header advert
Results 1 - 100 of 388
Results per page:
Bone & Joint Research
Vol. 13, Issue 7 | Pages 362 - 371
17 Jul 2024
Chang H Liu L Zhang Q Xu G Wang J Chen P Li C Guo X Yang Z Zhang F

Aims

The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA.

Methods

Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database.


Bone & Joint Open
Vol. 5, Issue 7 | Pages 581 - 591
12 Jul 2024
Wang W Xiong Z Huang D Li Y Huang Y Guo Y Andreacchio A Canavese F Chen S

Aims

To investigate the risk factors for unsuccessful radial head reduction (RHR) in children with chronic Monteggia fractures (CMFs) treated surgically.

Methods

A total of 209 children (mean age 6.84 years (SD 2.87)), who underwent surgical treatment for CMFs between March 2015 and March 2023 at six institutions, were retrospectively reviewed. Assessed risk factors included age, sex, laterality, dislocation direction and distance, preoperative proximal radial metaphysis width, time from injury to surgery, reduction method, annular ligament reconstruction, radiocapitellar joint fixation, ulnar osteotomy, site of ulnar osteotomy, preoperative and postoperative ulnar angulation, ulnar fixation method, progressive ulnar distraction, and postoperative cast immobilization. Independent-samples t-test, chi-squared test, and logistic regression analysis were used to identify the risk factors associated with unsuccessful RHR.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 342 - 352
9 Jul 2024
Cheng J Jhan S Chen P Hsu S Wang C Moya D Wu Y Huang C Chou W Wu K

Aims

To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration.

Methods

The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm2, 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 332 - 341
5 Jul 2024
Wang T Yang C Li G Wang Y Ji B Chen Y Zhou H Cao L

Aims

Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI).

Methods

A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR.


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 525 - 531
1 Jun 2024
MacDessi SJ van de Graaf VA Wood JA Griffiths-Jones W Bellemans J Chen DB

The aim of mechanical alignment in total knee arthroplasty is to align all knees into a fixed neutral position, even though not all knees are the same. As a result, mechanical alignment often alters a patient’s constitutional alignment and joint line obliquity, resulting in soft-tissue imbalance. This annotation provides an overview of how the Coronal Plane Alignment of the Knee (CPAK) classification can be used to predict imbalance with mechanical alignment, and then offers practical guidance for bone balancing, minimizing the need for soft-tissue releases.

Cite this article: Bone Joint J 2024;106-B(6):525–531.


Bone & Joint Research
Vol. 13, Issue 5 | Pages 237 - 246
17 May 2024
Cheng B Wu C Wei W Niu H Wen Y Li C Chen P Chang H Yang Z Zhang F

Aims

To assess the alterations in cell-specific DNA methylation associated with chondroitin sulphate response using peripheral blood collected from Kashin-Beck disease (KBD) patients before initiation of chondroitin sulphate treatment.

Methods

Peripheral blood samples were collected from KBD patients at baseline of chondroitin sulphate treatment. Methylation profiles were generated using reduced representation bisulphite sequencing (RRBS) from peripheral blood. Differentially methylated regions (DMRs) were identified using MethylKit, while DMR-related genes were defined as those annotated to the gene body or 2.2-kilobase upstream regions of DMRs. Selected DMR-related genes were further validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to assess expression levels. Tensor composition analysis was performed to identify cell-specific differential DNA methylation from bulk tissue.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 2 - 2
10 May 2024
Chen W Tay ML Bolam S Rosser K Monk AP Young SW
Full Access

Introduction

A key outcome measured by national joint registries are revision events. This informs best practice and identifies poor-performing surgical devices. Although registry data often record reasons for revision arthroplasty, interpretation is limited by lack of standardised definitions of revision reasons and objective assessment of radiologic and laboratory parameters. Our study aim was to compare reasons for unicompartmental knee arthroplasty (UKA) revision reported to the New Zealand Joint Registry (NZJR) with reasons identified by independent clinical review.

Methods

A total of 2,272 patients undergoing primary medial and lateral UKA at four large tertiary hospitals between 2000 and 2017 were included. A total of 158 patients underwent subsequent revision with mean follow-up of 8 years. A systematic review of clinical findings, radiographs and operative data was performed to identify revision cases and to determine the reasons for revision using a standardised protocol. These were compared to reasons reported to the NZJR using Chi-squared and Fisher exact tests.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_7 | Pages 21 - 21
8 May 2024
Chen P Ng N Mackenzie S Nicholson J Amin A
Full Access

Background

Undisplaced Lisfranc-type injuries are subtle but potentially unstable fracture-dislocations with little known about the natural history. These injuries are often initially managed conservatively due to lack of initial displacement and uncertainty regarding subsequent instability at the tarsometatarsal joints (TMTJ). The aim of this study was to determine the secondary displacement rate and the need for delayed operative intervention in undisplaced Lisfranc injuries that were managed conservatively at initial presentation.

Methods

Over a 6-year period (2011 to 2017), we identified 24 consecutive patients presenting to a university teaching hospital with a diagnosis of an undisplaced Lisfranc-type injury that was initially managed conservatively. Pre-operative radiographs were reviewed to confirm the undisplaced nature of the injury (defined as a diastasis< 2mm at the second TMTJ). The presence of a ‘fleck’ sign (small bony avulsion of the second metatarsal) was also noted. Electronic patient records and sequential imaging (plain radiographs/CT/MRI) were scrutinized for demographics, mechanism of injury and eventual outcome.


Bone & Joint Open
Vol. 5, Issue 4 | Pages 350 - 360
23 Apr 2024
Wang S Chen Z Wang K Li H Qu H Mou H Lin N Ye Z

Aims

Radiotherapy is a well-known local treatment for spinal metastases. However, in the presence of postoperative systemic therapy, the efficacy of radiotherapy on local control (LC) and overall survival (OS) in patients with spinal metastases remains unknown. This study aimed to evaluate the clinical outcomes of post-surgical radiotherapy for spinal metastatic non-small-cell lung cancer (NSCLC) patients, and to identify factors correlated with LC and OS.

Methods

A retrospective, single-centre review was conducted of patients with spinal metastases from NSCLC who underwent surgery followed by systemic therapy at our institution from January 2018 to September 2022. Kaplan-Meier analysis and log-rank tests were used to compare the LC and OS between groups. Associated factors for LC and OS were assessed using Cox proportional hazards regression analysis.


Aims

The aims of this study were to evaluate the incidence of reoperation (all cause and specifically for periprosthetic femoral fracture (PFF)) and mortality, and associated risk factors, following a hemiarthroplasty incorporating a cemented collarless polished taper slip stem (PTS) for management of an intracapsular hip fracture.

Methods

This retrospective study included hip fracture patients aged 50 years and older treated with Exeter (PTS) bipolar hemiarthroplasty between 2019 and 2022. Patient demographics, place of domicile, fracture type, delirium status, American Society of Anesthesiologists (ASA) grade, length of stay, and mortality were collected. Reoperation and mortality were recorded up to a median follow-up of 29.5 months (interquartile range 12 to 51.4). Cox regression was performed to evaluate independent risk factors associated with reoperation and mortality.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 157 - 168
4 Apr 2024
Lin M Chen G Yu H Hsu P Lee C Cheng C Wu S Pan B Su B

Aims

Osteosarcoma is the most common primary bone malignancy among children and adolescents. We investigated whether benzamil, an amiloride analogue and sodium-calcium exchange blocker, may exhibit therapeutic potential for osteosarcoma in vitro.

Methods

MG63 and U2OS cells were treated with benzamil for 24 hours. Cell viability was evaluated with the MTS/PMS assay, colony formation assay, and flow cytometry (forward/side scatter). Chromosome condensation, the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, cleavage of poly-ADP ribose polymerase (PARP) and caspase-7, and FITC annexin V/PI double staining were monitored as indicators of apoptosis. Intracellular calcium was detected by flow cytometry with Fluo-4 AM. The phosphorylation and activation of focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) were measured by western blot. The expression levels of X-linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), SOD1, and SOD2 were also assessed by western blot. Mitochondrial status was assessed with tetramethylrhodamine, ethyl ester (TMRE), and intracellular adenosine triphosphate (ATP) was measured with BioTracker ATP-Red Live Cell Dye. Total cellular integrin levels were evaluated by western blot, and the expression of cell surface integrins was assessed using fluorescent-labelled antibodies and flow cytometry.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 137 - 148
1 Apr 2024
Lu Y Ho T Huang C Yeh S Chen S Tsao Y

Aims

Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA).

Methods

Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 89 - 96
1 Mar 2024
Heckmann ND Chung BC Liu KC Chen XT Lovro LR Kistler NM White E Christ AB Longjohn DB Oakes DA Lieberman JR

Aims

Modular dual-mobility (DM) articulations are increasingly used during total hip arthroplasty (THA). However, concerns remain regarding the metal liner modularity. This study aims to correlate metal artifact reduction sequence (MARS)-MRI abnormalities with serum metal ion levels in patients with DM articulations.

Methods

A total of 45 patients (50 hips) with a modular DM articulation were included with mean follow-up of 3.7 years (SD 1.2). Enrolled patients with an asymptomatic, primary THA and DM articulation with over two years’ follow-up underwent MARS-MRI. Each patient had serum cobalt, chromium, and titanium levels drawn. Patient satisfaction, Oxford Hip Score, and Forgotten Joint Score-12 (FJS-12) were collected. Each MARS-MRI was independently reviewed by fellowship-trained musculoskeletal radiologists blinded to serum ion levels.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 123 - 131
12 Feb 2024
Chen B Duckworth AD Farrow L Xu YJ Clement ND

Aims

This study aimed to determine whether lateral femoral wall thickness (LWT) < 20.5 mm was associated with increased revision risk of intertrochanteric fracture (ITF) of the hip following sliding hip screw (SHS) fixation when the medial calcar was intact. Additionally, the study assessed the association between LWT and patient mortality.

Methods

This retrospective study included ITF patients aged 50 years and over treated with SHS fixation between 2019 and 2021 at a major trauma centre. Demographic information, fracture type, delirium status, American Society of Anesthesiologists grade, and length of stay were collected. LWT and tip apex distance were measured. Revision surgery and mortality were recorded at a mean follow-up of 19.5 months (1.6 to 48). Cox regression was performed to evaluate independent risk factors associated with revision surgery and mortality.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 109 - 116
8 Feb 2024
Corban LE van de Graaf VA Chen DB Wood JA Diwan AD MacDessi SJ

Aims

While mechanical alignment (MA) is the traditional technique in total knee arthroplasty (TKA), its potential for altering constitutional alignment remains poorly understood. This study aimed to quantify unintentional changes to constitutional coronal alignment and joint line obliquity (JLO) resulting from MA.

Methods

A retrospective cohort study was undertaken of 700 primary MA TKAs (643 patients) performed between 2014 and 2017. Lateral distal femoral and medial proximal tibial angles were measured pre- and postoperatively to calculate the arithmetic hip-knee-ankle angle (aHKA), JLO, and Coronal Plane Alignment of the Knee (CPAK) phenotypes. The primary outcome was the magnitude and direction of aHKA, JLO, and CPAK alterations.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 52 - 65
1 Feb 2024
Yao C Sun J Luo W Chen H Chen T Chen C Zhang B Zhang Y

Aims

To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism.

Methods

In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 40 - 40
2 Jan 2024
Lin J Chen P Tan ZJ Sun Y Tam W Ao D Shen W Leung V Cheung KMC To M
Full Access

Silver nanoparticles (AgNPs) possess anti-inflammatory activities and have been widely deployed for promoting tissue repair. Here we explored the efficacy of AgNPs on functional recovery after spinal cord injury (SCI). Our data indicated that, in a SCI rat model, local AgNPs delivery could significantly recover locomotor function and exert neuroprotection through reducing of pro-inflammatory M1 survival. Furthermore, in comparison with Raw 264.7-derived M0 and M2, a higher level of AgNPs uptake and more pronounced cytotoxicity were detected in M1. RNA-seq analysis revealed the apoptotic genes in M1 were upregulated by AgNPs, whereas in M0 and M2, pro-apoptotic genes were downregulated and PI3k-Akt pathway signaling pathway was upregulated. Moreover, AgNPs treatment preferentially reduced cell viability of human monocyte-derived M1 comparing to M2, supporting its effect on M1 in human. Overall, our findings reveal AgNPs could suppress M1 activity and imply its therapeutic potential in promoting post-SCI motor recovery.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 19 - 19
2 Jan 2024
Li R Zheng J Smith P Chen X
Full Access

Device-associated bacterial infections are a major and costly clinical challenge. This project aimed to develop a smart new biomaterial for implants that helps to protect against infection and inflammation, promote bone growth, and is biodegradable. Gallium (Ga) doped strontium-phosphate was coated on pure Magnesium (Mg) through a chemical conversion process. Mg was distributed in a graduated manner throughout the strontium-phosphate coating GaSrPO4, with a compact structure and a Ga-rich surface. We tested this sample for its biocompatibility, effects on bone remodeling and antibacterial activities including Staphylococcus aureus, S. epidermidis and E. coli - key strains causing infection and early failure of the surgical implantations in orthopaedics and trauma.

Ga was distributed in a gradient way throughout the entire strontium-phosphate coating with a compact structure and a gallium-rich surface. The GaSrPO4 coating protected the underlying Mg from substantial degradation in minimal essential media at physiological conditions over 9 days. The liberated Ga ions from the coatings upon Mg specimens inhibited the growth of bacterial tested. The Ga dopants showed minimal interferences with the SrPO4 based coating, which boosted osteoblasts and undermined osteoclasts in in vitro co-cultures model.

The results evidenced this new material may be further translated to preclinical trial in large animal model and towards clinical trial.

Acknowledgements: Authors are grateful to the financial support from the Australian Research Council through the Linkage Scheme (ARC LP150100343). The authors acknowledge the facilities, and the scientific and technical assistance of the RMIT University and John Curtin School of Medical Research, Australian National University.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 94 - 94
2 Jan 2024
Lin Y Lian W Chen Y Jahr H Wang F
Full Access

Obesity is correlated with the development of osteoporotic diseases. Gut microbiota-derived metabolite trimethylamine-n-oxide (TMAO) accelerates obesity-mediated tissue deterioration. This study was aimed to investigate what role TMAO may play in osteoporosis development during obesity.

Mice were fed with high-fat diet (HFD; 60 kcal% fat) or chow diet (CD; 10 kcal% fat) or 0.2% TMAO in drinking water for 6 months. Body adiposis and bone microstructure were investigated using μCT imaging. Gut microbiome and serum metabolome were characterized using 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry. Osteogenic differentiation of bone-marrow mesenchymal cells was quantified using RT-PCR and von Kossa staining. Cellular senescence was evaluated by key senescence markers p16, p21, p53, and senescence association β-galactosidase staining.

HFD-fed mice developed hyperglycemia, body adiposis and osteoporosis signs, including low bone mineral density, sparse trabecular microarchitecture, and decreased biomechanical strength. HFD consumption induced gut microbiota dysbiosis, which revealed a high Firmicutes/Bacteroidetes ratio and decreased α-diversity and abundances of beneficial microorganisms Akkermansiaceae, Lactobacillaceae, and Bifidobacteriaceae. Serum metabolome uncovered increased serum L-carnitine and TMAO levels in HFD-fed mice. Of note, transplantation of fecal microbiota from CD-fed mice compromised HFD consumption-induced TMAO overproduction and attenuated loss in bone mass, trabecular microstructure, and bone formation rate. TMAO treatment inhibited trabecular and cortical bone mass and biomechanical characteristics; and repressed osteogenic differentiation capacity of bone-marrow mesenchymal cells. Mechanistically, TMAO accelerated mitochondrial dysfunction and senescence program, interrupted mineralized matrix production in osteoblasts.

Gut microbial metabolite TMAO induced osteoblast dysfunction, accelerating the development of obesity-induced skeletal deterioration. This study, for the first time, conveys a productive insight into the catabolic role of gut microflora metabolite TMAO in regulating osteoblast activity and bone tissue integrity during obesity.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 38 - 38
2 Jan 2024
Chen Y
Full Access

Chondrocytic activity is downregulated by compromised autophagy and mitochondrial dysfunction to accelerate the development of osteoarthritis (OA). Irisin is a cleaved form of fibronectin type III domain containing 5 (FNDC5) and known to regulate bone turnover and muscle homeostasis. However, little is known about the role of irisin in chondrocytes and the development of OA. This talk will shed light on FNDC5 expression by human articular chondrocytes and compare normal and osteoarthritic cells with respect to autophagosome marker LC3-II and oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG). In chondrocytes in vitro, irisin improves IL-1β-mediated growth inhibition, loss of specific cartilage markers and glycosaminoglycan production. Irisin further suppressed Sirt3 and UCP- 1 to improve mitochondrial membrane potential, ATP production, and catalase. This attenuated IL-1β-mediated production of reactive oxygen species, mitochondrial fusion, mitophagy, and autophagosome formation. In a surgical murine model of destabilization of the medial meniscus (DMM) intra-articular administration of irisin alleviates symptoms like cartilage erosion and synovitis. Furthermore, gait profiles of the treated limbs improved. In chondrocytes, irisin treatment upregulates autophagy, 8-OHdG and apoptosis in cartilage of DMM limbs. Loss of FNDC5 in chondrocytes correlates with human knee OA and irisin repressed inflammation-mediated oxidative stress and deficient extracellular matrix synthesis through retaining mitochondrial biogenesis and autophagy. The talk sheds new light on the chondroprotective actions of this myokine and highlights the remedial effects of irisin during progression of OA.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 70 - 70
2 Jan 2024
Ely E Collins K Lenz K Paradi S Liedtke W Chen Y Guilak F
Full Access

Osteoarthritis (OA) is the leading cause of pain and disability worldwide and is characterized by the degenerative changes of articular cartilage. Joint loading is required for cartilage maintenance; however, hyper-physiologic loading is a risk factor for OA. Mechanosensitive ion channels Piezo1 and Piezo2 synergistically transduce hyper-physiologic compression of chondrocytes, leading to chondrocyte death and onset of OA. This injury response is inhibited by Piezo channel loss of function, however the mechanistic role of Piezo channels in vivo is unknown. We examined the hypothesis that deletion of Piezo in chondrocytes will protect mice from joint damage and pain-related behaviors following a surgical destabilization of the medial meniscus (DMM), investigating a key mechanistic and mechanobiological role of these channels in the pathogenesis of OA.

Aggrecan-Cre Piezo1 and Piezo1/2 knockout mice ((Agc)1-CREERT2;Piezo1fl/flPiezo2fl/fl) were generated and given a 5-day Tamoxifen regimen at 12-weeks of age (n=6–12/group/sex). Cre-negative mice served as controls. At 16-weeks, mice received DMM surgery on the left knee. 12-weeks following DMM prior to sacrifice, activity and hyperalgesia were measured using spontaneous running wheels and a small animal algometer. Structural changes in bone, cartilage, and synovium were characterized using microCT, histology, and Modified Mankin Score criteria.

Knockout of Piezo1/2 channels was chondroprotective in both sexes following DMM surgery as demonstrated by reduced Modified Mankin Score compared to control animals. Piezo1 KO was chondroprotective in only female mice, indicating a sexually dimorphic response. Piezo1 and Piezo1/2 KO was protective against pain in male mice, while females displayed no differences compared to controls. No changes were observed in bone morphology.

Chondrocyte-specific Piezo1/2 knockout protects the knee joint from structural damage, hyperalgesia and functional deficits in a surgical model of PTOA in male and female mice, illustrating the importance of Piezo channels in response to injury in vivo. Future work aims to interrogate potential sexually dimorphic responses to cartilage damage and investigating Piezo2 KO mice.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 734 - 746
12 Dec 2023
Chen M Hu C Hsu Y Lin Y Chen K Ueng SWN Chang Y

Aims

Therapeutic agents that prevent chondrocyte loss, extracellular matrix (ECM) degradation, and osteoarthritis (OA) progression are required. The expression level of epidermal growth factor (EGF)-like repeats and discoidin I-like domains-containing protein 3 (EDIL3) in damaged human cartilage is significantly higher than in undamaged cartilage. However, the effect of EDIL3 on cartilage is still unknown.

Methods

We used human cartilage plugs (ex vivo) and mice with spontaneous OA (in vivo) to explore whether EDIL3 has a chondroprotective effect by altering OA-related indicators.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims

Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration.

Methods

A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 27 - 27
24 Nov 2023
Chen B Chittò M Benavente LP Post V Moreno MG Zeiter S Trampuz A Wagemans J Lavigne R Onsea J Metsemakers W Moriarty F
Full Access

Aim

Bacteriophages are remerging as alternative and adjunctive therapy for fracture-related infection (FRI). However, current administration protocols involve prolonged retention of a percutaneous draining tube with potential risk of developing superinfection. In this study, we applied a cocktail of in vitro evolved biofilm-targeting phages for Methicillin-resistant Staphylococcus aureus (MRSA) in a hydrogel platform co-delivering vancomycin. In vitro synergy and antibiofilm activity was assessed and a subsequent in vivo study was performed in a mouse FRI model with MRSA.

Method

Two evolved bacteriophages (MRSA-R14 and COL-R23) with improved antibiofilm activity against a clinical isolate (MRSA3) were tested in combination with vancomycin and a carboxymethylcellulose (CMC) hydrogel in vitro and in vivo. MRSA3 bacterial biofilms were formed on sterile 4 mm sintered porous glass beads at 37 °C for 24 h. Biofilms were exposed to i-phage cocktail (107 PFU/ml), ii-vancomycin at concentrations of 0.5, 1, 10 and 100 times the MIC, or iii-combination of phage cocktail and vancomycin. Recovered biofilm cells, were quantified by colony counting. The stability and release profiles of phage cocktail and vancomycin in co-delivery hydrogel were assessed in vitro for 8 days and 72 hrs, respectively, and subsequently tested in the treatment of 5-day-old MRSA3 infection of a femoral plate osteotomy in mice.


Bone & Joint Open
Vol. 4, Issue 11 | Pages 859 - 864
13 Nov 2023
Chen H Chan VWK Yan CH Fu H Chan P Chiu K

Aims

The surgical helmet system (SHS) was developed to reduce the risk of periprosthetic joint infection (PJI), but the evidence is contradictory, with some studies suggesting an increased risk of PJI due to potential leakage through the glove-gown interface (GGI) caused by its positive pressure. We assumed that SHS and glove exchange had an impact on the leakage via GGI.

Methods

There were 404 arthroplasty simulations with fluorescent gel, in which SHS was used (H+) or not (H-), and GGI was sealed (S+) or not (S-), divided into four groups: H+S+, H+S-, H-S+, and H-S-, varying by exposure duration (15 to 60 minutes) and frequency of glove exchanges (0 to 6 times). The intensity of fluorescent leakage through GGI was quantified automatically with an image analysis software. The effect of the above factors on fluorescent leakage via GGI were compared and analyzed.


Bone & Joint Research
Vol. 12, Issue 11 | Pages 691 - 701
3 Nov 2023
Dai Z Chen Y He E Wang H Guo W Wu Z Huang K Zhao Q

Aims

Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis.

Methods

Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient transfection experiments and chromatin immunoprecipitation (ChIP) experiments were used to examine the exact mechanism of action.


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1149 - 1158
1 Nov 2023
Chen B Zhang JH Duckworth AD Clement ND

Aims

Hip fractures are a major cause of morbidity and mortality, and malnutrition is a crucial determinant of these outcomes. This meta-analysis aims to determine whether oral nutritional supplementation (ONS) improves postoperative outcomes in older patients with a hip fracture.

Methods

A systematic literature search was conducted in August 2022. ONS was defined as high protein-based diet strategies containing (or not containing) carbohydrates, fat, vitamins, and minerals. Randomized trials documenting ONS in older patients with hip fracture (aged ≥ 50 years) were included. Two reviewers evaluated study eligibility, conducted data extraction, and assessed study quality.


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1135 - 1139
1 Nov 2023
Young SW Chen W Clarke HD Spangehl MJ

Prophylactic antibiotics are important in reducing the risk of periprosthetic joint infection (PJI) following total knee arthroplasty. Their effectiveness depends on the choice of antibiotic and the optimum timing of their administration, to ensure adequate tissue concentrations. Cephalosporins are typically used, but an increasing number of resistant organisms are causing PJI, leading to the additional use of vancomycin. There are difficulties, however, with the systemic administration of vancomycin including its optimal timing, due to the need for prolonged administration, and potential adverse reactions. Intraosseous regional administration distal to a tourniquet is an alternative and attractive mode of delivery due to the ease of obtaining intraosseous access. Many authors have reported the effectiveness of intraosseous prophylaxis in achieving higher concentrations of antibiotic in the tissues compared with intravenous administration, providing equal or enhanced prophylaxis while minimizing adverse effects. This annotation describes the technique of intraosseous administration of antibiotics and summarizes the relevant clinical literature to date.

Cite this article: Bone Joint J 2023;105-B(11):1135–1139.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 455 - 466
1 Aug 2023
Zhou H Chen C Hu H Jiang B Yin Y Zhang K Shen M Wu S Wang Z

Aims

Rotator cuff muscle atrophy and fatty infiltration affect the clinical outcomes of rotator cuff tear patients. However, there is no effective treatment for fatty infiltration at this time. High-intensity interval training (HIIT) helps to activate beige adipose tissue. The goal of this study was to test the role of HIIT in improving muscle quality in a rotator cuff tear model via the β3 adrenergic receptor (β3AR).

Methods

Three-month-old C57BL/6 J mice underwent a unilateral rotator cuff injury procedure. Mice were forced to run on a treadmill with the HIIT programme during the first to sixth weeks or seventh to 12th weeks after tendon tear surgery. To study the role of β3AR, SR59230A, a selective β3AR antagonist, was administered to mice ten minutes before each exercise through intraperitoneal injection. Supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat were harvested at the end of the 12th week after tendon tear and analyzed biomechanically, histologically, and biochemically.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 433 - 446
7 Jul 2023
Guo L Guo H Zhang Y Chen Z Sun J Wu G Wang Y Zhang Y Wei X Li P

Aims

To explore the novel molecular mechanisms of histone deacetylase 4 (HDAC4) in chondrocytes via RNA sequencing (RNA-seq) analysis.

