Aim. Unexpected negative-cultures (UNC) are a common diagnostic problem in periprosthetic joint infection (PJI) of the hip and knee when using culture-based methods. A novel molecular approach (MC)1 based on the identification of the vast majority of bacterial species in a single assay using species-specific bacterial interspacing region length polymorphisms and phylum-specific 16S rDNA sequence polymorphisms has demonstrated clinical utility in PJI diagnostics (1). In addition, MC provides an estimate of the leukocyte concentration in the specimen analysed. The aim of this retrospective, blinded study was to evaluate the performance of MC in identifying the microbiological content and determining the leukocyte count in synovial fluid (SF) collected from hip and knee revision arthroplasty cases with UNC. It was also assessed whether antibiotic treatment would have been changed if the result from MC had been known. Method. A total of 89 SF samples from 70 patients (43 female; 27 male) who underwent revision arthroplasty (14 hip; 75 knee) were included. Using European and Bone Joint Infection Society (EBJIS) criteria, 82 cases were classified as infected (77 UNC and 5 septic culture-positive controls), five as non-infected (aseptic culture-negative controls), and two as likely infected, but infected by clinical observation. MC was performed and evaluated together with SF parameters. Antibiotic treatment, clinical outcome, patient demographics and surgical details were analysed. Results. Overall, 29.1% (23/79) of UNC had a positive yield by MC, of which 2/23 (8.7%) had two microorganisms detected simultaneously. Of the 25 microorganisms identified by MC, 12/25 (48%) were clinically relevant after re-evaluation of the patients’ microbiological history. The microorganisms detected were 5/25 (20%) Streptococcus pneumoniae/mitis, 4/25 (16%) Staphylococcus epidermidis, 3/25 (12%) Cutibacterium acnes, 3/25 (12%) Streptococcus agalactiae, 2/25 (8%) Streptococcus bovis, 2/25 (8%) Staphylococcus aureus, and 2/25 (8%) Haemophilus parainfluenzae. The prevalence of Enterococcus faecalis, Bacteroides fragillis, Staphylococcus lugdunensis, Corynebacterium striatum among all MC results was 1/25 (4%) each species. In total, 13/23 (56%) cases were associated with patients receiving antibiotic therapy at the time of SF collection. The yield for leukocyte counts provided the molecular technique was consistently much higher in the UNC and clearly septic groups than in the clearly aseptic group. Overall, 20/61 (32.8%) patients with UNC could have been managed differently and more accurately after MC assessment. Conclusions. MC shows clinical value in the diagnosis and management of PJI with UNC. The included leukocyte count shows promising results. Acknowledgments. This work was partially
Introduction. Intervertebral disc degeneration has been associated with low back pain (LBP) which is a major cause of long-term disability worldwide. Observed mechanical and biological modifications have been related to decreased water content. Clinical traction protocols as part of LBP management have shown positive outcomes. However, the underlying mechanical and biological processes are still unknown. The study purpose was to evaluate the impact of unloading through traction on the mechanobiology of healthy bovine tail discs in culture. Method. We loaded bovine tail discs (n=3/group) 2h/day at 0.2Hz for 3 days, either in dynamic compression (-0.01MPa to -0.2MPa) or in dynamic traction (-0.01MPa to 0.024MPa). In between the dynamic loading sessions, we subjected the discs to static compression loading (-0.048MPa). We assessed biomechanical and biological parameters. Result. Over the 3 days of loading, disc height decreased upon dynamic compression loading but increased upon unloading. The neutral zone was restored for all samples at the end of the dynamic unloading. Upon dynamic compression, the stiffness increased over time while the hysteresis decreased. Upon dynamic unloading, sulfated glycosaminoglycan (sGAG) release in the medium was lower at the endpoint. In the outer annulus fibrosus (AFo), we saw a higher water/sGAG of at least 30%. In the nucleus pulposus, COL2 mRNA was expressed more highly upon dynamic unloading while MMP3, iNOS and TRPV4 expression levels were lower. In the AFo of the unloading group, COL2 expression was higher but COL1 was lower. Conclusion. The biomechanical and biological results consistently indicate that dynamic unloading of healthy bovine discs in culture facilitates water uptake and promotes an anti-catabolic response which reflects a function optimization of the disc. This work combines biomechanical and biological results and opens the door to evidence-based improvement of regenerative protocols for degenerated discs and conservative LBP management. This study is
