy, MI, USA) and a reverse engineering program (Rapidform 3D Systems, Inc., Rock Hill, SC, USA). Abaqus 6.10 (Dassault Systemes, Waltham, MA) was used to simulate 30. o. , 60. o. , and 90. o. glenohumeral abduction in the scapular plane. Single axial loads of 686N (1 BW) at angles of 30. o. , 60. o. , and 90. o. abduction were applied to the center of the glenosphere parallel to the long axis of the humeral stem. Relative micromotion at the middle and inferior thirds bone–glenoid component interface, and distribution of bone stress under the glenoid component and around the screws were analyzed. Wilcoxon's rank-sum test was used for statistical comparison and p < 0.05 was considered as a minimum level of statistical significance. Results. In small glenoid group, micromotion at the middle and inferior thirds of the glenoid-glenosphere interface at angles of 30. o. and 60. o. abduction were significantly greater in the 29mm baseplate than in the 25mm baseplate. There was no significant difference in micromotion at angle of 90. o. abduction between 25mm and 29mm baseplate. In large glenoid group, there was no statistically significant difference in micromotion between 25mm and 29mm baseplate at all angles of abduction. In small glenoid group, maximum bone stress was measured at the point of cortical engagement of the inferior screw and was statistically greater in the 29mm baseplate than in the 25mm baseplate. In large glenoid group, there was no statistically significant difference of maximum bone stress around the inferior screw between 25mm and 29mm baseplates. Conclusions. Use of a baseplate with a smaller diameter (25 mm) in reverse shoulder arthroplasty is suitable for improving the primary stability of the glenoid component, especially in small glenoid


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 575 - 575
1 Oct 2010
Sauzières P Katz D Valenti P
Full Access

Glenoid component loosening is a concern in long term outcome of total shoulder arthroplasty. Unfortunately revision of glenoid loosening remains very challenging regarding bone reconstruction and reimplantation of a glenoid component. A new design metal-back component (Arrow™) seems to get the procedure easier and lead to higly best clinical and radiological results than prior technics. It is a retrospective study of 34 patients operated on for isolated aseptic glenoid component loosening between 1997 and 2007. Glenoid bone loss based on a new classification was rated in 5 degrees. All patients were reviewed at a mean follow up of 34 months (from 12 to 89). Pre and post operatively Constant score and SST have been evaluated. Fluoroscopic views and CT scan have been performed for radiologic assesment. Mean delay for revision surgery was 58 months (from 28 to 134 months). 16 patients underwent only bone graft reconstruction. 18 patients underwent both bone reconstruction and glenoid implant reimplantation. Autolog bone graft (iliac crest) was used in 19 cases, allograft bone in 5 cases, and both autolog and dried bone substitutes in 10 cases. The glenoid component was an uncemented metal-backed in 11 cases, and a polyethylene cemented in 2 cases. The new metal-backed bone ingrowth component is composed with a keel and a winglet securing bone graft fixation and implant stability. For the all cohort Constant score improves of 21 points (from 35 to 56). Gain of pain and active motion is statiscally significative (p< 0.005).Patients who underwent reimplantation of a new glenoid component had a higher clinical result (Constant score: 66) than those who underwent only a bone graft reconstruction (Constant score: 52) in term of pain and active forward elevation as well (p< 0.001). At maximum follow up (32 months) no radiolucent lines or loosening of the new glenoid component was noted. Patients who underwent only bone reconstruction showed a mild glenoid erosion due to subsidence and resorption of cancellous auto or allograft bone. Revision of glenoid component depends on the glenoid bone stock specially about posterior defect. The use of cortical autolog bone graft and new metalback component allows better glenoid reconstruction, secure the stabiliy of the new gle and yields to goods clinical results restoring painless shoulder and function. Reimplantation of a glenoid component becomes an adequate procedure for total shoulder arthroplasty revision


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1228 - 1231
1 Sep 2006
Peidro L Segur JM Poggio D de Retana PF

Glenoid replacement is technically challenging. Removal of a cemented glenoid component often results in a large osseous defect which makes the immediate introduction of a revision prosthesis almost impossible. We describe a two-stage revision procedure using a reversed shoulder prosthesis. Freeze-dried allograft with platelet-derived growth factor was used to fill the glenoid defect. Radiological incorporation of the allograft was seen and its consistency allowed the placement of a screwed glenoid component. There were no signs of new mature bone formation on histological examination. The addition of platelet-derived growth factor to the allograft seems to contribute to an increase in incorporation and hardness, but does not promote the growth of new bone


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 1 | Pages 83 - 87
1 Jan 2002
Nagels J Valstar ER Stokdijk M Rozing PM

The incidence of loosening of a cemented glenoid componentin total shoulder arthroplasty, detected by means of radiolucent lines or positional shift of the component on true anteroposterior radiographs, has been reported to be between 0% and 44%. Radiolucent lines are, however, difficult to detect and to interpret because of the mobility of the shoulder girdle and the obliquity of the glenoid which hinder standardisation of radiographs. We examined radiolucencies around cemented glenoid components in 48 patients, with a mean follow-up of 5.3 years, and found progressive changes to be present predominantly at the inferior pole of the component. This may hold a clue for the mechanism of loosening of this implant. In five patients we performed an additional analysis of loosening of the glenoid component using digital roentgen stereophotogrammetric analysis (RSA). After three years, three of the five implants had loosened (migration 1.2 to 5.5 mm). In only one, with gross loosening, were the radiological signs consistent with the RSA findings. When traditional radiographs are used for assessment, the rate of early loosening is underestimated. We recommend that RSA be used for this


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 82 - 82
23 Feb 2023
Rossignol SL Boekel P Rikard-Bell M Grant A Brandon B Doma K O'Callaghan W Wilkinson M Morse L
Full Access

Glenoid baseplate positioning for reverse total shoulder replacements (rTSR) is key for stability and longevity. 3D planning and image-derived instrumentation (IDI) are techniques for improving implant placement accuracy. This is a single-blinded randomised controlled trial comparing 3D planning with IDI jigs versus 3D planning with conventional instrumentation. Eligible patients were enrolled and had 3D pre-operative planning. They were randomised to either IDI or conventional instrumentation; then underwent their rTSR. 6 weeks post operatively, a CT scan was performed and blinded assessors measured the accuracy of glenoid baseplate position relative to the pre-operative plan. 47 patients were included: 24 with IDI and 23 with conventional instrumentation. The IDI group were more likely to have a guidewire placement within 2mm of the preoperative plan in the superior/inferior plane when compared to the conventional group (p=0.01). The IDI group had a smaller degree of error when the native glenoid retroversion was >10° (p=0.047) when compared to the conventional group. All other parameters (inclination, anterior/posterior plane, glenoids with retroversion <10°) showed no significant difference between the two groups. Both IDI and conventional methods for rTSA placement are very accurate. However, IDI is more accurate for complex glenoid morphology and placement in the superior-inferior plane. Clinically, these two parameters are important and may prevent long term complications of scapular notching or glenoid baseplate loosening. Image-derived instrumentation (IDI) is significantly more accurate in glenoid component placement in the superior/inferior plane compared to conventional instrumentation when using 3D pre-operative planning. Additionally, in complex glenoid morphologies where the native retroversion is >10°, IDI has improved accuracy in glenoid placement compared to conventional instrumentation. IDI is an accurate method for glenoid guidewire and component placement in rTSA


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 210 - 216
1 Feb 2011
Young A Walch G Boileau P Favard L Gohlke F Loew M Molé D

We report the long-term clinical and radiological outcomes of the Aequalis total shoulder replacement with a cemented all-polyethylene flat-back keeled glenoid component implanted for primary osteoarthritis between 1991 and 2003 in nine European centres. A total of 226 shoulders in 210 patients were retrospectively reviewed at a mean of 122.7 months (61 to 219) or at revision. Clinical outcome was assessed using the Constant score, patient satisfaction score and range of movement. Kaplan-Meier survivorship analysis was performed with glenoid revision for loosening and radiological glenoid loosening (. sd. ) as endpoints. The Constant score was found to improve from a mean of 26.8 (. sd. 10.3) pre-operatively to 57.6 (. sd. 20.0) post-operatively (p < 0.001). Active forward flexion improved from a mean of 85.3° (. sd. 27.4) pre-operatively to 125° (. sd. 37.3) postoperatively (p < 0.001). External rotation improved from a mean of 7° (. sd. 6.5) pre-operatively to 30.3° (. sd. 21.8°) post-operatively (p < 0.001). Survivorship with revision of the glenoid component as the endpoint was 99.1% at five years, 94.5% at ten years and 79.4% at 15 years. Survivorship with radiological loosening as the endpoint was 99.1% at five years, 80.3% at ten years and 33.6% at 15 years. Younger patient age and the curettage technique for glenoid preparation correlated with loosening. The rate of glenoid revision and radiological loosening increased with duration of follow-up, but not until a follow-up of five years. Therefore, we recommend that future studies reporting radiological outcomes of new glenoid designs should report follow-up of at least five to ten years


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 6 | Pages 856 - 860
1 Aug 2004
Rahme H Mattsson P Larsson S

We studied the stability of cemented all-polyethylene keeled glenoid components by radiostereometric analysis (RSA) in 16 shoulders which had received a total shoulder replacement. There were 14 women (one bilateral) and one man with a mean age of 64 years. The diagnosis was osteoarthritis in eight and rheumatoid arthritis in seven. Two of the shoulders were excluded from the RSA study because of loosening of the tantalum markers. Three tantalum markers were inserted in the glenoid socket, two in the coracoid process and two in the acromion. The polyethylene keeled glenoid component was marked with three to five tantalum markers. Conventional radiological and RSA examinations were carried out at five to seven days, at four months and at one and two years after operation. Radiolucent lines were found in all except three shoulders. Migration was most pronounced in the distal direction and exceeded 1 mm in four shoulders. In ten shoulders rotation exceeded 2° in one or more axes with retroversion/anteversion being most common. No correlation was found between migration and the presence of radiolucencies on conventional radiographs


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 53 - 53
1 Aug 2013
Mulder M Boeyens M Honiball R
Full Access

Purpose of study:. Reverse shoulder arthroplasty is effective in the management of symptomatic arthritic shoulders with a non-reconstructable rotator cuff. Optimal orientation and initial fixation of the glenoid component is correlated with improved outcomes. This may be difficult to achieve with distorted glenoid morphology. The authors present a previously undescribed system for accurate, consistent and reliable screw placement for fixation of the glenoid component with the desired version during reverse shoulder arthroplasty. Description of methods:. The pre-operative CT scan images are used to construct a scapula model (Medical Image Processing software, CustomMed Orthopaedics)allowing the surgeon to determine the optimal position for screw placement based on available bone stock. A custom drill guide is made from polyamide, which is sterilized in an autoclave and fitted to the glenoid intra-operatively prior to reaming. The system minimizes the likelihood of malposition of glenoid components and is compatible with all arthroplasty systems. Summary of results:. The technique has been performed on 5 patients after informed consent. Post-operative CT images demonstrate intended component version and screw position in all cases. Patients are being recruited for a multicenter prospective trial. Conclusion:. The authors present a new technique for achieving optimal screw position in fixation of glenoid components. A prospective trial is underway which aims to prove through post-operative imaging that intended glenoid version and screw placement was achieved and show improved long term results


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 36 - 36
1 Mar 2009
Torrens C Gonzalez G Corrales M Cebamanos J Caceres E
Full Access

Introduction: Concern remains in loosening of glenoid component reversed prostheses. This study is to analyze glenoid location of stem and 4 screws of glenoid component. Material and method: 34 reversed prostheses included. Mean age 74,10, 33 females/1 male. Preoperative CT study : glenoid version; measure of anterior-posterior osteophytes. Postoperative CT study: central stem location and superior, inferior, anterior, posterior screws location. Study of influence of glenoid version and presence of osteophytes in location of glenoid implant. Results: 27 retroverted glenoids (mean 6,5°); 7 ante-verted (mean 5,3°). 17 cases with anterior osteophyte and 12 of posterior. In 52% the central stem was centered inside glenoid, 33% anterior end was outside glenoid and 14% the posterior end. When central stem was anteriorly outside 85% presented retroverted glenoid (mean 8,33°). When the central stem was posteriorly outside 66% presented anteverted glenoid (mean 9,5°). Inferior screw was fully in place in 38%, ¾ part inside in 19%, 2/4 part in 23%, ¼ part in 19%. Superior screw was fully in place in 47%, ¾ part inside in 23%, 2/4 part in 19%, ¼ part in 9%. Anterior screw was fully in place in 66%, ¾ part in 23% and 2/4 part in 9%. Posterior screw was fully in place in 38%, ¾ part in 42%, 2/4 part in 14%, ¼ part in 4%. The correct positioning of superior screw correlates with less coverture of inferior screw. Anterior and posterior osteophytes did not correlated with stem nor screw positioning. Conclusions: Positoning of central stem correlates with glenoid version. Anteriorly extruded stems correlate with higher retroverted glenoids and posteriorly extruded stems correlate with higher anteversion. Positioning the inferior screw fully inside the lateral border of the scapula correlates with lower bony coverture of superior screw


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 160 - 161
1 Apr 2005
Mathur K Fourie B Clement N Stirrat AN
Full Access

Purpose of the study: To assess the survivability of the metal backed glenoid component, to examine its mode of failure and to measure the range of movement, specifically rotation following Total Shoulder Arthroplasty. Patients and methods: 46 patients (55 shoulders) were prospectively followed up after Biomet biomodular Total Shoulder Arthroplasty using a metal backed glenoid component fixed with screws. 36 patients (43 shoulders) had Rheumatoid arthritis, 9 patients (11 shoulders) had Osteoarthritis and 1 patient had Psoriatic arthritis. Mean age at surgery was 58 years (range 37 to 79 years). Patients were followed up for a minimum of 5 years. Data was collected prospectively for a mean follow up of 84 months. 28 of the 46 patients had more than 10 years follow up. Range of movement including forward flexion and rotation was measured. Data was analysed by 3 independent observers. Intention to treat or revision of component was taken as failure. Paired t test comparison was carried out for statistical analysis. Results: One failure was noted in the Osteoarthritis group at 8 years follow up. Superior head migration and eccentric wear of polyethylene liner was noted in an otherwise well fixed glenoid component. Range of external rotation improved from a mean of 18.2 to 38.2 degrees. This improvement was statistically significant (p=0.01, 95% CI= 6.3 to 35.2). The range of forward flexion improved significantly from a mean of 80.5 to 110 degrees (p= .01, 95% CI= −42.6 to −5.9). 3 failures were noted in the Rheumatoid group. 2 patients needed revision to hemiarthroplasty within 4 years of surgery for rotator cuff insufficiency with superior head migration but without loosening of glenoid. One other shoulder was revised at 11 years for glenoid component loosening with a worn out polyethylene liner. All 3 failures occurred in patients more than 60 years of age. Rheumatoid patients under 60 had a significant improvement in the range of external rotation from a mean of 24.2 to 30.6 degrees (p= 0.03, 95% CI = −21.4 to −1.1). The range of forward flexion improved from a mean of 71.2 to 73.3 degrees which was not statistically significant (p=.767). Rheumatoid patients over 60 years of age did not have a statistically significant improvement in the range of external rotation( p= 0.712) or in their range of forward flexion (p=.757). Conclusion: Contrary to recent literature, in this study the metal backed glenoid component performed well in the medium to long term following Total Shoulder Arthroplasty particularly in patients with Osteoarthritis and in younger patients suffering with Rheumatoid arthritis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 125 - 125
1 Sep 2012
Templeton-Ward O Griffiths D Higgs D Falworth M Bayley I Lambert S
Full Access

Reverse polarity total shoulder arthroplasty (RTSA) has gained popularity over recent years for the treatment of the painful cuff deficient shoulder. Although proposed over 20 years ago and despite good clinical outcomes the RTSA has struggled to gain popularity due to reported high levels of complications. One such complication is post-operative instability with frequencies of up to 30% (De Wilde 2002). The Bayley-Walker RTSA was designed specifically for patients with difficult reconstruction problems in whom an unconstrained prosthesis would not offer sufficient stability. It is a reverse anatomy fixed fulcrum constrained prosthesis. The glenoid component has a long HA-coated tapered helical screw, with large pitch and depth, fixation is augmented by a grooved HA coated glenoid plate. The purpose of this study was to review the clinical experience from The Royal National Orthopaedic Hospital Stanmore and to ascertain the rate of glenoid component loosening. We also carried out a radiographic review to correlate loosening with patterns of lucency on post-operative radiographs. One hundred and five B-W TSRs in 103 patients were included, 24% of which were performed as revision of previous failed arthroplasty. In total, 8/105 glenoids required revision. Of those eight patients, two were cases of septic loosening. Of all nine specified areas of glenoid, tip lucency on x-ray appeared to be most strongly associated with need for glenoid revision. 5/9 cases with tip lucency progressed to loosening of the glenoid. Where tip lucency was not seen, 93/96 glenoid components remained secure, giving tip lucency a negative predictive value of 97%. Excluding the two infected cases, the glenoid remained secure in 97/103 patients undergoing BW-TSR with follow-up up to 13 years. The BW-TSR is a satisfactory and durable solution to the cuff-deficient shoulder in variety of challenging groups including younger patients and as a salvage procedure following failed, cuff-deficient arthroplasty


The Bone & Joint Journal
Vol. 98-B, Issue 3 | Pages 374 - 380
1 Mar 2016
Kocsis G Thyagarajan DS Fairbairn KJ Wallace WA