Methods

Empty adenovirus (EP) and a HDAC4 overexpression adenovirus were transfected into cultured human chondrocytes. The cell survival rate was examined by real-time cell analysis (RTCA) and EdU and flow cytometry assays. Cell biofunction was detected by Western blotting. The expression profiles of messenger RNAs (mRNAs) in the EP and HDAC4 transfection groups were assessed using whole-transcriptome sequencing (RNA-seq). Volcano plot, Gene Ontology, and pathway analyses were performed to identify differentially expressed genes (DEGs). For verification of the results, the A289E/S246/467/632 A sites of HDAC4 were mutated to enhance the function of HDAC4 by increasing HDAC4 expression in the nucleus. RNA-seq was performed to identify the molecular mechanism of HDAC4 in chondrocytes. Finally, the top ten DEGs associated with ribosomes were verified by quantitative polymerase chain reaction (QPCR) in chondrocytes, and the top gene was verified both in vitro and in vivo.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 27 - 27
23 Jun 2023
Chen K Wu J Xu L Han X Chen X
Full Access

To propose a modified approach to measuring femoro-epiphyseal acetabular roof (FEAR) index while still abiding by its definition and biomechanical basis, and to compare the reliabilities of the two methods. To propose a classification for medial sourcil edges.

We retrospectively reviewed a consecutive series of patients treated with periacetabular osteotomy and/or hip arthroscopy. A modified FEAR index was defined. Lateral center-edge angle, Sharp's angle, Tonnis angle on all hips, as well as FEAR index with original and modified approaches were measured. Intra- and inter-observer reliability were calculated as intraclass correlation coefficients (ICC) for FEAR index with both approaches and other alignments. A classification was proposed to categorize medial sourcil edges. ICC for the two approaches across different sourcil groups were also calculated.

After reviewing 411 patients, 49 were finally included. Thirty-two patients (40 hips) were identified as having borderline dysplasia defined by an LCEA of 18 to 25 degrees. Intra-observer ICC for the modified method were good to excellent for borderline hips; poor to excellent for DDH; moderate to excellent for normal hips. As for inter-observer reliability, modified approach outperformed original approach with moderate to good inter-observer reliability (DDH group, ICC=0.636; borderline dysplasia group, ICC=0.813; normal hip group, ICC=0.704). The medial sourcils were classified to 3 groups upon its morphology. Type II(39.0%) and III(43.9%) sourcils were the dominant patterns. The sourcil classification had substantial intra-observer agreement (observer 4, kappa=0.68; observer 1, kappa=0.799) and moderate inter-observer agreement (kappa=0.465). Modified approach to FEAR index possessed greater inter-observer reliability in all medial sourcil patterns.

The modified FEAR index has better intra- and inter-observer reliability compared with the original approach. Type II and III sourcils accounts for the majority to which only the modified approach is applicable.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 13 - 13
7 Jun 2023
Diffley T Ferry J Sumarlie R Beshr M Chen B Clement N Farrow L
Full Access

Appropriate surgical management of hip fractures has major clinical and economic consequences. Recently IMN use has increased compared to SHS constructs, despite no clear evidence demonstrating superiority of outcome. We therefore set out to provide further evidence about the clinical and economic implications of implant choice when considering hip fracture fixation strategies.

A retrospective cohort study using Scottish hip fracture audit (SHFA) data was performed for the period 2016–2022. Patients ≥50 with a hip fracture and treated with IMN or SHS constructs at Scottish Hospitals were included. Comparative analyses, including adjustment for confounders, were performed utilising Multivariable logistic regression for dichotomous outcomes and Mann-Whitney-U tests for non-parametric data. A sub-group analysis was also performed focusing on AO-A1/A2 configurations which utilised additional regional data. Cost differences in Length of Stay (LOS) were calculated using defined costs from the NHS Scotland Costs book. In all analyses p<0.05 denoted significance.

13638 records were included (72% female). 9867 received a SHS (72%).

No significant differences were identified in 30 or 60-day survival (Odds Ratio [OR] 1.05, 95%CI 0.90–1.23; p=0.532), (OR 1.10, 95%CI 0.97–1.24; p=0.138) between SHS and IMN's.

There was however a significantly lower early mobilisation rate with IMN vs SHS (OR 0.64, 95%CI 0.59–0.70; p<0.001), and lower likelihood of discharge to domicile by day-30 post-admission (OR 0.77, 95%CI 0.71–0.84; p<0.001). Acute and overall, LOS were significantly lower for SHS vs IMN (11 vs 12 days and 20 vs 24 days respectively; p<0.001). Findings were similar across a sub-group analysis of 559 AO A1/A2 fracture configurations.

Differences in LOS potentially increases costs by £1230 per-patient, irrespective of the higher costs of IMN's v SHS.

Appropriate SHS use is associated with early mobilisation, reduced LOS and likely with reduced cost of treatment. Further research exploring potential reasons for the identified differences in early mobilisation are warranted.


Bone & Joint Open
Vol. 4, Issue 6 | Pages 424 - 431
5 Jun 2023
Christ AB Piple AS Gettleman BS Duong A Chen M Wang JC Heckmann ND Menendez L

Aims

The modern prevalence of primary tumours causing metastatic bone disease is ill-defined in the oncological literature. Therefore, the purpose of this study is to identify the prevalence of primary tumours in the setting of metastatic bone disease, as well as reported rates of pathological fracture, postoperative complications, 90-day mortality, and 360-day mortality for each primary tumour subtype.

Methods

The Premier Healthcare Database was queried to identify all patients who were diagnosed with metastatic bone disease from January 2015 to December 2020. The prevalence of all primary tumour subtypes was tabulated. Rates of long bone pathological fracture, 90-day mortality, and 360-day mortality following surgical treatment of pathological fracture were assessed for each primary tumour subtype. Patient characteristics and postoperative outcomes were analyzed based upon whether patients had impending fractures treated prophylactically versus treated completed fractures.


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 679 - 687
1 Jun 2023
Lou Y Zhao C Cao H Yan B Chen D Jia Q Li L Xiao J

Aims

The aim of this study was to report the long-term prognosis of patients with multiple Langerhans cell histiocytosis (LCH) involving the spine, and to analyze the risk factors for progression-free survival (PFS).

Methods

We included 28 patients with multiple LCH involving the spine treated between January 2009 and August 2021. Kaplan-Meier methods were applied to estimate overall survival (OS) and PFS. Univariate Cox regression analysis was used to identify variables associated with PFS.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 65 - 65
17 Apr 2023
Tacchella C Lombardero SM Clutton E Chen Y Crichton M
Full Access

In this work, we propose a new quantitative way of evaluating acute compartment syndrome (ACS) by dynamic mechanical assessment of soft tissue changes. First, we have developed an animal model of ACS to replicate the physiological changes during the condition. Secondly, we have developed a mechanical assessment tool for quantitative pre-clinical assessment of ACS. Our hand-held indentation device provides an accurate method for investigations into the local dynamic mechanical properties of soft tissue and for in-situ non-invasive assessment and monitoring of ACS.

Our compartment syndrome model was developed on the cranial tibial and the peroneus tertius muscles of a pig's leg (postmortem). The compartment syndrome pressure values were obtained by injecting blood from the bone through the muscle.

To enable ACS assessment by a hand-held indentation device we combined three main components: a load cell, a linear actuator and a 3-axis accelerometer. Dynamic tests were performed at a frequency of 0.5 Hz and by applying an amplitude of 0.5 mm.

Another method used to observe the differences in the mechanical properties inside the leg was a 3D Digital Image Correlation (3D-DIC). Videos were taken from two different positions of the pig's leg at different pressure values: 0 mmHg, 15 mmHg and 40 mmHg. Two strains along the x axis (Exx) and y axis (Eyy) were measured.

Between the two pressure cases (15 mmHg and 40 mmHg) a clear deformation of the model is visible. In fact, the bigger the pressure, the more visible the increase in strain is.

In our animal model, local muscle pressures reached values higher than 40 mmHg, which correlate with observed human physiology in ACS. In our presentation we will share our dynamic indentation results on this model to demonstrate the sensitivity of our measurement techniques.

Compartment syndrome is recognised as needing improved clinical management tools. Our approach provides both a model that reflects physiological behaviour of ACS, and a method for in-situ non-invasive assessment and monitoring.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 15 - 15
11 Apr 2023
Li H Chen H
Full Access

Osteoporosis is a common problem in postmenopausal women and the elderly. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a bi-directional enzyme that primarily activates glucocorticoids (GCs) in vivo, which is a considerable potential target as treatment for osteoporosis. Previous studies have demonstrated its effect on osteogenesis, and our study aimed to demonstrate its effect on osteoclast activation.

In vivo, we used 11β-HSD1 knock-off (KO) and C57BL6/J mice to undergo the ovariectomy-induced osteoporosis (OVX). In vitro, In vivo, We used 11β-HSD1 knockoff (KO) and C57BL6/J mice to undergo the ovariectomy-induced osteoporosis (OVX). In vitro, bone marrow-derived macrophages (BMM) and bone marrow mesenchymal stem cell (BMSC) of KO and C57BL6/J mice were extracted to test their osteogenic and osteoclastic abilities. We then created osteoclastic 11β-HSD1 elimination mice (Ctsk::11β-HSD1fl/fl) and treated them with OVX. Micro-CT analysis, H&E, immunofluorescence staining, and qPCR were performed. Finally, we conducted the high-throughput sequencing to find out 11β-HSD1 and osteoclast activation related genes.

We collected 6w samples after modeling. We found that KO mice were resistant to loss of bone trabeculae. The same effect was observed in osteoclastic 11β-HSD1 elimination mice. Meanwhile, BVT-2733, a classic inhibitor of 11β-HSD1, inhibited the osteoclast effect of cells without affecting osteogenic effect in vitro. High-throughput sequencing suggested that glucocorticoid receptor (GR) may play a key role in the activation of osteoclasts, which was verified by immunofluorescence staining and WB in vivo and in vitro.

In the process of osteoporosis, 11β-HSD1 expression of osteoclasts is abnormally increased, which may be a new target for inhibiting osteoclast activation and treating osteoporosis.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 59 - 59
11 Apr 2023
Chitto M Chen B Kunisch F Wychowaniec J Onsea J Post V Richards G Zeiter S Wagemans J Trampuz A D'Este M Moreno M Lavigne R Moriarty F
Full Access

Fracture related infection remains a major challenge in musculoskeletal trauma surgery. Despite best practice, treatment strategies suffer from high failure rates due to antibiotic resistance and tolerance. Bacteriophages represent a promising alternative as they retain activity against such bacteria. However, optimal phage administration protocols remain unknown, although injectable hydrogels, loaded with phage and conventional antibiotics, may support conventional therapy.

In this study we tested the activity of meropenem, and two newly isolated bacteriophages (ϕ9 and ϕ3) embedded within alginate-chitosan microbeads and a hydrogel. Antibiotic and phage stability and activity were monitored in vitro, over a period of 10 days. In vivo, the same material was tested in treatment of a 5-day old Pseudomonas aeruginosa infection of a tibial plate osteotomy in mice. Treatment involved debridement and 5 days of systemic antibiotic therapy plus: i- saline, ii-phages in saline, iii-phages and antibiotics loaded into a hydrogel (n=7 mice/group). To assess the efficacy of the treatments, the infection load was monitored during revision surgery with debridement of the infected tissue after 5,10 and 13 days (euthanasia) by CFU and PFU quantification.

In vitro testing confirmed that the stability of meropenem and activity of ϕ9 and ϕ3, was not affected within the alginate beads or hydrogel over 10 days. The in vivo study showed that all mice receiving phages and antibiotics loaded into a hydrogel survived the infection with a reduction of the bacterial load in the soft tissue. Active phages could be recovered from the infected site at euthanasia (104 PFU/g).

The hydrogel loaded with bacteriophages and meropenem showed a positive result in locally reducing the infection load indicating a synergistic effect of the selected antimicrobials. Overall, our new strategy shows encouraging results for improving the treatment of antibiotic-resistant biofilm infections that are related to medical implants.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 14 - 14
11 Apr 2023
Chen Z Chen P Tai A Bassonga E Mitchell C Wang A Zheng M
Full Access

Tendinopathy is the most frequent musculoskeletal disease that requires medical attention. Mechanical overload has been considered as a key driver of its pathology. However, the underline mechanism on how overload induces tendinopathy and inflammation is unclear. Extracellular mitochondria (EM) are newly identified as cell-to-cell communicators. The aim of this study is to elucidate the role of mitochondria in overload-induced inflammation.

We performed three-dimensional uniaxial stretching to mouse tendon organoid in bioreactors. Cyclic strain of uniaxial loadings included underload, normal load, and overload, according to previous work. We then harvested microvesicles including EM, from the bioreactor by differential centrifugation and evaluated their characteristics by flow cytometry and super-resolution confocal microscopy. Raw 264.7 mouse macrophage cell line was used for chemotaxis assay in a Boyden Chamber System with Magnetic-Activated Cell Sorting Technology. EM induced cytokines secretion by macrophages was analyzed by a bead-based multiplex assay panel. N-Acetyl-L-cysteine (NAC) was used as the antioxidant to tendon organoid to regulate mitochondrial fitness.

We showed mechanical load induced tendon organoid to release microvesicles including mitochondria. The size of microvesicles is mainly in the range from 220nm to 880nm. More than 75% of microvesicles could be stained by PKH26, confirming they were with lipophilic membrane. Super-resolution confocal microscopy identified two forms of mitochondria, including mitochondria encapsulated in vesicles and free mitochondria. Overload led to the degeneration of the organoid and induced microvesicles release containing most EM. Chemotaxis assay showed that EM from overloaded tendon organoid induced macrophages chemotaxis. In addition, microvesicles extracted from overloaded tendon organoid induced the production of proinflammatory cytokines including IL-6, KC (Keratinocyte-Derived Chemokine) and IL-18. NAC treatment to tendon cells could attenuate overload-induced macrophage chemotaxis.

Overload induces EM releasing from tendon cells, which leads to chemotaxis of macrophages toward tendon, resulting in induction of inflammation.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 122 - 122
11 Apr 2023
Chen L Zheng M Chen Z Peng Y Jones C Graves S Chen P Ruan R Papadimitriou J Carey-Smith R Leys T Mitchell C Huang Y Wood D Bulsara M Zheng M
Full Access

To determine the risk of total knee replacement (TKR) for primary osteoarthritis (OA) associated with overweight/obesity in the Australian population.

This population-based study analyzed 191,723 cases of TKR collected by the Australian Orthopaedic Association National Joint Registry and population data from the Australian Bureau of Statistics. The time-trend change in incidence of TKR relating to BMI was assessed between 2015-2018. The influence of obesity on the incidence of TKR in different age and gender groups was determined. The population attributable fraction (PAF) was then calculated to estimate the effect of obesity reduction on TKR incidence.

The greatest increase in incidence of TKR was seen in patients from obese class III. The incidence rate ratio for having a TKR for obesity class III was 28.683 at those aged 18-54 years but was 2.029 at those aged >75 years. Females in obesity class III were 1.7 times more likely to undergo TKR compared to similarly classified males. The PAFs of TKR associated with overweight or obesity was 35%, estimating 12,156 cases of TKR attributable to obesity in 2018. The proportion of TKRs could be reduced by 20% if overweight and obese population move down one category.

Obesity has resulted in a significant increase in the incidence of TKR in the youngest population in Australia. The impact of obesity is greatest in the young and the female population. Effective strategies to reduce the national obese population could potentially reduce 35% of the TKR, with over 10,000 cases being avoided.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 44 - 44
11 Apr 2023
Medesan P Chen Y Rust P Mearns-Spragg A Paxton J
Full Access

Jellyfish collagens exhibit auspicious perspectives for tissue engineering applications primarily due to their outstanding compatibility with a wide range of cell types, low immunogenicity and biodegradability. Furthermore, derived from a non-mammalian source, jellyfish collagens reduce the risk of disease transmission, minimising therefore the ethical and safety concerns. The current study aims to investigate the potential of 3-dimensional jellyfish collagen sponges (3D-JCS) in promoting bone tissue regeneration.

Both qualitative and quantitative analyses were performed in order to assess adhesion and proliferation of MC3T3 cells on 3D-JCL, as well as cell migration and bone-like ECM production. Histological and fluorescent dyes were used to stain mineral deposits (i.e. Alizarin Red S (ARS), Von Kossa, Tetracycline hydrochloride) while images were acquired using optical and confocal microscopy.

Qualitative data indicated successful adhesion and proliferation of MC3T3 cells on the 3D-JCS as well as cell migration along with ECM production both on the inner and outer surface of the scaffolds. Moreover, quantitative analyses indicated a four-fold increase of ARS uptake between 2- and 3-dimensional cultures (N=3) as well as an eighteen-fold increase of ARS uptake for the 3D-JCS (N=3) when cultured in osteogenic conditions compared to control. This suggests the augmented osteogenic potential of MC3T3 cells when cultured on 3D-JCS. Nevertheless, the cell-mediated mineral deposition appeared to alter the mechanical properties of the jellyfish collagen sponges that were previously reported to exhibit low mechanical properties (compressive modulus: 1-2 kPa before culture).

The biocompatibility, high porosity and pore interconnectivity of jellyfish collagen sponges promoted adhesion and proliferation of MC3T3 cells as well as cell migration and bone-like ECM production. Their unique features recommend the jellyfish collagen sponges as superior biomaterial scaffolds for bone tissue regeneration. Further studies are required to quantify the change in mechanical properties of the cell-seeded scaffolds and confirm their suitability for bone tissue regeneration. We predict that the 3D-JCS will be useful for future studies in both bone and bone-tendon interface regeneration.

Acknowledgments

This research has been supported by a Medical Research Scotland Studentship award (ref: -50177-2019) in collaboration with Jellagen Ltd.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 259 - 273
6 Apr 2023
Lu R Wang Y Qu Y Wang S Peng C You H Zhu W Chen A

Aims

Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant (gynura bicolor), has demonstrated anti-inflammatory properties in various diseases. We aimed to explore the chondroprotective effect of DHCA on OA and its potential mechanism.

Methods

In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 146 - 146
4 Apr 2023
Li H Chen H
Full Access

Lumbar diseases have become a major problem affecting human health worldwide. Conservative treatment of lumbar diseases is difficult to achieve ideal results, and surgical treatment of trauma, complications, it is imperative to develop a new treatment method. This study aims to explore the regulatory mechanism of cartilage endplate ossification caused by abnormal stress, and design intervention targets for this mechanism, so as to provide theoretical reference for the prevention and treatment of lumbar degeneration.

In vivo, we constructed spinal instability model in mice. In vitro, we used a mechanical tensile machine to simulate the abnormal stress conditions of the endplate cartilage cells. Through the high-throughput sequencing, we found the enrichment of Hippo signaling pathway. As YAP is a key protein in the Hippo signaling pathway, we then created cartilaginous YAP elimination mice (Col2::YAPfl/fl). The lumbar spine model was constructed again in these mice for H&E, SOFG and immunofluorescence staining. In vitro lentivirus was used to knock out YAP, immunofluorescence staining, WB and qPCR were performed. Finally, we conducted therapeutic experiments by using YAP agonist and AAV5 carrying YAP plasmids.

We collected 8w samples from C57/BL6 mice after modeling. We found ossification of the endplate in mice similar to human disc degeneration. High-throughput sequencing of stretched cells demonstrated high enrichment of the Hippo signaling pathway. By immunofluorescence staining, it was confirmed that Col-II decreased and Col-X gradually increased in the endplate cartilage of mice. This was also confirmed at 7 days after an in vitro stretch of 5% and 12%. Meanwhile, we found that cartilaginous YAP elimination mice developed very severe endplate degeneration. However, the endplate was well protected by intraperitoneal injection of YAP agonist or AAV5-YAP endplate injection, and the results in vitro were consistent with that.

In the process of cartilaginous ossification, abnormal stress regulates Col10a1 to promote cartilage endplate ossification through Hippo signaling pathway mediated YAP, and we expect to find potential drug targets for treatment through this mechanism.


Senescent chondrocyte and subchondral osteoclast overburden aggravate inflammatory cytokine and pro-catabolic proteinase overproduction, accelerating extracellular matrix degradation and pain during osteoarthritis (OA). Fibronectin type III domain containing 5 (FNDC5) is found to promote tissue homeostasis and alleviate inflammation. This study aimed to characterize what role Fndc5 may play in chondrocyte aging and OA development.

Serum and macroscopically healthy and osteoarthritic cartilage were biopsied from patients with knee OA who received total knee replacement. Murine chondrocytes were transfected with Fndc5 RNAi or cDNA. Mice overexpressing Fndc5 (Fndc5Tg) were operated to have destabilized medial meniscus mediated (DMM) joint injury as an experimental OA model. Cellular senescence was characterized using RT-PCR analysis of p16INK4A, p21CIP1, and p53 expression together with ß-galactosidase activity staining. Articular cartilage damage and synovitis were graded using OARSI scores. Osteophyte formation and mechanical allodynia were quantified using microCT imaging and von Frey filament, respectively. Osteoclast formation was examined using tartrate-resistant acid phosphatase staining.

Senescent chondrocyte and subchondral osteoclast overburden together with decreased serum FNDC5 levels were present in human osteoarthritic cartilage. Fndc5 knockdown upregulated senescence program together with increased IL-6, MMP9 and Adamts5 expression, whereas Alcian blue-stained glycosaminoglycan production were inhibited. Forced Fndc5 expression repressed senescence, apoptosis and IL-6 expression, reversing proliferation and extracellular matrix production in inflamed chondrocytes. Fndc5Tg mice showed few OA signs, including articular cartilage erosion, synovitis, osteophyte formation, subchondral plate sclerosis and mechanical allodynia together with decreased IL-6 production and few senescent chondrocytes and subchondral osteoclast formation during DMM-induced joint injury. Mechanistically, Fndc5 reversed histone H3K27me3-mediated IL-6 transcription repression to reduce reactive oxygen species production.

Fndc5 loss correlated with OA development. It was indispensable in chondrocyte growth and anabolism. This study sheds light onto the anti-ageing and anti-inflammatory actions of Fndc5 to chondrocytes; and highlights the chondroprotective function of Fndc5 to compromise OA.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 106 - 106
4 Apr 2023
Ding Y Luo W Chen Z Guo P Lei B Zhang Q Chen Z Fu Y Li C Ma T Liu J
Full Access

Quantitative ultrasound (QUS) is a promising tool to estimate bone structure characteristics and predict fragile fracture. The aim of this pilot cross-sectional study was to evaluate the performance of a multi-channel residual network (MResNet) based on ultrasonic radiofrequency (RF) signal to discriminate fragile fractures retrospectively in postmenopausal women.

Methods

RF signal and speed of sound (SOS) were obtained using an axial transmission QUS at one‐third distal radius for 246 postmenopausal women. Based on the involved RF signal, we conducted a MResNet, which combines multi-channel training with original ResNet, to classify the high risk of fragility fractures patients from all subjects. The bone mineral density (BMD) at lumber, hip and femoral neck acquired with DXA was recorded on the same day. The fracture history of all subjects in adulthood were collected. To assess the ability of the different methods in the discrimination of fragile fracture, the odds ratios (OR) calculated using binomial logistic regression analysis and the area under the receiver operator characteristic curves (AUC) were analyzed.

Results

Among the 246 postmenopausal women, 170 belonged to the non-fracture group, 50 to the vertebral group, and 26 to the non-vertebral fracture group. MResNet was discriminant for all fragile fractures (OR = 2.64; AUC = 0.74), for Vertebral fracture (OR = 3.02; AUC = 0.77), for non-vertebral fracture (OR = 2.01; AUC = 0.69). MResNet showed comparable performance to that of BMD of hip and lumbar with all types of fractures, and significantly better performance than SOS all types of fractures.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 110 - 110
4 Apr 2023
Ding Y Li S Li C Chen Z Wu C
Full Access

Total joint replacement (TJR) was one of the most revolutionary breakthroughs in joint surgery. The majority studies had shown that most implants could last about 25 years, anyway, there is still variation in the longevity of implants. In US, for all the hip revisions from 2012 to 2017 in the United States, 12.0% of the patients were diagnosed as aseptic loosening. Variable studies have showed that any factor that could cause a systemic or partial bone loss, might be the risk of periprosthetic osteolysis and aseptic loosening.

Breast cancer is the most frequent malignancy in women, more than 2.1 million women were newly diagnosed with breast cancer, 626,679 women with breast cancer died in 2018. It's been reported that the mean incidence of THA was 0.29% for medicare population with breast cancer in USA, of which the incidence was 3.46% in Norwegian. However, the effects of breast cancer chemotherapy and hormonotherapy, such as aromatase inhibitors (AI), significantly increased the risk of osteoporosis, and had been proved to become a great threat to hip implants survival.

In this case, a 46-year-old female undertook chemotherapy and hormonotherapy of breast cancer 3 years after her primary THA, was diagnosed with aseptic loosening of the hip prosthesis. Her treatment was summarized and analyzed.

Breast cancer chemotherapy and hormonotherapy might be a threat to the stability of THA prosthesis. More attention should be paid when a THA paitent occurred with breast cancer. More studies about the effect of breast cancer treatments on skeleton are required.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 55 - 55
4 Apr 2023
Ge Q Shi Z Ying J Chen J Yuan W Wang P Chen D Feng X Tong P Jin H
Full Access

TGF-β/Smad2 signaling is considered to be one of the important pathways involved in osteoarthritis (OA) and protein phosphatase magnesium-dependent 1A (PPM1A) functions as an exclusive phosphatase of Smad2 and regulates TGF-β signaling, here, we investigated the functional role of PPM1A in OA pathogenesis.

PPM1A expressions in both human OA cartilage and experimental OA mice chondrocytes were analyzed immunohistochemically. Besides, the mRNA and protein expression of PPM1A induced by IL-1β treatment were also detected by q-PCR and immunofluorescence in vitro. OA was induced in PPM1A knockout (KO) mice by destabilization of the medial meniscus (DMM), and histopathological examination was performed. OA was also induced in wild-type (WT) mice, which were then treated with an intra-articular injection of a selective PPM1A inhibitor for 8 weeks.

PPM1A protein expressions were increased in both human OA cartilage and experimental OA mice chondrocytes. We also found that treatment with IL-1β in mouse primary chondrocytes significantly increased both mRNA and protein expression of PPM1A in vitro. Importantly, our data showed that PPM1A deletion could substantially protect against surgically induced OA. Concretely, the average OARSI score and quantification of BV/TV of subchondral bone in KO mice were significantly lower than that in WT mice 8 weeks after DMM surgery. Besides, TUNEL staining revealed a significant decrease in apoptotic chondrocytes in PPM1A-KO mice with DMM operation. With OA induction, the rates of chondrocytes positive for Mmp-13 and Adamts-5 in KO mice were also significantly lower than those in WT mice. Moreover, compared with WT mice, the phosphorylation of Smad2 in chondrocytes was increased in KO mice underwent DMM surgery. However, articular-injection with SD-208, a selective inhibitor of TGF-β/Smad2 signaling could significantly abolish the chondroprotective phenotypes in PPM1A-KO mice. Additionally, both cartilage degeneration and subchondral bone subchondral bone sclerosis in DMM model were blunted following intra-articular injection with BC-21, a small-molecule inhibitor for PPM1A.

Our study demonstrated that PPM1A inhibition attenuates OA by regulating TGF-β/Smad2 signaling. Furthermore, PPM1A is a potential target for OA treatment and BC-21 may be employed as alternative therapeutic agents for the management of OA.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 137 - 137
4 Apr 2023
Chen P Chen Z Landao E Leys T Wang T Zheng Q Ding Y Zheng M
Full Access

To address the current challenge of anterior cruciate ligament (ACL) reconstruction, this study is the first to fabricate a braided collagen rope (BCR) which mimics native hamstring for ACL reconstruction. The study aims to evaluate the biological and biomechanical properties of BCR both in vivo and vitro.

Rabbit ACL reconstruction model using collagen rope and autograft (hamstring tendon) was conducted. The histological and biomechanical evaluations were conducted at 6-, 12-, 18, 26-week post-operation. In vitro study included cell morphology analysis, cell function evaluation and RNA sequencing of the tenocytes cultured on BCR. A cadaver study was also conducted to verify the feasibility of BCR for ACL reconstruction.

BCR displays satisfactory mechanical strength similar to hamstring graft for ACL reconstruction in rabbit. Histological assessment showed BCR restore ACL morphology at 26 weeks similar to native ACL. The superior dynamic ligamentization in BCR over autograft group was evidenced by assessment of cell and collagen morphology and orientation. The in vitro study showed that the natural collagen fibres within BCR enables to signal the morphology adaptation and orientation of human tenocytes in bioreactor. BCR enables to enhance cell proliferation and tenogenic expression of tenocytes as compared to hydrolysed collagen. We performed an RNA-Sequencing (RNA-seq) experiment where RNA was extracted from tenocyte seeded with BCR. Analysis of enriched pathways of the up-regulated genes revealed that the most enriched pathways were the Hypoxia-inducible factor 1-alpha (HIF1A) regulated networks, implicating the possible mechanism BCR induced ACL regeneration. The subsequent cadaver study was conducted to proof the feasibility of BCR for ACL reconstruction.

This study demonstrated the proof-of-concept of bio-textile braided collagen rope for ACL reconstruction, and the mechanism by which BCR induces natural collagen fibres that positively regulate morphology and function of tenocytes.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 56 - 56
4 Apr 2023
Sun Y Zheng H Kong D Yin M Chen J Lin Y Ma X Tian Y Wang Y
Full Access

Using deep learning and image processing technology, a standardized automatic quantitative analysis systerm of lumbar disc degeneration based on T2MRI is proposed to help doctors evaluate the prognosis of intervertebral disc (IVD) degeneration.

A semantic segmentation network BianqueNet with self-attention mechanism skip connection module and deep feature extraction module is proposed to achieve high-precision segmentation of intervertebral disc related areas. A quantitative method is proposed to calculate the signal intensity difference (SI) in IVD, average disc height (DH), disc height index (DHI), and disc height-to-diameter ratio (DHR). According to the correlation analysis results of the degeneration characteristic parameters of IVDs, 1051 MRI images from four hospitals were collected to establish the quantitative ranges for these IVD parameters in larger population around China.

The average dice coefficients of the proposed segmentation network for vertebral bodies and intervertebral discs are 97.04% and 94.76%, respectively. The designed parameters of intervertebral disc degeneration have a significant negative correlation with the Modified Pfirrmann Grade. This procedure is suitable for different MRI centers and different resolution of lumbar spine T2MRI (ICC=.874~.958). Among them, the standard of intervertebral disc signal intensity degeneration has excellent reliability according to the modified Pfirrmann Grade (macroF1=90.63%~92.02%).

we developed a fully automated deep learning-based lumbar spine segmentation network, which demonstrated strong versatility and high reliability to assist residents on IVD degeneration grading by means of IVD degeneration quantitation.


Hip fractures are a major cause of morbidity and mortality, and malnutrition is a critical determinant of these outcomes. This systematic review and meta-analysis aims to determine whether oral nutritional supplementation (ONS) improves postoperative outcomes in older patients with hip fracture. An electronic systematic literature search was conducted in August 2022 using four databases. Randomized trials documenting ONS in older patients with hip fracture (aged 50+) were included. Two reviewers evaluated study eligibility, data extraction and assessed study quality.

There were 812 studies identified of which 18 studies involving 1,512 patients met the inclusion criteria. The overall meta-analysis demonstrates that ONS was associated with a significant risk reduction in infective complications (odds ratio (OR) 0.54, 95%CI 0.38, 0.76), pressure ulcers (OR 0.54, 95%CI 0.33, 0.88), total complications rate (OR 0.57, 95%CI 0.42, 0.79). Length of hospital stay (LOS) was also significantly reduced (weighted mean difference (WMD) −2.01, 95%CI −3.52, −0.5), particularly in the rehabilitation LOS (WMD −4.17, 95%CI −7.08, −1.26). There was a tendency towards lower risk in mortality (OR 0.93, 95%CI 0.62, 1.4) and readmission (OR 0.52, 95%CI 0.16, 1.73), though statistical significance was not achieved. The overall compliance to ONS ranged from 64.1% to 100%, but no factors influencing compliance were identified.

This systematic review was the first to quantitatively demonstrate that ONS reduces half the risk of infective complications, pressure ulcers, total complication rate and reduces LOS. ONS should be a regular and integrated part of medical practice, especially given that the compliance to ONS is acceptable.


Aims

The optimal procedure for the treatment of ossification of the posterior longitudinal ligament (OPLL) remains controversial. The aim of this study was to compare the outcome of anterior cervical ossified posterior longitudinal ligament en bloc resection (ACOE) with posterior laminectomy and fusion with bone graft and internal fixation (PTLF) for the surgical management of patients with this condition.

Methods

Between July 2017 and July 2019, 40 patients with cervical OPLL were equally randomized to undergo surgery with an ACOE or a PTLF. The clinical and radiological results were compared between the two groups.


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 455 - 464
15 Mar 2023
de Joode SGCJ Meijer R Samijo S Heymans MJLF Chen N van Rhijn LW Schotanus MGM

Aims

Multiple secondary surgical procedures of the shoulder, such as soft-tissue releases, tendon transfers, and osteotomies, are described in brachial plexus birth palsy (BPBP) patients. The long-term functional outcomes of these procedures described in the literature are inconclusive. We aimed to analyze the literature looking for a consensus on treatment options.

Methods

A systematic literature search in healthcare databases (PubMed, Embase, the Cochrane library, CINAHL, and Web of Science) was performed from January 2000 to July 2020, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The quality of the included studies was assessed with the Cochrane ROBINS-I risk of bias tool. Relevant trials studying BPBP with at least five years of follow-up and describing functional outcome were included.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 202 - 211
7 Mar 2023
Bai Z Shou Z Hu K Yu J Meng H Chen C

Aims

This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect.

Methods

This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 6 - 6
23 Feb 2023
Chen W Lightfoot N Boyle M
Full Access

Higher levels of socioeconomic deprivation have been associated with worse health outcomes. The influence of socioeconomic deprivation on patients undergoing periacetabular osteotomy (PAO) has not previously been investigated.

A total of 217 patients (171 female, 46 male; median age 23.4 years) who underwent PAO by a single surgeon were identified. Patients were categorised into three groups according to their New Zealand Deprivation (NZDep) Index: minimal deprivation (NZDep Index 1–3, n=89), moderate deprivation (NZDep Index 4–6, n=94), and maximal deprivation (NZDep Index 7–10, n=34). The three groups were compared with respect to baseline variables, surgical details, complications, and pre-operative and two-year post-operative functional scores (including International Hip Outcome Tool (iHOT-12), EQ-5D quality of life score, and University of California Los Angeles (UCLA) activity score). Multivariate regression was undertaken to assess for the effect of NZDep Index on patient outcomes.

Patients in the maximal deprivation group were more likely to be Māori (p<0.001) and have surgery in a public rather than a private hospital (p=0.004), while the minimal deprivation group demonstrated a lower BMI (p=0.005). There were otherwise no other significant differences in baseline variables, surgical details, complications, nor pre-operative or two-year post-operative functional scores between the three groups (all p>0.05). Multivariate analysis identified a higher NZDep Index to be independently predictive of a lower pre-operative UCLA activity score (p=0.014) and a higher two-year iHOT-12 score (p<0.001).

Our results demonstrate an inequality in access to PAO, with patients exposed to higher levels of socioeconomic deprivation under-represented in our study population. When provided access to PAO, these vulnerable patients achieve significant functional improvement at least as great as patients with less socioeconomic deprivation. Initiatives to improve access to hip preservation care in socioeconomically deprived populations appear warranted.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 107 - 107
23 Feb 2023
Lee W Kiang W Chen Y Yeoh C Teo W Tang Z
Full Access

The Femoral Neck System (FNS) was introduced as an alternative device for the fixation of neck of femur fractures (NOFFs). The purported advantages include superior angular and rotatory stability compared to multiple cancellous screws, via a minimally invasive instrumentation that is simpler than conventional fixed angle devices. There were limited clinical studies regarding the utility of this device. We aimed to study the outcomes of NOFFs fixed with the FNS.

This was a single-institution, retrospective review of all undisplaced elderly (≥60 years old) undisplaced young, and displaced young NOFFs fixed with the FNS. Demographics, surgical parameters, radiographic parameters, and clinical outcomes including complications were reviewed.

Thirty-six subjects with a median age of 75 [44,89] years old, had NOFF fixation using the FNS. Thirty-one (86.1%) had undisplaced fractures. There were 6 (16.7%), 26 (72.2%), and 4 (11.1%) subjects with Pauwels types 1, 2, and 3 respectively. Thirty-two (88.9%) had posterior tilt of <20º. The mean duration of surgery was 71±18 minutes. Excluding 4 patients whom required revision surgery, 2 patients whom demised, and 10 patients whom defaulted reviews, the mean follow-up duration was 55±13 weeks. Four complications were recorded, namely implant cut out at the femoral head at week 8, breaking of the locking screw at the run-off region at week 22, avascular necrosis at week 25, and a refracture following near fall, causing the fracture to fail in varus at week 7 postoperation.

While reasonably fast to instrument, failures still occur and it is likely multifactorial. However, the rate of reoperation is lower than what has been reported for NOFFs fixed with the a fixed-angle device or 3 cancellous screws. In conclusion, the FNS is a reasonably safe instrument to use. Surgeons’ discretion is still needed in patient selection, keeping in mind the need for satisfactory radiological parameters.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 113 - 120
1 Feb 2023
Cai Y Liang J Chen X Zhang G Jing Z Zhang R Lv L Zhang W Dang X

Aims

This study aimed to explore the diagnostic value of synovial fluid neutrophil extracellular traps (SF-NETs) in periprosthetic joint infection (PJI) diagnosis, and compare it with that of microbial culture, serum ESR and CRP, synovial white blood cell (WBC) count, and polymorphonuclear neutrophil percentage (PMN%).

Methods

In a single health centre, patients with suspected PJI were enrolled from January 2013 to December 2021. The inclusion criteria were: 1) patients who were suspected to have PJI; 2) patients with complete medical records; and 3) patients from whom sufficient synovial fluid was obtained for microbial culture and NET test. Patients who received revision surgeries due to aseptic failure (AF) were selected as controls. Synovial fluid was collected for microbial culture and SF-WBC, SF-PNM%, and SF-NET detection. The receiver operating characteristic curve (ROC) of synovial NET, WBC, PMN%, and area under the curve (AUC) were obtained; the diagnostic efficacies of these diagnostic indexes were calculated and compared.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 91 - 102
1 Feb 2023
Li Z Chen M Wang Z Fan Q Lin Z Tao X Wu J Liu Z Lin R Zhao C

Aims

Rheumatoid arthritis (RA) is a common chronic immune disease. Berberine, as its main active ingredient, was also contained in a variety of medicinal plants such as Berberaceae, Buttercup, and Rutaceae, which are widely used in digestive system diseases in traditional Chinese medicine with anti-inflammatory and antibacterial effects. The aims of this article were to explore the therapeutic effect and mechanism of berberine on rheumatoid arthritis.