Introduction. This study aimed to evaluate the effectiveness of a novel intraoperative navigation platform for total knee arthroplasty (TKA) in restoring native knee joint kinematics and strains in the medial collateral ligament (MCL) and lateral collateral ligament (LCL) during squatting motions. Method. Six cadaver lower limbs underwent computed tomography scans to design patient-specific guides. Using these scans, bony landmarks and virtual single-line collateral ligaments were identified to provide intraoperative real-time feedback, aided in bone resection, implant alignment, tibiofemoral kinematics, and collateral ligament elongations, using the navigation platform. The specimens were subjected to squatting (35°-100°) motions on a physiological ex vivo knee simulator, maintaining a constant 110N vertical ankle load regulated by active quadriceps and bilateral hamstring actuators. Subsequently, each knee underwent a medially-stabilized TKA using the mechanical alignment technique, followed by a retest under the same conditions used preoperatively. Using a dedicated wand, MCL and LCL insertions—anterior, middle, and posterior bundles—were identified in relation to bone-pin markers. The knee kinematics and collateral ligament strains were analyzed from 3D marker trajectories captured by a six-camera optical system. Result. Both native and TKA conditions demonstrated similar patterns in tibial valgus orientation (Root Mean Square Error (RMSE=1.7°), patellar flexion (RMSE=1.2°), abduction (RMSE=0.5°), and rotation (RMSE=0.4°) during squatting (p>0.13). However, a significant difference was found in tibial internal rotation between 35° and 61° (p<0.045, RMSE=3.3°). MCL strains in anterior (RMSE=1.5%), middle (RMSE=0.8%), and posterior (RMSE=0.8%) bundles closely matched in both conditions, showing no statistical differences (p>0.05). Conversely, LCL strain across all bundles (RMSE<4.6%) exhibited significant differences from mid to deep flexion (p<0.048). Conclusion. The novel intraoperative navigation platform not only aims to achieve planned knee alignment but also assists in restoring native knee kinematics and collateral ligament behavior through real-time feedback. Acknowledgment. This study was
Introduction. Accurate assessment of alignment in pre-operative and post-operative knee radiographs is important for planning and evaluating knee replacement surgery. Existing methods predominantly rely on manual measurements using long-leg radiographs, which are time-consuming to perform and are prone to reliability errors. In this study, we propose a machine-learning-based approach to automatically measure anatomical varus/valgus alignment in pre-operative and post-operative standard AP knee radiographs. Method. We collected a training dataset of 816 pre-operative and 457 one-year post-operative AP knee radiographs of patients who underwent knee replacement surgery. Further, we have collected a separate distinct test dataset with both pre-operative and one-year post-operative radiographs for 376 patients. We manually outlined the distal femur and the proximal tibia/fibula with points to capture the knee joint (including implants in the post-operative images). This included point positions used to permit calculation of the anatomical tibiofemoral angle. We defined varus/valgus as negative/positive deviations from zero. Ground truth measurements were obtained from the manually placed points. We used the training dataset to develop a machine-learning-based automatic system to locate the point positions and derive the automatic measurements. Agreement between the automatic and manual measurements for the test dataset was assessed by intra-class correlation coefficient (ICC), mean absolute difference (MAD) and Bland-Altman analysis. Result. Analysing the agreement between the manual and automated measurements, ICC values were excellent pre-/post-operatively (0.96, CI: 0.94-0.96) / (0.95, CI: 0.95-0.96). Pre-/post-operative MAD values were 1.3°±1.4°SD / 0.7°±0.6°SD. The Bland-Altman analysis showed a pre-/post-operative mean difference (bias) of 0.3°±1.9°SD/-0.02°±0.9°SD, with pre-/post-operative 95% limits of agreement of ±3.7°/±1.8°, respectively. Conclusion. The developed machine-learning-based system demonstrates high accuracy and reliability in automatically measuring anatomical varus/valgus alignment in pre-operative and post-operative knee radiographs. It provides a promising approach for automating the measurement of anatomical alignment without the need for long-leg radiographs. Acknowledgements. This research was
Introduction. Patients (2.7M in EU) with positive cancer prognosis frequently develop metastases (≈1M) in their remaining lifetime. In 30-70% cases, metastases affect the spine, reducing the strength of the affected vertebrae. Fractures occur in ≈30% patients. Clinicians must choose between leaving the patient exposed to a high fracture risk (with dramatic consequences) and operating to stabilise the spine (exposing patients to unnecessary surgeries). Currently, surgeons rely on their sole experience. This often results in to under- or over-treatment. The standard-of-care are scoring systems (e.g. Spine Instability Neoplastic Score) based on medical images, with little consideration of the spine biomechanics, and of the structure of the vertebrae involved. Such scoring systems fail to provide clear indications in ≈60% patients. Method. The HEU-funded METASTRA project is implemented by biomechanicians, modellers, clinicians, experts in verification, validation, uncertainty quantification and certification from 15 partners across Europe. METASTRA aims to improve the stratification of patients with vertebral metastases evaluating their risk of fracture by developing dedicated reliable computational models based on Explainable Artificial Intelligence (AI) and on personalised Physiology-based biomechanical (VPH) models. Result. The METASTRA-AI model is expected to be able to stratify most patients with limited effort end cost, based on parameters extracted semi-automatically from the medical files and images. The cases which are not reliably stratified through the AI model, are examined through a more detailed and personalised biomechanical VPH model. These METASTRA numerical tools are trained through an unprecedentedly large multicentric retrospective study (2000 cases) and validated against biomechanical ex vivo experiments (120 specimens). Conclusion. The METASTRA decision support system is tested in a multicentric prospective observational study (200 patients). The METASTRA approach is expected to cut down the indeterminate diagnoses from the current 60% down to 20% of cases. METASTRA project
Introduction. Adolescent Idiopathic Scoliosis (AIS) is a three-dimensional deformity of the spine with unclear etiology. Due to the asymmetry of lateral curves, there are differences in the muscle activation between the convex and concave sides. This study utilized a comprehensive thoracic spine and ribcage musculoskeletal model to improve the biomechanical understanding of the development of AIS deformity and approach an explanation of the condition. Methods. In this study, we implemented a motion capture model using a generic rigid-body thoracic spine and ribcage model, which is kinematically determinate and controlled by spine posture obtained, for instance, from radiographs. This model is publicly accessible via a GitHub repository. We simulated gait and standing models of two AIS (averaging 15 years old, both with left lumbar curve and right thoracic curve averaging 25 degrees) and one control subject. The marker set included extra markers on the sternum and the thoracic and lumbar spine. The study was approved by the regional Research Ethics Committee (Journal number: H17034237). Results. We investigated the difference between the muscle activation on the right and left sides including erector spinae (ES), psoas major (PS), and multifidus (MF). Results of the AIS simulations indicated that, on average throughout the gait cycle, the right ES, left PS and left MF had 46%, 44%, and 23% higher activities compared to the other side, respectively. In standing, the ratios were 28%, 40%, and 19%, respectively. However, for the control subject, the differences were under 7%, except ES throughout the gait, which was 17%. Conclusion. The musculoskeletal model revealed distinct differences in force patterns of the right and left sides of the spine, indicating an instability phenomenon, where larger curves lead to higher muscle activations for stabilization. Acknowledgement. The project is