Aims. Glenoid bone loss can be a challenging problem when revising a shoulder arthroplasty. Precise pre-operative planning based on plain radiographs or CT scans is essential. We have investigated a new radiological classification system to describe the degree of medialisation of the bony glenoid and that will indicate the amount of bone potentially available for supporting a glenoid component. It depends on the relationship between the most medial part of the articular surface of the glenoid with the base of the coracoid process and the spinoglenoid notch: it classifies the degree of bone loss into three types. It also attempts to predict the type of glenoid reconstruction that may be possible (impaction bone grafting, structural grafting or simple non-augmented arthroplasty) and gives guidance about whether a pre-operative CT scan is indicated. Patients and Methods. Inter-method reliability between plain radiographs and CT scans was assessed retrospectively by three independent observers using data from 39 randomly selected patients. . Inter-observer reliability and test-retest reliability was tested on the same cohort using Cohen's kappa statistics. Correlation of the type of glenoid with the Constant score and its pain component was analysed using the Kruskal-Wallis method on data from 128 patients. Anatomical studies of the scapula were reviewed to explain the findings. Results. Excellent inter-method reliability, inter-observer and test-retest reliability were seen. The system did not correlate with the Constant score, but correlated well with its pain component. . Take home message: Our system of classification is a helpful guide to the degree of glenoid bone loss when embarking on revision shoulder arthroplasty. Cite this article: Bone Joint J 2016;98-B:374–80


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 13 - 13
1 Sep 2012
Glennie RA Giles JW Athwal GS Johnson JA Faber KJ
Full Access

Purpose. Glenoid component loosening is a common reason for failed total shoulder arthroplasty. Multiple factors have been suggested as causes for component loosening that may be related to cement technique. The purpose of the study was to compare the load transfer across a polyethylene glenoid bone construct with two different cementing techniques. Method. Eight cadaveric specimens underwent polyethylene glenoid component implantation. Four had cement around the pegs only (CPEG) and four had cement across the entire back (CBACK) of the implant including around the pegs. Step loading was performed with a pneumatic actuator and a non-conforming humeral head construct capable of applying loads at various angles. Strain gauges were placed at the superior and inferior poles of the glenoid and position trackers were applied to the superior and inferior aspects polyethylene component. Micro CT data were obtained before and after the loading protocol. Results. During compressive loading, greater tension was recorded with the CBACK technique than with the CPEG technique. Compression was recorded superiorly when load was applied at 30 degrees while tension was recorded inferiorly. Greater displacement occurred with the CPEG group. Failure as defined on micro CT occurred more consistently with the CBACK technique than with the CPEG technique. Conclusion. Tension measurements and upward deflection of the polyethylene with compressive loading at lower angles was unexpected. Early failure of fully cemented glenoids may be due to the fragility of the cement mantle around the periphery of the implant. Tension at the bone cement interface and early cement fracture are unfavorable and this may be a mechanism of implant loosening


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 167 - 167
1 Apr 2005
Mahadeo R Tuite J Peckham T Dowell J Cheah K Ingle P
Full Access

The purpose of the study was to reduce peak cement mantle stresses occurring at the tip of the keel for an all-polyethylene cemented glenoid component using finite element (FE) techniques. Loosening of the glenoid component remains to be one of the most determinant factors in the outcome of total shoulder arthroplasty. Due to the off-centre loading that occurs, there is bending of the glenoid component with high shearing forces. These forces are transmitted to the underlying cement mantle and bone. It has been reported in previous FE studies that high cement mantle stresses occurs at the tip of the keel and at the edges of the cement flange. These stresses at the bone-cement interface can exceed the fatigue life of the cement, therefore initiating crack formation and damage accumulation. This results in loosening of the component and thus failure. A three-dimensional (3D) model of the scapula was developed using CT data. Surfaces of the inner and outer contours of the cortical shell were created within commercially available software, using a threshold algorithm. The glenoid bone geometry was then produced. Material properties for the reconstructed glenoid were taken from literature, using four differing material properties. The articulating surface of the keeled glenoid component was modelled with a 3mm radial mismatch. This was positioned in the glenoid bone with a uniform cement mantle thickness of 2mm. The resulting FE mesh consisted of solid parabolic tetrahedral elements. The effect of varying the angle on the keel of the component in the superior/inferior (S/I) direction was studied with uniform cement mantle thickness. The S/I length of the keel at the lateral end where it meets the back face of the component was maintained (juncture with flange), whilst the S/I length of the keel at the medial end (tip of the keel) was reduced as the change in angle increased. Two load cases were studied, involving a physiological load for 90 degrees of abduction and a central load of same magnitude. It was found that by increasing the angle of the keel, where the S/I length at the tip of the keel was reduced, resulted in lower cement mantle stresses in this area of interest. This can be attributed to it being further away from the stiffer cortical bone where high tensile stresses exist due to inherent bending of the glenoid construct under loading. Therefore by reducing these high cement mantle stresses at the tip of the keel, fatigue failure of the cement mantle could be reduced


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 136 - 136
1 Mar 2006
Harman M Frankle M Gutierrez S Greiwe R
Full Access

Introduction: Potential clinical advantages for using reverse shoulder prostheses, such as enhanced stability or function, can only be realized if adequate glenoid component fixation is achieved. This study evaluates fixation of uncemented reverse glenoid components during physiologic loading, including radiographic assessment of in vivo component position. The relationships between initial fixation, glenoid component design (offset and screw geometry) and baseplate position were established using in-vitro biomechanical tests. Methods: Clinical: Twelve patients received Reverse Shoulder Prostheses (RSP, Encore Medical). Six patients had good outcomes (ASES score > 95), whereas the remaining six patients had glenoid loosening. Patient follow-up radiographs were digitized and glenoid base-plate position relative to the scapular spine was measured using a computer-guided goniometer. Mechanical Tests: RSP glenoid components were inserted in-vitro into synthetic bone foam blocks with material properties similar to human cancellous bone. Baseplates were secured using the RSPs central screw and either four 3.5 mm standard cortical screws in countersunk peripheral holes or four 5.0 mm diameter screws in threaded peripheral holes to fully capture the screw in the baseplate. Glenosphere lateral offset was 27 mm (neutral) or 23 mm (reduced). Angled baseplate positions of 15 superior, 0, and 15 inferior were tested. Loads were applied to the glenoid components through the polyethylene humeral component, consistent with physiologic forces measured at the shoulder joint during activity. Component motion and contact forces at the baseplate-foam interface were measured during cyclic loading using a displacement transducer and force transducers attached to the underside of the glenoid base-plates. Data were analyzed using ANOVA and t-tests. Results: The mean baseplate-to-scapular spine angle on the clinical radiographs was 84.5 for failed prosthesis, while those that did not fail had a significantly smaller (inferior tilt) mean angle of 73.4 (p< 0.05). Motion and forces at the baseplate-foam interface were lowest with a 15 inferior baseplate position. Peripheral screw type (p< 0.05), but not offset (p> 0.05), significantly affected baseplate motion. Fixation with 5.0 mm captured screws reduced the average baseplate motion by 21% to 32% compared to the 3.5 mm screws. Discussion: Changing the inclination angle or type of fixation screw affects clinical outcome and the base-plate motion and interface stress. Inferior baseplate tilt resulted in more even force distribution beneath the baseplate, a decreased force magnitude, and lower baseplate motion during physiologic loading. Fixation with 5.0 mm captured screws reduced baseplate motion compared to 3.5 mm screws. Obtaining similar results in vivo partially depends on surgical baseplate and screw placement and the patients glenoid bone stock


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 912 - 919
1 Aug 2023
Cunningham LJ Walton M Bale S Trail IA

Aims

Reverse total shoulder arthroplasty (rTSA) can be used in complex cases when the glenoid requires reconstruction. In this study, a baseplate with composite bone autograft and a central trabecular titanium peg was implanted, and its migration was assessed for two years postoperatively using radiostereometric analysis (RSA).

Methods

A total of 14 patients who underwent a rTSA with an autograft consented to participate. Of these, 11 had a primary rTSA using humeral head autograft and three had a revision rTSA with autograft harvested from the iliac crest. The mean age of the patients was 66 years (39 to 81). Tantalum beads were implanted in the scapula around the glenoid. RSA imaging (stereographic radiographs) was undertaken immediately postoperatively and at three, six, 12, and 24 months. Analysis was completed using model-based RSA software. Outcomes were collected preoperatively and at two years postoperatively, including the Oxford Shoulder Score, the American Shoulder and Elbow Score, and a visual analogue score for pain. A Constant score was also obtained for the assessment of strength and range of motion.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 293 - 293
1 Jul 2011
Clement N Mathur K Colling R Stirrat A
Full Access

The metal backed glenoid component in total shoulder replacement (TSR) has been associated with high revision rates and some authors have suspended the use of this implant. The aim of this study was to evaluate the medium to long-term outcome of the metal backed glenoid component in rheumatoid patients. Thirty-nine patients (46 shoulders) with a mean age of 55 years (35–86 years) received a TSR with a screw fixed porous coated metal-back glenoid. Ten were lost or died before 8 years follow-up, of which none were revised. Twenty-nine patients (36 shoulders) were followed up for a mean of 132 months (96–168 months). A Constant score was measured preoperatively and annually from time of surgery, and independently at last follow-up. Radiographs were assessed for lucency, loosening and superior subluxation of the humeral head. The Constant score improved by 12.9 points (p=< 0.001). Implant survivorship at 10 years was 89%. Five were revised: 3 for pain secondary to superior subluxation, one for infection and one for aseptic loosing. All patients with lucent zones around the glenoid (four) had superior subluxation of the humeral head two to four years prior to their development. Survival rate however at 10 years was reduced, if judged by the development of superior subluxation on radiographs (33%). The uncemented glenoid performs well in the rheumatoid shoulder, giving pain relief and improved functional outcome. The survivorship is comparable to previously reported studies


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 5 | Pages 748 - 752
1 Jul 2003
Nyffeler RW Anglin C Sheikh R Gerber C

Fixation of the glenoid component is critical to the outcome of total shoulder arthroplasty. In an in vitro study, we analysed the effect of surface design and thickness of the cement mantle on the pull-out strength of the polyethylene pegs which are considered essential for fixation of cemented glenoid components. The macrostructure and surface of the pegs and the thickness of the cement mantle were studied in human glenoid bone. The lowest pull-out forces, 20 ± 5 N, were for cylindrical pegs with a smooth surface fixed in the glenoid with a thin cement mantle. The highest values, 425 ± 7 N, were for threaded pegs fixed with a thicker cement mantle. Increasing the diameter of the hole into which the peg is inserted from 5.2 to 6.2 mm thereby increasing the thickness of the cement mantle, improved the mean pull-out force for the pegs tested


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 327 - 327
1 May 2006
Corrales M Torrens C Gonzalez G Cáceres E
Full Access

Introduction: Analysis of location of central peg and the fours screws of the glenoid component in inverted shoulder prostheses. Materials and methods: 34 inverted prostheses. Mean age 74.10. 33 women, 1 man. Preoperative CT: glenoid version, presence and size of bone spurs. Postoperative CT: location of central peg and 4 screws. Results: 27 retroverted glenoids (mean 6.5°), 7 anteverted glenoids (mean 5.3°); anterior bone spur in 17 cases, posterior in 12. In 52% of the cases the central peg was inside the glenoid; in 33% the anterior part was outside and in 14% the posterior part. If the anterior part of the central peg was outside, 85% was due to retroverted glenoids (mean 8.33°). If the posterior part was outside, 66% of these were due to anteverted glenoids (mean 9.5°). Lower inside screw in the scapula in 38% of cases, 3/4 inside in 19%, 2/4 in 23% and 1/4 in 19%. Upper screw: 47%, 23% 19% and 9%, respectively. Anterior screw: 66%, 23% and 9%, respectively. Posterior screw: 38%, 42%, 14% and 4%, respectively. Conclusions:. - Lower screw completely within the lateral part of the scapula with less coverage by upper screw. - Anterior extrusion of the central peg correlated with more retroverted glenoids and posterior extrusion with very anteverted glenoids. - No correlation between presence of anterior and posterior bone spurs and the position of the peg or the screws


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 58 - 58
1 Jan 2004
Neyton L Sirveaux F Roche O Boileau P Walch G Mole D
Full Access

Purpose: Failure of the glenoid component is the main complication of total shoulder prostheses. When surgical revision is necessary, the surgeon has the option of a new implantation or non-prosthetic plasty (glenoido-plasty). The purpose of the present work was to analyse results obtained with these two techniques in order to propose proper indications. Material and methods: This retrospective study included 16 patients, mean age 62 years at revision surgery. Fialures included loosening of a cemented glenoid implant (n=9) and failure of non-cemented implants (3 defective anchors, 4 unclipped polyethylene inserts). Mean time to revision was 39 months (2–178) after primary implantation. A new glenoid implant was cemented in nine patients (group A). Seven patients (group 2) had glenoidoplasty with an iliac graft in four. Results: A mean follow-up of 37 months (19–73), the Constant score had improved from 18 points before revision to 52 points (+34). Two patients experienced a complication requiring a second revision (infection, instability) and one patient underwent subsequent surgery for biceps tenodesis. For the group with glenoidoplasty with iliac graft, insertion of an inverted prosthesis was achieved during a second operative time. In group 1, the mean Constant score at last-follow-up was 63 points (+45) with the pain score of 11, movement score of 29. In group 2, the mean Constant score was 37 (+19) with pain at 6 and motion at 16. In this group, the mean score was 48 points with a glenoid graft and 21 points with simple implant replacement. Discussion: Revision surgery for a failed glenoid implant remains a difficult procedure but can be effective for pain relief and improved motion score. The small number of patients in this series makes it difficult to perform statistical analysis but the results do point in favour of prosthetic reimplantation when the bone stock is sufficient. For other patients, a graft would be preferable to simple implant removal. This would allow secondary revision if possible


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 1000 - 1006
1 Sep 2023
Macken AA Haagmans-Suman A Spekenbrink-Spooren A van Noort A van den Bekerom MPJ Eygendaal D Buijze GA

Aims

The current evidence comparing the two most common approaches for reverse total shoulder arthroplasty (rTSA), the deltopectoral and anterosuperior approach, is limited. This study aims to compare the rate of loosening, instability, and implant survival between the two approaches for rTSA using data from the Dutch National Arthroplasty Registry with a minimum follow-up of five years.

Methods

All patients in the registry who underwent a primary rTSA between January 2014 and December 2016 using an anterosuperior or deltopectoral approach were included, with a minimum follow-up of five years. Cox and logistic regression models were used to assess the association between the approach and the implant survival, instability, and glenoid loosening, independent of confounders.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 126 - 126
1 Sep 2012
Gheiti AC Molony D Kennedy J Schepens A Mullett H
Full Access

Background

Reverse Geometry shoulder replacement requires fixation of a base plate (called a metaglene) to the glenoid to which a convex glenosphere is attached. Most systems use screws to achieve this fixation. The suprascapular nerve passes close to the glenoid and is known to be at risk of injury when devices and sutures are inserted into the glenoid. We investigate the risk posed to the suprascapular nerve by placement of metaglene fixation screws.

Materials and Methods

Ten cadaveric shoulder specimens were used. A metaglene was inserted and fixed using 4 screws. The suprascapular nerve was dissected and its branches identified. The screw tips and their proximity to the nerve and branches were identified and recorded.


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 668 - 678
1 Jun 2023
Friedman RJ Boettcher ML Grey S Flurin P Wright TW Zuckerman JD Eichinger JK Roche C

Aims. The aim of this study was to longitudinally compare the clinical and radiological outcomes of anatomical total shoulder arthroplasty (aTSA) up to long-term follow-up, when using cemented keel, cemented peg, and hybrid cage peg glenoid components and the same humeral system. Methods. We retrospectively analyzed a multicentre, international clinical database of a single platform shoulder system to compare the short-, mid-, and long-term clinical outcomes associated with three designs of aTSA glenoid components: 294 cemented keel, 527 cemented peg, and 981 hybrid cage glenoids. Outcomes were evaluated at 4,746 postoperative timepoints for 1,802 primary aTSA, with a mean follow-up of 65 months (24 to 217). Results. Relative to their preoperative condition, each glenoid cohort had significant improvements in clinical outcomes from two years to ten years after surgery. Patients with cage glenoids had significantly better clinical outcomes, with higher patient-reported outcome scores and significantly increased active range of motion, compared with those with keel and peg glenoids. Those with cage glenoids also had significantly fewer complications (keel: 13.3%, peg: 13.1%, cage: 7.4%), revisions (keel: 7.1%, peg 9.7%, cage 3.5%), and aseptic glenoid loosening and failure (keel: 4.7%, peg: 5.8%, cage: 2.5%). Regarding radiological outcomes, 70 patients (11.2%) with cage glenoids had glenoid radiolucent lines (RLLs). The cage glenoid RLL rate was 3.3-times (p < 0.001) less than those with keel glenoids (37.3%) and 4.6-times (p < 0.001) less than those with peg glenoids (51.2%). Conclusion. These findings show that good long-term clinical and radiological outcomes can be achieved with each of the three aTSA designs of glenoid component analyzed in this study. However, there were some differences in clinical and radiological outcomes: generally, cage glenoids performed best, followed by cemented keel glenoids, and finally cemented peg glenoids. Cite this article: Bone Joint J 2023;105-B(6):668–678


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 21 - 21
23 Feb 2023
Sandow M Page R Hatton A Peng Y
Full Access