Methods

Cell Counting Kit-8 was used to evaluate the effect of berberine on the proliferation of RA fibroblast-like synoviocyte (RA-FLS) cells. The effect of berberine on matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa-Β ligand (RANKL), tumour necrosis factor alpha (TNF-α), and other factors was determined by enzyme-linked immunoassay (ELISA) kit. Transcriptome technology was used to screen related pathways and the potential targets after berberine treatment, which were verified by reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot (WB) technology.


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 112 - 123
1 Feb 2023
Duckworth AD Carter TH Chen MJ Gardner MJ Watts AC

Despite being one of the most common injuries around the elbow, the optimal treatment of olecranon fractures is far from established and stimulates debate among both general orthopaedic trauma surgeons and upper limb specialists. It is almost universally accepted that stable non-displaced fractures can be safely treated nonoperatively with minimal specialist input. Internal fixation is recommended for the vast majority of displaced fractures, with a range of techniques and implants to choose from. However, there is concern regarding the complication rates, largely related to symptomatic metalwork resulting in high rates of implant removal. As the number of elderly patients sustaining these injuries increases, we are becoming more aware of the issues associated with fixation in osteoporotic bone and the often fragile soft-tissue envelope in this group. Given this, there is evidence to support an increasing role for nonoperative management in this high-risk demographic group, even in those presenting with displaced and/or multifragmentary fracture patterns. This review summarizes the available literature to date, focusing predominantly on the management techniques and available implants for stable fractures of the olecranon. It also offers some insights into the potential avenues for future research, in the hope of addressing some of the pertinent questions that remain unanswered.

Cite this article: Bone Joint J 2023;105-B(2):112–123.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 121 - 132
1 Feb 2023
Mo H Wang Z He Z Wan J Lu R Wang C Chen A Cheng P

Aims

Pellino1 (Peli1) has been reported to regulate various inflammatory diseases. This study aims to explore the role of Peli1 in the occurrence and development of osteoarthritis (OA), so as to find new targets for the treatment of OA.

Methods

After inhibiting Peli1 expression in chondrocytes with small interfering RNA (siRNA), interleukin (IL)-1β was used to simulate inflammation, and OA-related indicators such as synthesis, decomposition, inflammation, and apoptosis were detected. Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signalling pathway were detected. After inhibiting the expression of Peli1 in macrophages Raw 264.7 with siRNA and intervening with lipopolysaccharide (LPS), the polarization index of macrophages was detected, and the supernatant of macrophage medium was extracted as conditioned medium to act on chondrocytes and detect the apoptosis index. The OA model of mice was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity to reduce the expression of Peli1. The degree of cartilage destruction and synovitis were evaluated by haematoxylin and eosin (H&E) staining, Safranin O/Fast Green staining, and immunohistochemistry.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 33 - 45
16 Jan 2023
Li B Ding T Chen H Li C Chen B Xu X Huang P Hu F Guo L

Aims

Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of circStrn3 was significantly reduced in chondrocytes of osteoarthritis (OA) patients and OA mice. Therefore, the aim of this paper was to explore the role and mechanism of circStrn3 in osteoarthritis.

Methods

Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of circStrn3 in human and mouse OA cartilage tissues and chondrocytes. Chondrocytes were then stimulated to secrete exosomal miR-9-5p by cyclic tensile strain. Intra-articular injection of exosomal miR-9-5p into the model induced by destabilized medial meniscus (DMM) surgery was conducted to alleviate OA progression.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 9 - 21
9 Jan 2023
Lu C Ho C Chen S Liu Z Chou PP Ho M Tien Y

Aims

The effects of remnant preservation on the anterior cruciate ligament (ACL) and its relationship with the tendon graft remain unclear. We hypothesized that the co-culture of remnant cells and bone marrow stromal cells (BMSCs) decreases apoptosis and enhances the activity of the hamstring tendons and tenocytes, thus aiding ACL reconstruction.

Methods

The ACL remnant, bone marrow, and hamstring tendons were surgically harvested from rabbits. The apoptosis rate, cell proliferation, and expression of types I and III collagen, transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and tenogenic genes (scleraxis (SCX), tenascin C (TNC), and tenomodulin (TNMD)) of the hamstring tendons were compared between the co-culture medium (ACL remnant cells (ACLRCs) and BMSCs co-culture) and control medium (BMSCs-only culture). We also evaluated the apoptosis, cell proliferation, migration, and gene expression of hamstring tenocytes with exposure to co-culture and control media.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 33 - 33
1 Dec 2022
Chen H Pike J Huang A
Full Access

The purpose of this prospective pilot study is to examine the feasibility of a physiotherapist led rapid access shoulder screening clinic (RASC). The goal of this study is to assess for improvements in patient access to care, patient reported outcome measures, patient reported experience measures, and cost outcomes using time driven activity based costing methods.

Patient recruitment began in January 2021. Consultation requests from general practitioners and emergency rooms are analyzed and triaged through a central system. One half of patients awaiting consultation were triaged to the traditional route used at our center while the other half were triaged to be assessed at the RASC. Outcome measures consisting of the Simple Shoulder Test and SF-12 were recorded at the initial consultation and at follow up appointments. Cost benefit analysis was conducted using time driven activity based costing methods (TD-ABC).

From January to August of 2021, 123 new patients were triaged for RASC assessment. On average, the RASC gets 10 new referrals per month. As of September 2021, there are 65 patients still on waitlist for RASC assessment with 58 having been assessed. Of the 58, 11% were discharged through the RASC, 48% pursued private physiotherapy, 14% had injections, 19% proceeded on for surgical consultation, and 8% did not show. Over time same time period, approximately 15 new patients were seen in consultation by the surgeon's office.

Thirty-five responses were obtained from RASC patients during their initial intake assessment. The average age of respondents was 54.7 with 21 females and 14 males. Median SF-12 scores in the physical dimension (PCS-12) for RASC patients were 36.82 and mental (MCS-12) 49.38927. Median Simple Shoulder Test scores measured 6. Of the patients who responded to the follow up questionnaires after completing physiotherapy at the RASC, both the SF-12 and Simple Shoulder Test scoring improved. Median PCS-12 measured 47.08, MCS-12 of 55.87, and Simple Shoulder Test measured 8.

RASC assessments by PT saved $172.91 per hour for consultation and $157.97 per hour for patient follow ups.

Utilization of a physiotherapy led rapid access shoulder clinic resulted in improvements in patient outcomes as measured by the SF-12 and Simple Shoulder Test as well as significant direct cost savings. Proper triage protocols to identify which patients would be suitable for RASC assessment, buy-in from physiotherapists, and timely assessment of patients for early initiation of rehabilitation for shoulder pain is paramount to the success of a RASC system at our centre. Future research direction would be geared to analyzing a larger dataset as it becomes available.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 101 - 101
1 Dec 2022
Bohm E Carsen S Pauyo T Chen X Dudevich A Levinson W
Full Access

Knee arthroscopy with debridement is commonly performed to treat osteoarthritis and degenerative meniscal tears in older adults; however robust evidence does not support sustained benefit from this procedure. Current Canadian guidelines advise against its use as first line treatment. Characterizing the use of this low value procedure will facilitate efforts to maximize quality of care, minimize harm and decrease healthcare costs. We sought to understand:

the volume and variations of arthroscopic knee debridement across Canada

The costs associated with potentially unnecessary arthroscopy

The characteristics of surgeons performing knee arthroscopy in older adults

Data were derived from National Ambulatory Care Reporting System (NACRS), the Discharge Abstract Database (DAD) and the National Physician Database for years 2011-12 to 2019-20. The study included all elective knee arthroscopies (CCI codes 1.VG.80.DA,1.VG.80.FY and 1.VG.87.DA) performed in day surgery and acute care settings in 9 provinces and 3 territories of Canada. Quebec was not included in the analysis due to different reporting methods. We set a threshold of 60 years of age at which it would be highly unlikely that a patient would undergo arthroscopy to treat anything other than osteoarthritis or degenerative meniscal tear. Trends at national and provincial levels were analyzed using regression. Costs were estimated separately using the 2020 case mix groups (CMG) and comprehensive ambulatory care classification system (CACS) methodologies. Surgeons were classified by decade of graduation from medical school (1989 and prior, 1990-99, 2000-09 and 2010+) and categorized based on the proportion of their patient population who were above (“high proportion inappropriate”) or below (“low proportion inappropriate”) the overall national proportion of ≥ 60 years of age.

The number of knee arthroscopies decreased by 37% (42,785 in 2011-12 to 27,034 in 2019-20) overall and 39% (11,103 in 2011-12 to 6,772 in 2019-20) in those 60 years and older (p 25% of patients 60 years and older. Fifty four percent of surgeons who graduated prior to 1989 were considered high proportion inappropriate, whereas only 30.1% of surgeons who graduated in 2010 or later were considered high proportion inappropriate (p < 0 .0001).

Knee arthroscopy continues to be a common procedure in patients over 60 despite strong evidence for lack of benefit. Lower rates in this population in some provinces are encouraging for potential opportunity for improvement. Efforts at practice change should be targeted at surgeons in practice the longest. Canada spends over $12,000,000 per year on this procedure, decreasing its use could allow these resources to be directed to other areas of orthopaedics that provide higher value care.


Bone & Joint Research
Vol. 11, Issue 12 | Pages 843 - 853
1 Dec 2022
Cai Y Huang C Chen X Chen Y Huang Z Zhang C Zhang W Fang X

Aims

This study aimed to explore the role of small colony variants (SCVs) of Staphylococcus aureus in intraosseous invasion and colonization in patients with periprosthetic joint infection (PJI).

Methods

A PJI diagnosis was made according to the MusculoSkeletal Infection Society (MSIS) for PJI. Bone and tissue samples were collected intraoperatively and the intracellular invasion and intraosseous colonization were detected. Transcriptomics of PJI samples were analyzed and verified by polymerase chain reaction (PCR).


Bone & Joint Research
Vol. 11, Issue 7 | Pages 503 - 512
25 Jul 2022
Wu Y Shao Y Xie D Pan J Chen H Yao J Liang J Ke H Cai D Zeng C

Aims

To verify whether secretory leucocyte protease inhibitor (SLPI) can promote early tendon-to-bone healing after anterior cruciate ligament (ACL) reconstruction.

Methods

In vitro: the mobility of the rat bone mesenchymal stem cells (BMSCs) treated with SLPI was evaluated by scratch assay. Then the expression levels of osteogenic differentiation-related genes were analyzed by real-time quantitative PCR (qPCR) to determine the osteogenic effect of SLPI on BMSCs. In vivo: a rat model of ACL reconstruction was used to verify the effect of SLPI on tendon-to-bone healing. All the animals of the SLPI group and the negative control (NC) group were euthanized for histological evaluation, micro-CT scanning, and biomechanical testing.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 465 - 476
13 Jul 2022
Li MCM Chow SK Wong RMY Chen B Cheng JCY Qin L Cheung W

Aims

There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV.

Methods

A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining.


Bone & Joint Open
Vol. 3, Issue 7 | Pages 589 - 595
1 Jul 2022
Joo PY Chen AF Richards J Law TY Taylor K Marchand K Clark G Collopy D Marchand RC Roche M Mont MA Malkani AL

Aims

The aim of this study was to report patient and clinical outcomes following robotic-assisted total knee arthroplasty (RA-TKA) at multiple institutions with a minimum two-year follow-up.

Methods

This was a multicentre registry study from October 2016 to June 2021 that included 861 primary RA-TKA patients who completed at least one pre- and postoperative patient-reported outcome measure (PROM) questionnaire, including Forgotten Joint Score (FJS), Knee Injury and Osteoarthritis Outcomes Score for Joint Replacement (KOOS JR), and pain out of 100 points. The mean age was 67 years (35 to 86), 452 were male (53%), mean BMI was 31.5 kg/m2 (19 to 58), and 553 (64%) cemented and 308 (36%) cementless implants.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 867 - 874
1 Jul 2022
Ji B Li G Zhang X Xu B Wang Y Chen Y Cao L

Aims

Periprosthetic joint infections (PJIs) with prior multiple failed surgery for reinfection represent a huge challenge for surgeons because of poor vascular supply and biofilm formation. This study aims to determine the results of single-stage revision using intra-articular antibiotic infusion in treating this condition.

Methods

A retrospective analysis included 78 PJI patients (29 hips; 49 knees) who had undergone multiple prior surgical interventions. Our cohort was treated with single-stage revision using a supplementary intra-articular antibiotic infusion. Of these 78 patients, 59 had undergone more than two prior failed debridement and implant retentions, 12 patients had a failed arthroplasty resection, three hips had previously undergone failed two-stage revision, and four had a failed one-stage revision before their single-stage revision. Previous failure was defined as infection recurrence requiring surgical intervention. Besides intravenous pathogen-sensitive agents, an intra-articular infusion of vancomycin, imipenem, or voriconazole was performed postoperatively. The antibiotic solution was soaked into the joint for 24 hours for a mean of 16 days (12 to 21), then extracted before next injection. Recurrence of infection and clinical outcomes were evaluated.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 386 - 397
22 Jun 2022
Zhu D Fang H Yu H Liu P Yang Q Luo P Zhang C Gao Y Chen Y

Aims

Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood.