Introduction. A long nail is often recommended for treatment of complex trochanteric fractures but requires longer surgical and fluoroscopy times. A possible solution could be a nail with an appropriate length which can be locked in a minimally invasive manner by the main aiming device. We aimed to determine if such a nail model* offers similar structural stability on biomechanical testing on artificial bone as a standard long nail when used to treat complex trochanteric fractures. Method. An artificial osteoporotic bone model was chosen. As osteosynthesis material two cephalomedullary nails (CMN) were chosen: a superior locking nail (SL-Nail) which can be implanted with a singular targeting device, and a long nail (long-nail) with distal locking using free-hand technique. AO31-A2.2 fractures were simulated in a standardized manner. The insertion of the nail was strictly in accordance with the IFU and surgical manual of the manufacturer. The nail was locked dynamically proximally and statically distally. Axial height of the construct, varus collapse, and rotational deformity directly after nail insertion were simulated. A Universal Testing Machine was used. Measurements were made with a stereo-optic tracking system. Reactive movements were recorded and evaluated in all six degrees of freedom. A comparative analysis provided information about the stability and deformation of the assemblies to be compared. Result. There was a detectable difference in the axial fracture movement resulting in narrowing of the fracture gap. The load displacement was 1.7mm higher for the SL-Nail. There was no difference in varus collapse or rotational deformity between the nail variants. Conclusion. We conclude that there are small differences which are clinically insignificant and that a superior locking nail can safely be used to manage complex trochanteric fractures. *DCN SL nail, SWEMAC, Linköping, Sweden. Funding: no
Introduction. The objective of the work is construction of a multi-bioactive scaffold based on that allows a space/time control over the regeneration of damaged bones by Medication-Related Osteonecrosis of the Jaw using a minimal invasive approach based on the injection of the fast-degrading pro neuro and angiogenic ELR (Elastin-Like Recombinamers) based hydrogels. Method. Chemical crosslinking facilitated the creation of multi-bioactive scaffolds using ELRs with reactive groups. Cell-loaded multi-bioactive scaffolds, prepared and incubated, underwent evaluation for adhesion, proliferation, angiogenic, and neurogenic potential. In vitro assessments utilized immunofluorescence staining and ELISA assays, while live-recorded monitoring and live-dead analysis ensured cytocompatibility. In rat and rabbit models, preformed scaffolds were subcutaneously implanted, and the regenerative process was evaluated over time. Rabbit models with MRONJ underwent traditional or percutaneous implantation, with histological evaluation following established bone histological techniques. Result. A 3D scaffold using ELR that combines various peptides with different degradation rates to guide both angiogenesis and neurogenesis has been developed. Notably, scaffolds with different degradation rates promoted distinct patterns of vascularization and innervation, facilitating integration with host tissue. This work demonstrates the potential for tailored tissue engineering, where the scaffold's bioactivities and degradation rates can control angiogenesis and neurogenesis. In an animal model of medication-related osteonecrosis of the jaw (MRONJ), the scaffold showed promising results in promoting bone regeneration in a necrotic environment, as confirmed by histological and imaging analyses. This study opens avenues for novel tissue-engineering strategies where precise control over vascularization and nerve growth is crucial. Conclusion. A groundbreaking dual approach, simultaneously targeting angiogenesis and innervation, addresses the necrotic bone in MRONJ syndrome. Vascularization and nerve formation play pivotal roles in driving reparative elements for bone regeneration. The scaffold achieves effective time/space control over necrotic bone regeneration. The authors are grateful for