The 2021 Australian Orthopaedic Association National Joint Replacement Registry report indicated that total shoulder replacement using both mid head (TMH) length humeral components and reverse arthroplasty (RTSA) had a lower revision rate than stemmed humeral components in anatomical total shoulder arthroplasty (aTSA) - for all prosthesis types and diagnoses. The aim of this study was to assess the impact of component variables in the various primary total arthroplasty alternatives for osteoarthritis in the shoulder. Data from a large national arthroplasty registry were analysed for the period April 2004 to December 2020. The study population included all primary aTSA, RTSA, and TMH shoulder arthroplasty procedures undertaken for osteoarthritis (OA) using either cross-linked polyethylene (XLPE) or non-cross-linked polyethylene (non XLPE). Due to the previously documented and reported higher revision rate compared to other anatomical total shoulder replacement options, those using a cementless metal backed glenoid components were excluded. The rate of revision was determined by Kaplan-Meir estimates, with comparisons by Cox proportional hazard models. Reasons for revision were also assessed. For a primary diagnosis of OA, aTSA with a cemented XLPE glenoid component had the lowest revision rate with a 12-year cumulative revision rate of 4.7%, compared to aTSA with cemented non-XLPE glenoid component of 8.7%, and RTSA of 6.8%. The revision rate for TMH was lower than aTSA with cemented non-XLPE, but was similar to the other implants at the same length of follow-up. The reason for revision for cemented aTSR was most commonly component loosening, not rotator cuff deficiency. Long stem humeral components matched with XLPE in aTSA achieve a lower revision rate compared to shorter stems, long stems with conventional polyethylene, and RTSA when used to treat shoulder OA. In all these cohorts, loosening, not rotator cuff failure was the most common diagnosis for revision


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 18 - 18
1 Nov 2021
Troiano E Facchini A Meglio MD Peri G Aiuto P Mondanelli N Giannotti S
Full Access

Introduction and Objective. In recent years, along with the extending longevity of patients and the increase in their functional demands, the number of annually performed RSA and the incidence of complications are also increasing. When a complication occurs, the patient often needs multiple surgeries to restore the function of the upper limb. Revision implants are directly responsible for the critical reduction of the bone stock, especially in the shoulder. The purpose of this paper is to report the use of allograft bone to restore the bone stock of the glenoid in the treatment of an aseptic glenoid component loosening after a reverse shoulder arthroplasty (RSA). Materials and Methods. An 86-years-old man came to our attention for aseptic glenoid component loosening after RSA. Plain radiographs showed a complete dislocation of the glenoid component with 2 broken screws in the neck of glenoid. CT scans confirmed the severe reduction of the glenoid bone stock and critical bone resorption and were used for the preoperative planning. To our opinion, given the critical bone defect, the only viable option was revision surgery with restoration of bone stock. We planned to use a bone graft harvested from distal bone bank femur as component augmentation. During the revision procedure the baseplate with a long central peg was implanted “on table” on the allograft and an appropriate osteotomy was made to customize the allograft on the glenoid defect according to the CT-based preoperative planning. The Bio-component was implanted with stable screws fixation on residual scapula. We decided not to replace the humeral component since it was stable and showed no signs of mobilization. Results. The new bio-implant was stable, and the patient gained a complete functional recovery of the shoulder. The scheduled radiological assessments up to 12 months showed no signs of bone resorption or mobilization of the glenoid component. Conclusions. The use of bone allograft in revision surgery after a RSA is a versatile and effective technique to treat severe glenoid bone loss and to improve the global stability of the implant. Furthermore, it represents a viable alternative to autologous graft since it requires shorter operative times and reduces graft site complications. There are very few data available regarding the use of allografts and, although the first studies are encouraging, further investigation is needed to determine the biological capabilities of the transplant and its validity in complex revisions after RSA


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1189 - 1195
1 Nov 2023
Kim JS Kim SH Kim SC Park JH Kim HG Lee SM Yoo JC

Aims. The aim of this study was to compare the clinical and radiological outcomes of reverse shoulder arthroplasty (RSA) using small and standard baseplates in Asian patients, and to investigate the impact of a mismatch in the sizes of the glenoid and the baseplate on the outcomes. Methods. This was retrospective analysis of 50 and 33 RSAs using a standard (33.8 mm, ST group) and a small (29.5 mm, SM group) baseplate of the Equinoxe reverse shoulder system, which were undertaken between January 2017 and March 2021. Radiological evaluations included the size of the glenoid, the β-angle, the inclination of the glenoid component, inferior overhang, scapular notching, the location of the central cage in the baseplate within the vault and the mismatch in size between the glenoid and baseplate. Clinical evaluations included the range of motion (ROM) and functional scores. In subgroup analysis, comparisons were performed between those in whom the vault of the glenoid was perforated (VP group) and those in whom it was not perforated (VNP group). Results. Perforation of the vault of the glenoid (p = 0.018) and size mismatch in height (p < 0.001) and width (p = 0.013) were significantly more frequent in the ST group than in the SM group. There was no significant difference in the clinical scores and ROM in the two groups, two years postoperatively (all p > 0.05). In subgroup analysis, the VP group had significantly less inferior overhang (p = 0.009), more scapular notching (p = 0.018), and more size mismatch in height (p < 0.001) and width (p = 0.025) than the VNP group. Conclusion. In Asian patients with a small glenoid, using a 29.5 mm small baseplate at the time of RSA was more effective in reducing size mismatch between the glenoid and the baseplate, decreasing the incidence of perforation of the glenoid vault, and achieving optimal positioning of the baseplate compared with the use of a 33.8 mm standard baseplate. However, longer follow-up is required to assess the impact of these findings on the clinical outcomes. Cite this article: Bone Joint J 2023;105-B(11):1189–1195


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 103 - 103
23 Feb 2023
Gupta V Van Niekerk M Hirner M
Full Access

Scapular notching is a common problem following reverse shoulder arthroplasty (RSA). This is due to impingement between the humeral polyethylene cup and scapular neck in adduction and external rotation. Various glenoid component strategies have been described to combat scapular notching and enhance impingement-free range of motion (ROM). There is limited data available detailing optimal glenosphere position in RSA with an onlay configuration. The purpose of this study was to determine which glenosphere configurations would maximise impingement free ROM using an onlay RSA prosthesis. A three-dimensional (3D) computed tomography (CT) scan of a shoulder with Walch A1, Favard E0 glenoid morphology was segmented using validated software. An onlay RSA prosthesis was implanted and a computer model simulated external rotation and adduction motion of the virtual RSA prosthesis. Four glenosphere parameters were tested; diameter (36mm, 41mm), lateralization (0mm, 3mm, 6mm), inferior tilt (neutral, 5 degrees, 10 degrees), and inferior eccentric positioning (0.5mm, 1.5mm. 2.5mm, 3.5mm, 4.5mm). Eighty-four combinations were simulated. For each simulation, the humeral neck-shaft angle was 147 degrees and retroversion was 30 degrees. The largest increase in impingement-free range of motion resulted from increasing inferior eccentric positioning, gaining 15.0 degrees for external rotation and 18.8 degrees for adduction. Glenosphere lateralization increased external rotation motion by 13. 6 degrees and adduction by 4.3 degrees. Implanting larger diameter glenospheres increased external rotation and adduction by 9.4 and 10.1 degrees respectively. Glenosphere tilt had a negligible effect on impingement-free ROM. Maximizing inferior glenosphere eccentricity, lateralizing the glenosphere, and implanting larger glenosphere diameters improves impingement-free range of motion, in particular external rotation, of an onlay RSA prosthesis. Surgeons’ awareness of these trends can help optimize glenoid component position to maximise impingement-free ROM for RSA. Further studies are required to validate these findings in the context of scapulothoracic motion and soft tissue constraints


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 485 - 492
1 Apr 2018
Gauci MO Bonnevialle N Moineau G Baba M Walch G Boileau P

Aims. Controversy about the use of an anatomical total shoulder arthroplasty (aTSA) in young arthritic patients relates to which is the ideal form of fixation for the glenoid component: cemented or cementless. This study aimed to evaluate implant survival of aTSA when used in patients aged < 60 years with primary glenohumeral osteoarthritis (OA), and to compare the survival of cemented all-polyethylene and cementless metal-backed glenoid components. Materials and Methods. A total of 69 consecutive aTSAs were performed in 67 patients aged < 60 years with primary glenohumeral OA. Their mean age at the time of surgery was 54 years (35 to 60). Of these aTSAs, 46 were undertaken using a cemented polyethylene component and 23 were undertaken using a cementless metal-backed component. The age, gender, preoperative function, mobility, premorbid glenoid erosion, and length of follow-up were comparable in the two groups. The patients were reviewed clinically and radiographically at a mean of 10.3 years (5 to 12, . sd. 26) postoperatively. Kaplan–Meier survivorship analysis was performed with revision as the endpoint. Results. A total of 26 shoulders (38%) underwent revision surgery: ten (22%) in the polyethylene group and 16 (70%) in the metal-backed group (p < 0.0001). At 12 years’ follow-up, the rate of implant survival was 74% (. sd.  0.09) for polyethylene components and 24% (. sd.  0.10) for metal-backed components (p < 0.0002). Glenoid loosening or failure was the indication for revision in the polyethylene group, whereas polyethylene wear with metal-on-metal contact, instability, and insufficiency of the rotator cuff were the indications for revision in the metal-backed group. Preoperative posterior subluxation of the humeral head with a biconcave/retroverted glenoid (Walch B2) had an adverse effect on the survival of a metal-backed component. Conclusion. The survival of a cemented polyethylene glenoid component is three times higher than that of a cementless metal-backed glenoid component ten years after aTSA in patients aged < 60 years with primary glenohumeral OA. Patients with a biconcave (B2) glenoid have the highest risk of failure. Cite this article: Bone Joint J 2018;100-B:485–92


