header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

SYNERGISTIC ACTION OF BACTERIOPHAGE AND VANCOMYCIN IN A CO-DELIVERY HYDROGEL FOR LOCALIZED TREATMENT OF FRACTURE-RELATED INFECTION CAUSED BY METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS

The European Bone and Joint Infection Society (EBJIS) Meeting, Basel, Switzerland, 12–14 October 2023.



Abstract

Aim

Bacteriophages are remerging as alternative and adjunctive therapy for fracture-related infection (FRI). However, current administration protocols involve prolonged retention of a percutaneous draining tube with potential risk of developing superinfection. In this study, we applied a cocktail of in vitro evolved biofilm-targeting phages for Methicillin-resistant Staphylococcus aureus (MRSA) in a hydrogel platform co-delivering vancomycin. In vitro synergy and antibiofilm activity was assessed and a subsequent in vivo study was performed in a mouse FRI model with MRSA.

Method

Two evolved bacteriophages (MRSA-R14 and COL-R23) with improved antibiofilm activity against a clinical isolate (MRSA3) were tested in combination with vancomycin and a carboxymethylcellulose (CMC) hydrogel in vitro and in vivo. MRSA3 bacterial biofilms were formed on sterile 4 mm sintered porous glass beads at 37 °C for 24 h. Biofilms were exposed to i-phage cocktail (107 PFU/ml), ii-vancomycin at concentrations of 0.5, 1, 10 and 100 times the MIC, or iii-combination of phage cocktail and vancomycin. Recovered biofilm cells, were quantified by colony counting. The stability and release profiles of phage cocktail and vancomycin in co-delivery hydrogel were assessed in vitro for 8 days and 72 hrs, respectively, and subsequently tested in the treatment of 5-day-old MRSA3 infection of a femoral plate osteotomy in mice.

Results

In vitro: The cocktail of evolved phages (107 PFU/ml, 1:1) combined with 0.5 MIC vancomycin achieved 99.72% reduction in MRSA3 biofilm in vitro compared to the growth control. This combination was stable in the co-delivery hydrogel over 8 days. The release profile showed that 57% of phages and 80% of vancomycin were released after 72hrs, which was identical to the performance for gels loaded with phage or antibiotic alone. In the in vivo study, the bacterial load from animals that received co-delivery hydrogel and systemic vancomycin was significantly reduced compared to controls, animals that received systemic vancomycin and animals that received co-delivery hydrogel alone (p<0.05).

Conclusions

Our study demonstrates the potential of using evolved phages in combination with vancomycin and hydrogel delivery systems for the treatment of MRSA-related infections. Further research in this area may lead to the development of specific therapies for biofilm-related infection.


Email: