Abstract
BACKGROUND
Stability of the glenoid component is essential to ensure successful long-term outcomes following Total shoulder arthroplasty (TSA), and may be improved through better glenoid component design. As such, this study assessed identical all-polyethylene glenoid components stability, having various fixation types, using component micromotion under simulated joint loading in an osteoarthritic patient cohort.
METHODS
Five all-polyethylene glenoid component designs were compared (Keel, Central-Finned 4-Peg, Peripheral 4-Peg, Cross-Keel, and Inverted-Y). A cement mantle surrounded each fixation type, except the Central-Finned 4-Peg which was surrounded by bone. The humeral component had a non-conforming radius of curvature. Scapular models of six type A1 osteoarthritic male patients (mean: 61 years old, range: 48 to 76 years old) were assigned heterogeneous bone properties based on CT intensity. Each of the 30 scapula models were truncated and fully constrained on the medial scapular border. The bone/cement interface was fully bonded, and the fixation feature/cement interface was frictionally constrained. A ‘worst case’ load magnitude of 125% BW of a 50th percentile male was used. A purely compressive load was applied to the center of the glenoid component, followed by superior, superior-posterior, posterior, inferior-posterior, and inferior loads. Stability of the glenoid component based solely on the fixation type was determined using the mean and maximum normal (liftoff) and tangential (sliding) micromotion in six regions of the glenoid component.
RESULTS
The greatest mean normal micromotion occurred for the Inverted-Y (90 ± 36 μm) in the anterior- inferior region of the component under a posterior-superior directed load. The mean normal micromotions were significantly less for the same region and loading direction in the Peripheral 4-peg (48 ± 16 μm; p < .001) and Central-Finned 4-Peg (35 ± 13 μm; p < .001), but not significantly different for the Keel (78 ± 37 μm; p = .029), or Cross-Keel (82 ± 32 μm; p = .143). The same region and loading direction produced the maximum normal micromotion in the Inverted-Y (109 ± 43 μm), which was significantly greater than the other four components (Peripheral 4-peg, 61 ± 25 μm; p < .001, Keel, 89 ± 36 μm; p < .001, Central-Finned 4-Peg, 47 ± 19 μm; p < .001, and Cross-Keel, 92 ± 37 μm; p = .002).
The greatest mean tangential micromotion occurred for the Cross-Keel (100 ± 36 μm) in the posterior-superior region of the glenoid component under a posterior-superior directed load. The mean tangential micromotions for all other components were significantly less (p < .001) for the same region and loading direction (Peripheral 4-peg, 73 ± 19 μm, Keel, 73 ± 22 μm, Central-Finned 4-Peg, 73 ± 26 μm, and Inverted-Y, 83 ± 24 μm). The same region and loading direction for the maximum tangential micromotion was also in the Cross-Keel (146 ± 46 μm), which was significantly greater (p < .001) from the other four components (Peripheral 4-peg, 111 ± 21 μm, Keel, 115 ± 34 μm, Central-Finned 4-Peg, 111 ± 39 μm, and Inverted-Y, 117 ± 34 μm).
DISCUSSION
This study addressed the contribution of all-polyethylene glenoid component fixation types on component stability under simulated joint loading. Pegged components were significantly more stable than keeled components. An inverse relationship between normal and tangential micromotion was observed, with the greatest sliding (tangential micromotion) occurring in the direction of the applied load, and the greatest liftoff (normal micromotion) occurring opposite the applied load. This likely occurs due to polyethylene deformation of both the fixation features and the component as a whole.