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1080 - 1085
1 Aug 2016
Gauci MO Boileau P Baba M Chaoui J Walch G

Aims. Patient-specific glenoid guides (PSGs) claim an improvement in accuracy and reproducibility of the positioning of components in total shoulder arthroplasty (TSA). The results have not yet been confirmed in a prospective clinical trial. Our aim was to assess whether the use of PSGs in patients with osteoarthritis of the shoulder would allow accurate and reliable implantation of the glenoid component. Patients and Methods. A total of 17 patients (three men and 14 women) with a mean age of 71 years (53 to 81) awaiting TSA were enrolled in the study. Pre- and post-operative version and inclination of the glenoid were measured on CT scans, using 3D planning automatic software. During surgery, a congruent 3D-printed PSG was applied onto the glenoid surface, thus determining the entry point and orientation of the central guide wire used for reaming the glenoid and the introduction of the component. Manual segmentation was performed on post-operative CT scans to compare the planned and the actual position of the entry point (mm) and orientation of the component (°). Results. The mean error in the accuracy of the entry point was -0.1 mm (standard deviation (. sd. ) 1.4) in the horizontal plane, and 0.8 mm (. sd. 1.3) in the vertical plane. The mean error in the orientation of the glenoid component was 3.4° (. sd. 5.1°) for version and 1.8° (. sd. 5.3°) for inclination. Conclusion. Pre-operative planning with automatic software and the use of PSGs provides accurate and reproducible positioning and orientation of the glenoid component in anatomical TSA. Cite this article: Bone Joint J 2016;98-B:1080–5


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 136 - 136
1 Feb 2020
Greene A Parsons I Jones R Youderian A Byram I Papandrea R Cheung E Wright T Zuckerman J Flurin P
Full Access

INTRODUCTION. 3D preoperative planning software for anatomic and reverse total shoulder arthroplasty (ATSA and RTSA) provides additional insight for surgeons regarding implant selection and placement. Interestingly, the advent of such software has brought previously unconsidered questions to light on the optimal way to plan a case. In this study, a survey of shoulder specialists from the American Shoulder and Elbow Society (ASES) was conducted to examine thought patterns in current glenoid implant selection and placement. METHODS. 172 ASES members completed an 18-question survey on their thought process for how they select and place a glenoid implant for both ATSA and RTSA procedures. Data was collected using a custom online Survey Monkey survey. Surgeon answers were split into three cohorts based on their responses to usage of 3D preoperative planning software: high users, seldom users, and non-users. Data was analyzed for each cohort to examine differences in thought patterns, implant selection, and implant placement. RESULTS. 76 surgeons were grouped into the high user cohort, 66 into the seldom user cohort, and 30 into the non-user cohort. 61.9% of high users and 74.1% of seldom users performed >75 shoulder arthroplasties per year, whereas only 19.9% of non-users performed >75 arthroplasties per year (Figure 1). When questioned on glenoid implant type selection (augmented vs. non-augmented components), 80.3% of high users reported augment usage for both ATSA and RTSA, with using augments >45% of the time in 18.4% of ATSA cases and in 22.3% of RTSA cases. For seldom users, 80.3% reported augment usage in ATSA cases, and 70.3% in RTSA cases. Seldom users reported augment usage >45% of the time in 4.5% of ATSA cases and in 1.6% of RTSA cases. For non-preoperative planning users, 53.3% reported using augments in ATSA cases, and 48.3% for RTSA cases. Non-users used augmented glenoid components >45% of the time in 6.6% of ATSA cases and in 6.8% of RTSA cases. For resultant implant superior inclination in RTSA, 40.8% of high users aim for 0° of inclination, followed by 31.8% for seldom users and 16.7% of non-users (Figure 2). CONCLUSION. The results of this study show that 3D preoperative planning software has an influence on the decision making process when planning a shoulder arthroplasty. High volume shoulder arthroplasty surgeons report higher preoperative planning software usage than low volume surgeons, suggesting the utility of such software. Augmented glenoid component usage for both ATSA and RTSA is also higher for surgeons that use preoperative planning software, which either suggests the utility of augmented glenoid components, or that the use of such software creates the perceived need for augmented glenoid components. Lastly, surgeons who preoperatively plan tend to orient their glenoid components differently, which could suggest either a better understanding of the anatomy through the use of the software, or an influence on mindset regarding implant orientation resulting from software usage. This highlights an area for future work that could correlate clinical outcome data to implant selection and placement to prove what is the optimal plan for a given patient. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 6 - 6
1 May 2019
Jobin C
Full Access

Severe glenoid bone loss in patients with osteoarthritis with intact rotator cuff is associated with posterior glenoid bone loss and posterior humeral subluxation. Management of severe glenoid bone loss during shoulder arthroplasty is controversial and technically challenging and options range from humeral hemiarthroplasty, anatomic shoulder replacement with glenoid bone grafting or augmented glenoid component implantation, to reverse replacement with reaming to correct version or structural bone grafting or metallic augmentation of the bone deficiency. Shoulder replacement with severe glenoid bone loss is technically challenging and characterised by higher rates of complications and revisions. Hemiarthroplasty has limited benefit for pain relief and function especially if eccentric glenoid wear exists. Bone loss with >15 degrees of retroversion likely requires version correction include bone-grafting, augmented glenoid components, or reverse total shoulder replacement. Asymmetric reaming may improve version but is limited to 15 degrees of version correction in order to preserve subchondral bone and glenoid bone vault depth. Bone-grafting of glenoid wear and defects has had mixed results with graft-related complications, periprosthetic radiolucent lines, and glenoid component failure of fixation. Implantation of an augmented wedge or step polyethylene glenoid component improves joint version while preserving subchondral bone, but is technically demanding and with minimal short term clinical follow-up. A Mayo study demonstrated roughly 50% of patients with posteriorly augmented polyethylene had radiolucent lines and 1/3 had posterior subluxation. Another wedge polyethylene design had 66% with bone ingrowth around polyethylene fins at 3 years. Long term outcomes are unknown for these new wedge augmented glenoid components. Reverse shoulder arthroplasty avoids many risks of anatomic replacement glenoid component fixation and stability but is associated with a high complication rate (15%) including neurologic and baseplate loosening and often requires structural bone grafting behind the baseplate with suboptimal outcomes or metallic augmented baseplates with limited evidence and short term outcomes. Reverse replacement with baseplate bone grafting or metal augmentation is technically challenging due to limited native glenoid bone stock available for baseplate component ingrowth and long term fixation. Failure to correct glenoid superior inclination and restore neutral version within 10 degrees increases the risks of reverse baseplate failure of fixation, pull out, and failure of reverse replacement. Reverse baseplate failure rates in patients with severe glenoid bone loss and concomitant glenoid bone grafting range from 5–11%. The minimum native glenoid bony contact with the baseplate is unknown but likely is approximately 1cm of native bone contacting a central ingrowth post and a minority (∼15–25%) of native glenoid contacting the backside of the baseplate. Failure to correct posterior bone loss can lead to retroversion of the baseplate, reduced external rotation, posterior scapular notching, and posteromedial polyethylene wear. In summary, shoulder replacement with severe glenoid bone loss is technically challenging and characterised by higher rates of complication and revision


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 10 - 10
1 Apr 2019
De Biase C Fiorentino G Catellani F Ziveri G Banci L Meoli A Bloch HR
Full Access

Background. The current use of a spherical prosthetic humeral head in total shoulder arthroplasty results in an imprecise restoration of the native geometry and improper placement of the center of rotation, maintained in a constant position, in comparison to the native head and regardless of glenoid component conformity. A radially-mismatched spherical head to allow gleno-humeral translation is a trade-off that decreases the contact area on the glenoid component, which may cause glenoid component wear. This finding suggests that the use of a non-spherical head with a more conforming glenoid component may reduce the risk of glenoid component wear by allowing gleno-humeral translation while increasing the contact area. A non-spherical prosthetic head more accurately replicates the head shape, rotational range of motion and gleno-humeral joint kinematics than a spherical prosthetic head, compared with the native humeral head. The combination of inversion of the bearing materials with the non-spherical configuration of the humeral head may thus decrease polyethylene wear. Aim of the present study is to evaluate in vitro wear behaviour of an all-polyethylene elliptical humeral head component against a metallic glenoid component in an anatomic configuration. Material and methods. The prosthetic components tested are from the Mirai. ®. Modular Shoulder System by Permedica S.p.A.. The prosthetic bearing components were tested in their anatomic configuration: the humeral head rubbing against the glenoid inlay, assembled over the glenoid base-plate. The glenoid insert is made of Ti6Al4V alloy coated with TiNbN. The glenoid insert, as the glenoid base-plate have the same shape which reproduce the native shape of the glenoid. Moreover, the glenoid insert has a concave articular surface described by two different radii on orthogonal planes. The vitamin E-blended UHMWPE humeral head is not spherical but elliptic-shaped with an articular surface described by two different profiles in sagittal and coronal plane. The component sizes combination tested have the greatest radial mismatches allowed between humeral head and glenoid insert. The test was performed up to 2.5 million of cycles applying a constant axial load of 756 N. Results. After 2.500.000 cycles the mean mass loss from the humeral head was 0.68 mg. The mean wear rate of the humeral head was 0.28 mg/Mc (SD 0.45 mg/Mc). The surface of the humeral heads showed an elliptical worn area with matt and polished areas with scratching. The surface of the TiNbN-coated glenoid insert counterparts did not show wear signs. Conclusion. The tested prosthetic humeral head has a non-spherical shape with an elliptical base and 2 different radii on sagittal and coronal plane. Also the tested glenoid insert has 2 different radii on sagittal and coronal planes. This components geometry leads to a radial mismatch between head and glenoid on sagittal and coronal planes. A different kinematics, allowing gleno-humeral translation while increasing the contact area, radial mismatch in different planes and the inversion of bearing materials may have a role in reducing component wear and may explain the extremely low wear rate found in the present study


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 83 - 90
1 Jan 2022
Batten TJ Gallacher S Evans JP Harding RJ Kitson J Smith CD Thomas WJ

Aims. The use and variety of stemless humeral components in anatomical total shoulder arthroplasty (TSA) have proliferated since their advent in 2004. Early outcomes are reassuring but independent mid-term results are scarce. This independent study reports a consecutive series of 143 Eclipse stemless shoulder prostheses with a minimum five-year (5 to 10) follow-up. Methods. Outcomes of 143 procedures undertaken for all indications in 131 patients were reviewed, with subset analysis of those for osteoarthritis (OA) (n = 99). The primary outcome was the Oxford Shoulder Score (OSS) at a minimum of five years. Secondary outcomes were ranges of motion and radiological analysis of humeral radiolucency, rotator cuff failure, and glenoid loosening. Results. Mean OSS at mean follow-up of 6.67 years (5.0 to 10.74) was 40.12 (9 to 48), with no statistically significant difference between those implanted for a non-OA indication and those for OA (p = 0.056) or time-dependent deterioration between two years and five years (p = 0.206). Ranges of motion significantly improved compared with preoperative findings and were maintained between two and five years with a mean external rotation of 38° (SD 18.1, 0 to 100) and forward elevation of 152° (SD 29.9, 90 to 180). Of those components with radiographs suitable for analysis (n = 83), 23 (28%) were found to have a least one humeral radiolucent line, which were predominantly incomplete, less than 2 mm, and in a single anatomical zone. No humeral components were loose. A radiolucent line was present around 22 (15%) of glenoid components, and 15 (10%) of components had failed. Rotator cuff failure was found in 21 (15%) components. The mean time to either glenoid or rotator cuff failure was greater than three years following implantation. Survivorship was 96.4% (95% CI 91.6 to 98.5, number at risk 128) at five years, and 94.3% (95% CI 88.2 to 97.3, number at risk 76) at seven years, both of which compare favourably with best results taken from available registries. Conclusion. Functional and radiological outcomes of the Eclipse stemless TSA are excellent, with no loose humeral components at minimum five-year follow-up. The presence of radiolucent lines is of interest and requires long-term observation but does not impact on the clinical results. Of the eight revisions required, this was predominantly for glenoid and rotator cuff failure. Cite this article: Bone Joint J 2022;104-B(1):83–90


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 64 - 64
1 Apr 2019
Greene A Cheung E Polakovic S Hamilton M Jones R Youderian A Wright T Saadi P Zuckerman J Flurin PH Parsons I
Full Access

INTRODUCTION. Preoperative planning software for reverse total shoulder arthroplasty (RTSA) allows surgeons to virtually perform a reconstruction based off 3D models generated from CT scans of the glenohumeral joint. While anatomical studies have defined the range of normal values for glenoid version and inclination, there is no clear consensus on glenoid component selection and position for RTSA. The purpose of this study was to examine the distribution of chosen glenoid implant as a function of glenoid wear severity, and to evaluate the inter-surgeon variability of optimal glenoid component placement in RTSA. METHODS. CT scans from 45 patients with glenohumeral arthritis were planned by 8 fellowship trained shoulder arthroplasty specialists using a 3D preoperative planning software, planning each case for optimal implant selection and placement. The software provided four glenoid baseplate implant types: a standard non-augmented component, an 8° posterior augment wedged component, a 10° superior augment wedged component, and a combined 8° posterior and 10° superior wedged augment component. The software interface allowed the surgeons to control version, inclination, rotation, depth, anterior-posterior and superior-inferior position of the glenoid components in 1mm and 1° increments, which were recorded and compared for final implant position in each case. RESULTS. Two cases were excluded due to extreme deformity and consensus that a feasible RTSA may not be possible. For resultant implant version, a bimodal distribution was observed with a local maxima occurring at 0°, and a bell-shaped distribution at −5° of version. Upon individual surgeon analysis, it was revealed that certain surgeons had a preference to correct to 0 degrees, whereas others were more accepting of residual version. As well, the surgeons accepting residual retroversion removed less bone on average per implant type than the surgeons who aimed to correct to 0°. For resultant implant inclination, surgeons consistently tried to plan for 0 degrees of inclination. CONCLUSION. This study indicates that while there was limited consensus on the optimal reconstruction in any one case, there appear to be thresholds of retroversion and inclination that favor the use of augmented glenoid components based on frequency of selection. Our results indicate a wide variability in terms of what experienced shoulder surgeons consider to be an optimal reconstruction despite the common goal of attempting to restore anatomy, maximize implant fixation in bone and minimize bone removal. High frequency of augmented glenoid component use raises questions about how much retroversion and inclination is optimal and whether this technology allows surgeons to potentially focus more on a quantitative reconstruction relative to the Friedman axis versus a qualitative implant placement relative to what may be normal anatomy for a patient


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 63 - 63
1 Apr 2019
Greene A Cheung E Polakovic S Hamilton M Jones R Youderian A Wright T Saadi P Zuckerman J Flurin PH Parsons I
Full Access

INTRODUCTION. Preoperative planning software for anatomic total shoulder arthroplasty (ATSA) allows surgeons to virtually perform a reconstruction based off 3D models generated from CT scans of the glenohumeral joint. The purpose of this study was to examine the distribution of chosen glenoid implant as a function of glenoid wear severity, and to evaluate the inter-surgeon variability of optimal glenoid component placement in ATSA. METHODS. CT scans from 45 patients with glenohumeral arthritis were planned by 8 fellowship trained shoulder arthroplasty specialists using a 3D preoperative planning software, planning each case for optimal implant selection and placement. The software provided three implant types: a standard non-augmented glenoid component, and an 8° and 16° posterior augment wedge glenoid component. The software interface allowed the surgeons to control version, inclination, rotation, depth, anterior- posterior and superior-inferior position of the glenoid components in 1mm and 1° increments, which were recorded and compared for final implant position in each case. RESULTS. Five cases were excluded due to extreme glenoid wear. For resultant implant version, a bimodal distribution was observed with a local maxima occurring at 0 degrees, and a bell-shaped distribution at −5° of version. Upon individual surgeon analysis, it was revealed that certain surgeons had a preference to correct to 0 degrees, whereas others were more accepting of residual version. Shoulders ranged in native version from 0° to −27° with an average of −11°, indicating a high frequency of posterior glenoid wear. The frequency of different implants used for each degree of version shows that standard implants were never used when version was > −11°. Conversely, 16° augmented glenoids were never used when the version was < −9°. Based on this distribution, version was divided into 3 ranges: < −6°, −7 to −14°, and > −15°. Standard glenoids were used 79% of the time when the version was <−6°. 8° augmented glenoids were used 80% of the time when the version was between −7° and −14°, and 75% of the time when the version was > −15°. In the latter case, 16° augments were used in the other 25%. For inclination in ATSA, the same trends of a bimodal distribution seen for version were less pronounced. A local maxima of plans were focused around zero degrees, with some surgeons being more accepting of superior inclination in ATSA. CONCLUSION. While there was limited consensus on the optimal reconstruction in any one case, there appear to be thresholds of retroversion that favor the use of augmented glenoid components based on frequency of selection. Our data suggests when retroversion exceeds −7°, some degree of augmentation is helpful in achieving the goals of version correction while limiting bone loss through corrective reaming. Longer term clinical outcomes on specific implant positions will help to define true optimal implant placement


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 73 - 73
1 Jul 2020
Yeoh J Chin P Regan WD Lim B Sasyniuk T Sayre E
Full Access

Glenoid failure remains the most common mode of total shoulder arthroplasty failures. Porous tantalum metal (Trabecular Metal™, Zimmer) have grown in popularity in hip and knee arthroplasty. First-generation porous tantalum metal-backed glenoid components demonstrated metal debris, resulted in failure, and were revised to second-generation glenoid implants. Evidence for second-generation porous tantalum metal implants in shoulder arthroplasty is sparse.1–4 The purpose of this study was to assess clinical and radiographic outcomes in a series of patients with second-generation porous tantalum glenoid components at a minimum two-years postoperative. We retrospectively reviewed the clinical and radiographic outcomes of patients who received a second-generation porous tantalum glenoid component anatomic shoulder arthroplasty between May 2009 and December 2017 with minimum 24 months follow-up. The shoulder arthroplasties were performed by one of two senior fellowship-trained surgeons. We collected postoperative clinical outcome indicators: EQ5D visual analog scale (VAS), Western Ontario Osteoarthritis of the Shoulder (WOOS) Index, American Shoulder and Elbow Surgeons (ASES) Score, and Constant Score (CS). Radiographic review was performed by an independent fellowship-trained surgeon. The Endrizzi metal debris grading system1 was utilized to grade metal debris. We computed descriptive statistics and compared outcome scores between groups via the non-parametric Wilcoxon rank-sum test, with group-wise comparisons defined by: metal debris and humeral head migration (secondary analyses). Thirty-five patients [23 male (65.7%) and 12 female (34.3%)] with 40 shoulder replacements participated in the study. Forty of 61 shoulders (65.6%) had an average of 64 ± 20.3 months follow-up (range 31 to 95). Average BMI was 27.5 ± 4.4 kg/m2 (range 19.5 to 39.1). The average postoperative EQ5D VAS at final follow-up was 74.6 ± 22.5, WOOS Index 87.9 ± 16.6, ASES Score 88.3 ± 10.9, and CS 80.4 ± 13. At final follow-up, 18 of 40 shoulders (45%) had metal debris [15 of 40 (37.5%) Endrizzi grade 1 and three of 40 (7.5%) Endrizzi grade 2], and 22 of 40 shoulders (55%) did not show evidence of metal debris. There was one non-revision reoperation (open subscapularis exploration), one shoulder with anterosuperior escape, three shoulders with glenoid radiolucencies indicative of possible glenoid loosening, and nine shoulders with superior migration of the humeral head (>2mm migration at final follow-up compared to immediate postoperative). When comparing postoperative scores between patients with vs without metal debris, we found no statistically significant difference in the EQ5D VAS, WOOS Index, ASES Score and CS. On further analyses, when comparing superior migration of the humeral head and postoperative outcomes scores, we found no statistically significant difference. We report the longest published follow-up with clinical and radiographic outcomes of second-generation porous tantalum glenoid anatomic shoulder arthroplasties. In this series of patients, 45% of total shoulder arthroplasties with a second-generation porous tantalum glenoid implant had radiographic evidence of metal debris. This metal debris was not statistically associated with poorer postoperative outcomes. Further investigation and ongoing follow-up are warranted


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 96 - 96
11 Apr 2023
Crippa Orlandi N De Sensi A Cacioppo M Saviori M Giacchè T Cazzola A Mondanelli N Giannotti S
Full Access

The computational modelling and 3D technology are finding more and more applications in the medical field. Orthopedic surgery is one of the specialties that can benefit the most from this solution. Three case reports drawn from the experience of the authors’ Orthopedic Clinic are illustraded to highlight the benefits of applying this technology. Drawing on the extensive experience gained within the authors’ Operating Unit, three cases regarding different body segments have been selected to prove the importance of 3D technology in preoperative planning and during the surgery. A sternal transplant by allograft from a cryopreserved cadaver, the realization of a custom made implant of the glenoid component in a two-stage revision of a reverse shoulder arthroplasty, and a case of revision on a hip prosthesis with acetabular bone loss (Paprosky 3B) treated with custom system. In all cases the surgery was planned using 3D processing software and models of the affected bone segments, printed by 3D printer, and based on CT scans of the patients. The surgical implant was managed with dedicated instruments. The use of 3D technology can improve the results of orthopedic surgery in many ways: by optimizing the outcomes of the operation as it allows a preliminary study of the bone loss and an evalutation of feasibility of the surgery, it improves the precision of the positioning of the implant, especially in the context of severe deformity and bone loss, and it reduces the operating time; by improving surgeon training; by increasing patient involvement in decision making and informed consent. 3D technology, by offering targeted and customized solutions, is a valid tool to obtain the tailored care that every patient needs and deserves, also providing the surgeon with an important help in cases of great complexity


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 93 - 93
1 Dec 2013
Jun BJ Li Z Iannotti J
Full Access

Background:. Glenoid component loosening remains as an unsolved clinical problem in total shoulder arthroplasty. Current clinical assessment relies on subjective quantification using a two-dimensional plane X-ray image with arbitrarily defined criteria. There is a need to develop a readily usable clinical tool to accurately and reliably quantify the glenoid component motion over time after surgery. A high-resolution clinical CT has the potential to quantify the glenoid motion, but is challenged by metal artifact from the prosthetic humeral components. The objective of this study is to demonstrate the feasibility of using a clinical CT reconstruction to quantify the glenoid implant motion with the aid of tantalum markers. Methods:. Three spherical tantalum markers of 1.0 mm in diameter were inserted into three peripheral pegs of an all polyethylene glenoid component. The glenoid component was implanted in a sawbone scapula. To determine the effect of metal artifact on quantification of glenoid implant motion, two sawbone humerii were used: one without the prosthetic humeral components and the other with the prosthetic humeral head and stem. Three custom-made translucent spacers with the uniform thickness were placed between the glenoid component and the scapula to produce a gradual translation of the glenoid component from 1 mm to 3 mm. Before and after inserting each spacer, the surface of the glenoid component was digitized by a MicroScribe. The surface points were used to fit a sphere and the corresponding center of the sphere was calculated. The actual translation of the glenoid component was measured as the three-dimensional (3D) distance between the center of the sphere before and after insertion of each spacer. Then, the shoulder model was scanned by a clinical CT with and without the spacers for both humerii conditions. Velcro straps were used to secure the humerus to the glenoid component between the trials. All CT scans were reconstructed in VolNinja software to superimpose the scapula positions (Figure 1). The three tantalum markers were visualized and the center coordinates of the markers were used to measure the 3D distance before and after insertion of each spacer. The accuracy was defined by the difference between the averaged 3D distance measured by CT reconstruction and that measured by the MicroScribe. The standard deviation of the 3D distance measured by each tantalum marker was calculated to evaluate the reliability of the tantalum marker visualization. Results:. Without metal artifact, the accuracy and reliability of quantifying glenoid implant motion using a clinical CT were 0.4 mm and 0.2 mm, respectively (Figure 2). With the presence of metal artifact, the accuracy and reliability were 0.5 mm and 0.4 mm, respectively. The largest difference in quantifying the glenoid component motion with and without the metal artifact was only 0.12 mm. Conclusion:. The current study demonstrated the feasibility of using a clinical CT to quantify glenoid implant motion. With the aid of tantalum markers, a clinical CT can be readily used to quantify the glenoid implant motion accurately and reliably even with the presence of metal artifact from the humeral components


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 30 - 30
1 Dec 2022
Lohre R Lobo A Bois A Pollock J Lapner P Athwal G Goel D
Full Access

Glenoid baseplate orientation in reverse shoulder arthroplasty (RSA) influences clinical outcomes, complications, and failure rates. Novel technologies have been produced to decrease performance heterogeneity of low and high-volume surgeons. This study aimed to determine novice and experienced shoulder surgeon's ability to accurately characterise glenoid component orientation in an intra-operative scenario. Glenoid baseplates were implanted in eight fresh frozen cadavers by novice surgical trainees. Glenoid baseplate version, inclination, augment rotation, and superior-inferior centre of rotation (COR) offset were then measured using in-person visual assessments by novice and experienced shoulder surgeons immediately after implantation. Glenoid orientation parameters were then measured using 3D CT scans with digitally reconstructed radiographs (DRRs) by two independent observers. Bland-Altman plots were produced to determine the accuracy of glenoid orientation using standard intraoperative assessment compared to postoperative 3D CT scan results. Visual assessment of glenoid baseplate orientation showed “poor” to “fair” correlation to 3D CT DRR measurements for both novice and experienced surgeon groups for all measured parameters. There was a clinically relevant, large discrepancy between intra-operative visual assessments and 3D CT DRR measurements for all parameters. Errors in visual assessment of up to 19.2 degrees of inclination and 8mm supero-inferior COR offset occurred. Experienced surgeons had greater measurement error than novices for all measured parameters. Intra-operative measurement errors in glenoid placement may reach unacceptable clinical limits. Kinesthetic input during implantation likely improves orientation understanding and has implications for hands-on learning