Methods

MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 398 - 408
22 Jun 2022
Xu T Zeng Y Yang X Liu G Lv T Yang H Jiang F Chen Y

Aims

We aimed to evaluate the utility of 68Ga-citrate positron emission tomography (PET)/CT in the differentiation of periprosthetic joint infection (PJI) and aseptic loosening (AL), and compare it with 99mTc-methylene bisphosphonates (99mTc-MDP) bone scan.

Methods

We studied 39 patients with suspected PJI or AL. These patients underwent 68Ga-citrate PET/CT, 99mTc-MDP three-phase bone scan and single-photon emission CT (SPECT)/CT. PET/CT was performed at ten minutes and 60 minutes after injection, respectively. Images were evaluated by three nuclear medicine doctors based on: 1) visual analysis of the three methods based on tracer uptake model, and PET images attenuation-corrected with CT and those not attenuation-corrected with CT were analyzed, respectively; and 2) semi-quantitative analysis of PET/CT: maximum standardized uptake value (SUVmax) of lesions, SUVmax of the lesion/SUVmean of the normal bone, and SUVmax of the lesion/SUVmean of the normal muscle. The final diagnosis was based on the clinical and intraoperative findings, and histopathological and microbiological examinations.


Aims

Treatment outcomes for methicillin-resistant Staphylococcus aureus (MRSA) periprosthetic joint infection (PJI) using systemic vancomycin and antibacterial cement spacers during two-stage revision arthroplasty remain unsatisfactory. This study explored the efficacy and safety of intra-articular vancomycin injections for PJI control after debridement and cement spacer implantation in a rat model.

Methods

Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 292 - 300
13 May 2022
He C Chen C Jiang X Li H Zhu L Wang P Xiao T

Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment.

Cite this article: Bone Joint Res 2022;11(5):292–300.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 278 - 291
12 May 2022
Hu X Fujiwara T Houdek MT Chen L Huang W Sun Z Sun Y Yan W

Aims

Socioeconomic and racial disparities have been recognized as impacting the care of patients with cancer, however there are a lack of data examining the impact of these disparities on patients with bone sarcoma. The purpose of this study was to examine socioeconomic and racial disparities that impact the oncological outcomes of patients with bone sarcoma.

Methods

We reviewed 4,739 patients diagnosed with primary bone sarcomas from the Surveillance, Epidemiology and End Results (SEER) registry between 2007 and 2015. We examined the impact of race and insurance status associated with the presence of metastatic disease at diagnosis, treatment outcome, and overall survival (OS).


Bone & Joint Open
Vol. 3, Issue 5 | Pages 383 - 389
1 May 2022
Motesharei A Batailler C De Massari D Vincent G Chen AF Lustig S

Aims

No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model.

Methods

A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 251 - 251
30 Apr 2022
Wang X Wang D Xia P Cheng K Wang Q Wang X Lin Q Song J Chen A Li X


Bone & Joint Open
Vol. 3, Issue 3 | Pages 211 - 217
1 Mar 2022
Hsu C Chen C Wang S Huang J Tong K Huang K

Aims

The Coronal Plane Alignment of the Knee (CPAK) classification is a simple and comprehensive system for predicting pre-arthritic knee alignment. However, when the CPAK classification is applied in the Asian population, which is characterized by more varus and wider distribution in lower limb alignment, modifications in the boundaries of arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) should be considered. The purposes of this study were as follows: first, to propose a modified CPAK classification based on the actual joint line obliquity (aJLO) and wider range of aHKA in the Asian population; second, to test this classification in a cohort of Asians with healthy knees; third, to propose individualized alignment targets for different CPAK types in kinematically aligned (KA) total knee arthroplasty (TKA).

Methods

The CPAK classification was modified by changing the neutral boundaries of aHKA to 0° ± 3° and using aJLO as a new variable. Radiological analysis of 214 healthy knees in 214 Asian individuals was used to assess the distribution and mean value of alignment angles of each phenotype among different classifications based on the coronal plane. Individualized alignment targets were set according to the mean lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) of different knee types.


Bone & Joint Research
Vol. 11, Issue 2 | Pages 121 - 133
22 Feb 2022
Hsu W Lin S Hung J Chen M Lin C Hsu W Hsu WR

Aims

The decrease in the number of satellite cells (SCs), contributing to myofibre formation and reconstitution, and their proliferative capacity, leads to muscle loss, a condition known as sarcopenia. Resistance training can prevent muscle loss; however, the underlying mechanisms of resistance training effects on SCs are not well understood. We therefore conducted a comprehensive transcriptome analysis of SCs in a mouse model.

Methods

We compared the differentially expressed genes of SCs in young mice (eight weeks old), middle-aged (48-week-old) mice with resistance training intervention (MID+ T), and mice without exercise (MID) using next-generation sequencing and bioinformatics.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_1 | Pages 13 - 13
1 Jan 2022
De C Shah S Suleiman K Chen Z Paringe V Prakash D
Full Access

Abstract

Background

During COVID-19 pandemic, there has been worldwide cancellation of elective surgeries to protect patients from nosocomial transmission and peri-operative complications. With unfolding situation, there is definite need for exit strategy to reinstate elective services. Therefore, more literature evidence supporting exit plan to elective surgical services is imperative to adopt a safe working principle. This study aims to provide evidence for safe elective surgical practice during pandemic.

Methods

This single centre, prospective, observational study included adult patients who were admitted and underwent elective surgical procedures in the trust's COVID-Free environment at Birmingham Treatment Centre between 19th May and 14th July’2020. Data collected on demographic parameters, peri-operative variables, surgical specialities, COVID-19 RT-PCR testing results, post-operative complications and mortality. The study also highlighted the protocols it followed for the elective services during pandemic.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 844 - 845
8 Dec 2021
Chen H Chen L


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 63 - 63
1 Dec 2021
Alswang JM Varady N Chen A
Full Access

Aim

Septic arthritis is a painful infection of articular joints that is typically treated by irrigation & debridement along with antibiotic therapy. There is debate amongst the medical community whether antibiotic administration should be delayed until fluid cultures have been taken to improve culture yield. However, delaying antibiotics can also have negative consequences, including joint destruction and sepsis. Therefore, the purposes of this study were to determine: 1) whether delayed antibiotic treatment affects culture yield and prognosis and 2) if the culture yield of patients treated for septic arthritis differs for hip, knee, and shoulder based on timing of antibiotic administration.

Method

A retrospective analysis was conducted on 111 patients with septic arthritis of the hip, knee, or shoulder admitted from 3/2016 to 11/2018. In patients with multiple septic joints, each joint was analyzed individually (n=122). Diagnosis was determined by the treatment of irrigation & debridement and/or a positive culture. Patients without all intervention times recorded or with periprosthetic joint infection were excluded. Demographics, laboratory tests, culture results, and intervention times were obtained through chart review. Patients were grouped based on antibiotic therapy timing: >24 hours prior to arthrocentesis (Group 1), between 24 hours and 1 hour prior (Group 2), and 1 hour prior to post-arthrocentesis (Group 3). Analysis was conducted using chi-squared tests.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 70 - 70
1 Dec 2021
Shao H Li R Deng W Yu B Zhou Y Chen J
Full Access

Aim

The purpose of this study is to report the overall infection control rate and prognostic factors associated with acute, hematogenous and chronic PJIs treated with DAIR.

Methods

All DAIR procedures performed at 2 institutions from 2009 to 2018 (n=104) were reviewed and numerous data were recorded, including demographics, preoperative laboratory tests, Charleston Comorbidity Index, surgical information and organism culture results. Treatment success was defined according to the criteria reported by Diaz-Ledezma. A multivariable analysis was utilized to identify prognostic factors associated with treatment and a Kaplan-Meier survival analysis was used to depict infection control rate as a function of time.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 37 - 37
1 Dec 2021
Chen H Gulati A Mangwani J Brockett C Pegg E
Full Access

Abstract

Objectives

The aim of this study was to develop an open-source finite element model of the ankle for identification of the best clinical treatment to restore stability to the ankle after injury.

Methods

The ankle geometry was defined from the Visible Human Project Female CT dataset available from the National Library of Medicine, and segmented using Dragonfly software (Object Research Systems, 2020). The finite element model was created with FEBio (University of Utah, 2021) using the dynamic nonlinear implicit solver. Linear isotropic material properties were assigned to the bones (E=7300MPa, ν=0.3, ρ=1730kg/m3) and cartilage (E=10MPa, ν=0.4, ρ=1100kg/m3). Spring elements were used to represent the ligaments and material properties were taken from Mondal et al. [1]. Lagrangian contact was defined between the cartilaginous surfaces with μ=0.003. A standing load case was modelled, assuming even distribution of load between the feet. A reaction force of 344.3N was applied to the base of the foot, a muscle force of 252.2N, and the proximal ends of the tibia and fibula were fully constrained.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 74 - 74
1 Dec 2021
Chen H Khong J Huang J
Full Access

Abstract

Objectives

Direct ink writing (DIW) has gained considerable attention in production of personalized medical implants. Laponite nanoclay is added in polycaprolactone (PCL) to improve printability and bioactivity for bone implants. The 3D structure of DIW printed PCL/Laponite products was qualitatively evaluated using micro-CT.

Methods

PCL/LP composite ink was formulated by dissolving 50% m/v PCL in dichloromethane with Laponite loading of up to 30%. The rheological properties of the inks were determined using Discovery HR-2 rheometer. A custom-made direct ink writer was used to fabricate both porous scaffold with 0°/90° lay-down pattern, and solid dumbbell-shaped specimens (ASTM D638 Type IV) with two printing orientations, 0° and 90° to the loading direction in tensile testing. The 3D structure of specimens was assessed using a micro-CT. Independent t-tests were performed with significance level at p<0.05.


Bone & Joint Open
Vol. 2, Issue 11 | Pages 974 - 980
25 Nov 2021
Allom RJ Wood JA Chen DB MacDessi SJ

Aims

It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance.

Methods

A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance.


Bone & Joint Open
Vol. 2, Issue 11 | Pages 932 - 939
12 Nov 2021
Mir H Downes K Chen AF Grewal R Kelly DM Lee MJ Leucht P Dulai SK

Aims

Physician burnout and its consequences have been recognized as increasingly prevalent and important issues for both organizations and individuals involved in healthcare delivery. The purpose of this study was to describe and compare the patterns of self-reported wellness in orthopaedic surgeons and trainees from multiple nations with varying health systems.

Methods

A cross-sectional survey of 774 orthopaedic surgeons and trainees in five countries (Australia, Canada, New Zealand, UK, and USA) was conducted in 2019. Respondents were asked to complete the Mayo Clinic Well-Being Index and the Stanford Professional Fulfillment Index in addition to 31 personal/demographic questions and 27 employment-related questions via an anonymous online survey.


Bone & Joint Research
Vol. 10, Issue 11 | Pages 704 - 713
1 Nov 2021
Zhang H Li J Xiang X Zhou B Zhao C Wei Q Sun Y Chen J Lai B Luo Z Li A

Aims

Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA.

Methods

OA animal model was induced by destabilization of the medial meniscus (DMM). Different concentrations of tBHQ (25 and 50 mg/kg) were intraperitoneally injected in ten-week-old female mice. Chondrocytes were isolated from articular cartilage of mice and treated with 5 ng/ml lipopolysaccharide (LPS) or 10 ng/ml interleukin 1 beta (IL-1β) for 24 hours, and then treated with different concentrations of tBHQ (10, 20, and 40 μM) for 12 hours. The expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood were measured. The expression levels of interleukin 6 (IL-6), IL-1β, and tumour necrosis factor alpha (TNF-α) leptin in plasma were measured using enzyme-linked immunoabsorbent assay (ELISA) kits. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathway proteins, and macrophage repolarization-related markers, were detected by western blot.


This retrospective study was to investigate radiographic and clinical outcomes in treatment of hip instability in children and young adults undergoing periacetabular osteotomy (PAO) with or without femoral osteotomy.

19 patients (21 hips) with CP were treated with PAO with or without femoral osteotomy The mean age was 16.2 years old (7 to 28 years). Five patients (5 hips) received PAO, Six patients (7 hips) PAO with femoral derotation osteotomy, Eight patients (9 hips) PAO with varus derotational osteotomy (VDRO). Anteroposterior pelvic radiographs and CT were taken to assess the migration percentage (MP), lateral center-edge angle (LCEA), Sharp angle, femoral neck anteversion, neck-shaft angle. Gross Motor Function Classification System (GMFCS) was assessed pre- and post-surgery. Complications were recorded. The mean follow-up time was 41.2 months (range, 24 to 86 months).

All hips but one were pain free at final visit. The GMFCS improved by one level in 10 of 19 patients. MP improved from a mean of 76.6% to 18.6% at the final follow-up(p<0.001). The mean pre-operative LCEA and Sharp angle were −33.5 ? and 35 ? respectively, improved to 21.5 ? and 11.8 ? at the final follow-up (p < 0.001). There were six patients (7 hips) had re-subluxation at latest follow-up. Nervus cutaneus femoris lateralis was impaired in four patients after surgery. There was no re-dislocation, AVN, or infections in this group.

Satisfactory clinical and radiologic results can be obtained by PAO with or without femoral osteotomy minor complications.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 94 - 94
1 Nov 2021
Chen Y Lian W Wang F
Full Access

Introduction and Objective

Senescent bone cell overburden accelerates osteoporosis. Epigenetic alteration, including microRNA signalling and DND methylation, is one of prominent features of cellular senescence. This study aimed to investigate what role microRNA-29a signalling may play in the development of senile osteoporosis.

Materials and Methods

Bone biopsy and serum were harvested from 13 young patients and 15 senior patients who required spine surgery. Bone mass, microstructure, and biomechanics of miR-29a knockout mice (miR-29aKO) and miR-29a transgenic mice (miR-29aTg) were probed using mCT imaging and three-point bending material test. Senescent cells were probed using senescence-associated b-galactosidase (SA-b-gal) staining. Transcriptomic landscapes of osteoblasts were characterized using whole genome microarray and KEGG bioinformatics. miR-29a and senescence markers p16INK4a, p21Waf/cipl and inflammatory cytokines were quantified using RT-PCR. DNA methylome was probed using methylation-specific PCR and 5-methylcytosine immunoblotting.


Bone & Joint Research
Vol. 10, Issue 10 | Pages 693 - 703
1 Oct 2021
Wang X Wang D Xia P Cheng K Wang Q Wang X Lin Q Song J Chen A Li X

Aims

To evaluate the effect of ultrasound-targeted simvastatin-loaded microbubble destruction (UTMDSV) for alleviation of the progression of osteoarthritis (OA) in rabbits through modulation of the peroxisome proliferator-activated receptor (PPARγ).

Methods

In vitro, OA chondrocytes were treated with ultrasound (US), US-targeted microbubble destruction (UTMD), simvastatin (SV), and UTMDSV on alternate days for four weeks. Chondrocytes were also treated with PPARγ inhibitor, PPARγ inhibitor+ UTMDSV, and UTMDSV. The cholesterol efflux rate and triglyceride levels were measured using an assay kit and oil red O staining, respectively. In vivo, the OA rabbits were treated with a single intra-articular injection of UTMD, SV, and UTMDSV every seven days for four weeks. Cartilage histopathology was assessed by safranin-O staining and the Mankin score. Total cholesterol (TC) and high-density lipoprotein-cholesterol (HDL-C) in rabbit knee synovial fluid were detected by enzyme-marker assay. Aggrecan, collagen II, and PPARγ expression levels were analyzed by Western blotting (WB).


Bone & Joint Research
Vol. 10, Issue 10 | Pages 668 - 676
1 Oct 2021
Liu L Li Z Chen S Cui H Li X Dai G Zhong F Hao W Zhang K Liu H

Aims

Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that BRD4 may contribute to osteoblastic differentiation. The current study aims to determine the role of BRD4 in the pathogenesis of HO and whether it could be a potential target for HO therapy.

Methods

Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing BRD4, Alizarin red staining, RT-qPCR, and Western Blot (Runx2, alkaline phosphatase (ALP), Osx) were performed on hBMSCs.


Bone & Joint Research
Vol. 10, Issue 8 | Pages 498 - 513
3 Aug 2021
Liu Z Lu C Shen P Chou S Shih C Chen J Tien YC

Aims

Interleukin (IL)-1β is one of the major pathogenic regulators during the pathological development of intervertebral disc degeneration (IDD). However, effective treatment options for IDD are limited. Suramin is used to treat African sleeping sickness. This study aimed to investigate the pharmacological effects of suramin on mitigating IDD and to characterize the underlying mechanism.

Methods

Porcine nucleus pulposus (NP) cells were treated with vehicle, 10 ng/ml IL-1β, 10 μM suramin, or 10 μM suramin plus IL-1β. The expression levels of catabolic and anabolic proteins, proinflammatory cytokines, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB-related signalling molecules were assessed by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence analysis. Flow cytometry was applied to detect apoptotic cells. The ex vivo effects of suramin were examined using IDD organ culture and differentiation was analyzed by Safranin O-Fast green and Alcian blue staining.


Bone & Joint Research
Vol. 10, Issue 8 | Pages 514 - 525
2 Aug 2021
Chen C Kang L Chang L Cheng T Lin S Wu S Lin Y Chuang S Lee T Chang J Ho M

Aims

Osteoarthritis (OA) is prevalent among the elderly and incurable. Intra-articular parathyroid hormone (PTH) ameliorated OA in papain-induced and anterior cruciate ligament transection-induced OA models; therefore, we hypothesized that PTH improved OA in a preclinical age-related OA model.

Methods

Guinea pigs aged between six and seven months of age were randomized into control or treatment groups. Three- or four-month-old guinea pigs served as the young control group. The knees were administered 40 μl intra-articular injections of 10 nM PTH or vehicle once a week for three months. Their endurance as determined from time on the treadmill was evaluated before kill. Their tibial plateaus were analyzed using microcalculated tomography (μCT) and histological studies.


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1421 - 1427
1 Aug 2021
Li J Lu Y Chen G Li M Xiao X Ji C Wang Z Guo Z

Aims

We have previously reported cryoablation-assisted joint-sparing surgery for osteosarcoma with epiphyseal involvement. However, it is not clear whether this is a comparable alternative to conventional joint arthroplasty in terms of oncological and functional outcomes.

Methods

A total of 22 patients who had localized osteosarcoma with epiphyseal involvement around the knee and underwent limb salvage surgery were allocated to joint preservation (JP) group and joint arthroplasty (JA) group. Subjects were followed with radiographs, Musculoskeletal Tumor Society (MSTS) score, and clinical evaluations at one, three, and five years postoperatively.


Bone & Joint Research
Vol. 10, Issue 8 | Pages 526 - 535
1 Aug 2021
Xin W Yuan S Wang B Qian Q Chen Y

Aims

Circular RNAs (circRNAs) are a novel type of non-coding RNA that plays major roles in the development of diverse diseases including osteonecrosis of the femoral head (ONFH). Here, we explored the impact of hsa_circ_0066523 derived from forkhead box P1 (FOXP1) (also called circFOXP1) on bone mesenchymal stem cells (BMSCs), which is important for ONFH development.

Methods

RNA or protein expression in BMSCs was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot, respectively. Cell Counting Kit 8 (CCK8) and 5-ethynyl-2’-deoxyuridine (EdU) were used to analyze cell proliferation. Alkaline phosphatase (ALP) activity, ALP staining, and Alizarin Red S staining were employed to evaluate the osteoblastic differentiation. Chromatin immunoprecipitation (ChIP), luciferase reporter, RNA pull down, and RNA immunoprecipitation (RIP) assays were combined for exploring molecular associations.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 445 - 458
7 Jul 2021
Zhu S Zhang X Chen X Wang Y Li S Qian W

Aims

The value of core decompression (CD) in the treatment of osteonecrosis of the femoral head (ONFH) remains controversial. We conducted a systematic review and meta-analysis to evaluate whether CD combined with other treatments could improve the clinical and radiological outcomes of ONFH patients compared with CD alone.

Methods

We searched the PubMed, Embase, Web of Science, and Cochrane Library databases until June 2020. All randomized controlled trials (RCTs) and clinical controlled trials (CCTs) comparing CD alone and CD combined with other measures (CD + cell therapy, CD + bone grafting, CD + porous tantalum rod, etc.) for the treatment of ONFH were considered eligible for inclusion. The primary outcomes of interest were Harris Hip Score (HHS), ONFH stage progression, structural failure (collapse) of the femoral head, and conversion to total hip arthroplasty (THA). The pooled data were analyzed using Review Manager 5.3 software.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 196 - 204
1 Jun 2021
Chen JS Buchalter DB Sicat CS Aggarwal VK Hepinstall MS Lajam CM Schwarzkopf RS Slover JD

Aims

The COVID-19 pandemic led to a swift adoption of telehealth in orthopaedic surgery. This study aimed to analyze the satisfaction of patients and surgeons with the rapid expansion of telehealth at this time within the division of adult reconstructive surgery at a major urban academic tertiary hospital.

Methods

A total of 334 patients underging arthroplasty of the hip or knee who completed a telemedicine visit between 30 March and 30 April 2020 were sent a 14-question survey, scored on a five-point Likert scale. Eight adult reconstructive surgeons who used telemedicine during this time were sent a separate 14-question survey at the end of the study period. Factors influencing patient satisfaction were determined using univariate and multivariate ordinal logistic regression modelling.


Bone & Joint Open
Vol. 2, Issue 5 | Pages 351 - 358
27 May 2021
Griffiths-Jones W Chen DB Harris IA Bellemans J MacDessi SJ

Aims

Once knee arthritis and deformity have occurred, it is currently not known how to determine a patient’s constitutional (pre-arthritic) limb alignment. The purpose of this study was to describe and validate the arithmetic hip-knee-ankle (aHKA) algorithm as a straightforward method for preoperative planning and intraoperative restoration of the constitutional limb alignment in total knee arthroplasty (TKA).

Methods

A comparative cross-sectional, radiological study was undertaken of 500 normal knees and 500 arthritic knees undergoing TKA. By definition, the aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA). The mechanical HKA (mHKA) of the normal group was compared to the mHKA of the arthritic group to examine the difference, specifically related to deformity in the latter. The mHKA and aHKA were then compared in the normal group to assess for differences related to joint line convergence. Lastly, the aHKA of both the normal and arthritic groups were compared to test the hypothesis that the aHKA can estimate the constitutional alignment of the limb by sharing a similar centrality and distribution with the normal population.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_7 | Pages 1 - 1
1 May 2021
Ng N Chen PC Yapp LZ Gaston M Robinson C Nicholson J
Full Access

The aim of this study was to define the long-term outcome following adolescent clavicle fracture.

We retrospectively reviewed all adolescent fractures presenting to our region (13–17years) over a 10-year period. Patient reported outcomes were undertaken at a minimum of 4 years post-injury (QuickDASH and EQ-5D) in completely displaced midshaft fractures (Edinburgh 2B, >2cm displacement, n=50) and angulated midshaft fractures (Edinburgh 2A2, >30 degrees angulation, n=32).

677 clavicle fractures were analysed. The median age was 14.8 (IQR 14.0–15.7) and 89% were male. The majority were midshaft (n=606, 89.5%) with either angulation (39.8%) or simple fully displaced (39.1%). Only 3% of midshaft fractures underwent acute fixation (n=18/606), all of which were fully displaced. The incidence of refracture following non-operative management of midshaft fractures was 3.2% (n=19/588), all united with non-operative management. Fracture type, severity of angulation or displacement was not associated with risk of refracture. There was one case of non-union encountered following non-operative management of all displaced midshaft fractures (0.4%, n=1/245). At a mean of 7.6 years following injury, non-operative management of both displaced and angulated fractures had a median QuickDASH was 0.0 (IQR 0.0–2.3), EQ-5D was 1.0 (IQR 1.0–1.0). 97% of angulated fractures and 94% of displaced fractures were satisfied with their final shoulder function.

We conclude that Non-operative management of adolescent midshaft clavicle fractures result in excellent functional outcomes with a low rate of complications at long-term follow up. The relative indications for surgical intervention for clavicle fractures in adults do not appear to be applicable to adolescents.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_7 | Pages 3 - 3
1 May 2021
Chen P Ng N Snowden G Mackenzie SP Nicholson JA Amin AK
Full Access

Open reduction and internal fixation (ORIF) with trans-articular screws or dorsal plating is the standard surgical technique for displaced Lisfranc injuries. This aim of this study is to compare the clinical outcomes of percutaneous reduction and internal fixation (PRIF) of low energy Lisfranc injuries with a matched, control group of patients treated with ORIF.

Over a seven-year period (2012–2019), 16 consecutive patients with a low energy Myerson B2-type injury were treated with PRIF. Patient demographics were recorded within a prospectively maintained database at the institution. This study sample was matched for age, sex and mechanism of injury to a control group of 16 patients with similar Myerson B2-type injuries treated with ORIF. Clinical outcome was compared using the American Orthopaedic Foot and Ankle Society (AOFAS) midfoot score and Manchester Oxford Foot Questionnaire (MOXFQ).

At a mean follow up of 43.0 months (95% CI 35.6 – 50.4), both the AOFAS and MOXFQ scores were significantly higher in the PRIF group compared to the control ORIF group (AOFAS 89.1vs 76.4, p=0.03; MOXFQ 10.0 vs 27.6, p=0.03). There were no immediate postoperative complications in either group. At final follow up, there was no radiological evidence of midfoot osteoarthritis in any patient in the PRIF group. Three patients in the ORIF group developed midfoot osteoarthritis, one of whom required midfoot fusion.

PRIF is a technically simple, less invasive method of operative stabilisation of low energy Lisfranc injures which also appears to be associated with better mid-term clinical outcomes compared to ORIF.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 916 - 922
1 May 2021
Qiao J Xu C Chai W Hao L Zhou Y Fu J Chen J

Aims

It can be extremely challenging to determine whether to perform reimplantation in patients who have contradictory serum inflammatory markers and frozen section results. We investigated whether patients with a positive frozen section at reimplantation were at a higher risk of reinfection despite normal ESR and CRP.

Methods

We retrospectively reviewed 163 consecutive patients with periprosthetic joint infections (PJIs) who had normal ESR and CRP results pre-reimplantation in our hospital from 2014 to 2018. Of these patients, 26 had positive frozen sections at reimplantation. The minimum follow-up time was two years unless reinfection occurred within this period. Univariable and multivariable logistic regression analyses were performed to identify the association between positive frozen sections and treatment failure.