Introduction. Degenerative meniscal tears are the most common meniscal lesions, representing huge clinical and socio-economic burdens. Their role in knee osteoarthritis (OA) onset and progression is well established and demonstrated by several retrospective studies. Effective preventive measures and non-surgical treatments for degenerative meniscal lesions are still lacking, also because of the lack of specific and accurate animal models in which test them. Thus, we aim to develop and validate an accurate animal model of meniscus degeneration. Method. Three different surgical techniques to induce medial meniscus degenerative changes in ovine model were performed and compared. A total of 32 sheep (stifle joints) were subjected to either one of the following surgical procedures: a) direct arthroscopic mechanical meniscal injury; b) peripheral devascularization and denervation of medial meniscus; c) full thickness medial femoral condyle cartilage lesion. In all the 3 groups, the contralateral joint served as a control. Result. From a visual examination of the knee joint emerged a clear difference between control and operated groups, in the menisci but also in the cartilage, indicating the onset of OA-related cartilage degeneration. The meniscal and cartilaginous lesions were characterized by different severity and location in the different groups. For instance, a direct meniscal injury caused cartilaginous lesions especially in the medial part of the condyles, and the other approaches presented specific signature. Evaluation of scoring scales (e.g. ICRS score) allowed the quantification of the damage and the identification of differences among the four groups. Conclusion. We were effectively able to develop and validate a sheep model of meniscal degeneration which led to the onset of OA. This innovative model will allow to test in a pre-clinical relevant setting innovative approaches to prevent meniscal-related OA. Funding. Project PNRR-MAD-2022-12375978
Introduction. There is a lack of evidence-based treatments for patients with chronic pain after total knee arthroplasty (TKA). It is well-established that knee extensor and flexor muscle strength are markedly impaired following TKA, but no studies have examined muscle strength and power in patients with chronic pain after TKA. Therefore, the aim was to investigate if neuromuscular exercises and pain neuroscience education (PNE) were superior to PNE alone for improvement of muscle strength and power in patients with chronic pain after TKA. Method. This report presents the exploratory analysis of a randomized controlled trial (NCT03886259). Participants with chronic moderate-to-severe average daily pain intensity and no signs of prosthesis failure at least one year after primary TKA were included. Participants were randomized to receive either supervised neuromuscular exercise and PNE or the same PNE sessions alone. The outcomes were changes from baseline to 12-months for peak leg extension power and maximum muscle strength, measured during maximal voluntary isometric contractions, for the knee extensors and flexors. Result. Sixty-nine participants (age 62.2±7.2, 40 females) were included. No between-group differences were observed for peak leg extension power (difference 13.6 Watts, 95% CI -22.2 to 49.3), maximum knee extensor muscle strength (difference -20.9 Newtons, 95% CI -65.8 to 24.0) or maximum knee flexor muscle strength (difference 8.6 Newtons, 95% CI -11.9 to 29.1). Peak leg extension power (26.3 Watts, 95% CI 4.3 to 48.3) and maximum knee flexor muscle strength (19.7 Newtons, 95% CI 7.6 to 31.9) improved significantly in the neuromuscular exercise and PNE group with no significant improvements observed in the PNE alone group. Conclusion. Neuromuscular exercise and PNE did not improve muscle strength and power compared to PNE alone in patients with chronic pain after TKA. Acknowledgements. This study was
Introduction. Tendinopathies represent a significant health burden, causing inflammation, pain, and reducing quality of life. The pivotal role of macrophages (Mφ) characterized by their ability to differentiate into proinflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the microenvironment, has gained significant interest in tissue inflammation research. Additionally, existing literature states that the interplay between tenocytes and immune cells during inflammation involves unidentified soluble factors (SF). This study aimed to investigate the effect of extracellular vesicles (EVs) and SF derived from polarized Mφ on tendon cells to provide deeper insights of their potential therapeutic applications in the context of inflammation. Method. Human monocytes were isolated from blood donor buffy coats and differentiated into M1, M2, and hybrid M1/M2 phenotypes. Subsequently, EVs were isolated from the conditioned media from polarized Mφ and comprehensively characterized. In parallel, the elution media containing SF was collected. Furthermore, the EVs and SF were released independently onto tenocytes from human donors, previously induced with IL-1β to simulate an inflammatory environment. Finally, mRNA levels of tendon-related markers were evaluated by qPCR after the exposure to these EVs and SF. Result. Notably, the study found that the viability of the cells was not affected by the exposure to EVs nor SF, indicating their potential safety for therapeutic use. Moreover, the mRNA content of tendon-derived cells was evaluated following exposure to Mφ-EVs and SF revealing alterations in gene expression. Interestingly, a significant increase in the expression of tenomodulin was observed in tendon cells treated with Mφ-EVs. Conclusion. These results mark a significant advancement in understanding the interplay between Mφ and tenocytes at a molecular level. To fully understand the underlying causes of Mφ-EVs effects, and its potential clinical application in tendon inflammatory diseases, further comprehensive research is required. Acknowledgments. Carlos III Health Institute and the European Social
The evidence base within trauma and orthopaedics has traditionally favoured quantitative research methodologies. Qualitative research can provide unique insights which illuminate patient experiences and perceptions of care. Qualitative methods reveal the subjective narratives of patients that are not captured by quantitative data, providing a more comprehensive understanding of patient-centred care. The aim of this study is to quantify the level of qualitative research within the orthopaedic literature. A bibliometric search of journals’ online archives and multiple databases was undertaken in March 2024, to identify articles using qualitative research methods in the top 12 trauma and orthopaedic journals based on the 2023 impact factor and SCImago rating. The bibliometric search was conducted and reported in accordance with the preliminary guideline for reporting bibliometric reviews of the biomedical literature (BIBLIO).Aims
Methods
The aim of this study was to review the provision of total elbow arthroplasties (TEAs) in England, including the incidence, the characteristics of the patients and the service providers, the types of implant, and the outcomes. We analyzed the primary TEAs recorded in the National Joint Registry (NJR) between April 2012 and December 2022, with mortality data from the Civil Registration of Deaths dataset. Linkage with Hospital Episode Statistics-Admitted Patient Care (HES-APC) data provided further information not collected by the NJR. The incidences were calculated using estimations of the populations from the Office for National Statistics. The annual number of TEAs performed by surgeons and hospitals was analyzed on a national and regional basis.Aims
Methods
Our aim was to estimate the total costs of all hospitalizations for treating periprosthetic joint infection (PJI) by main management strategy within 24 months post-diagnosis using activity-based costing. Additionally, we investigated the influence of individual PJI treatment pathways on hospital costs within the first 24 months. Using admission and procedure data from a prospective observational cohort in Australia and New Zealand, Australian Refined Diagnosis Related Groups were assigned to each admitted patient episode of care for activity-based costing estimates of 273 hip PJI patients and 377 knee PJI patients. Costs were aggregated at 24 months post-diagnosis, and are presented in Australian dollars.Aims
Methods
The October 2024 Hip & Pelvis Roundup360 looks at: Does the primary surgical approach matter when choosing the approach for revision total hip arthroplasty?; Time to achieve the minimal clinically important difference in primary total hip arthroplasty: comparison of anterior and posterior surgical approaches; To scope or not to scope: arthroscopy as an adjunct to PAO does not provide better clinical outcomes at one year than PAO alone; Re-exploring horizons in hip resurfacing: two-year results of a ceramic-on-ceramic hip resurfacing; Association between tranexamic acid and decreased periprosthetic joint infection risk in patients undergoing total hip and knee arthroplasty; Octogenarians fare well: in revision for infection age is not a bar.
We investigated the efficacy and safety profile of commonly used venous thromboembolism (VTE) prophylaxis agents following hip and knee arthroplasty. A systematic search of PubMed, Embase, Cochrane Library, Web of Science, and OrthoSearch was performed. Prophylaxis agents investigated were aspirin (< 325 mg and ≥ 325 mg daily), enoxaparin, dalteparin, fondaparinux, unfractionated heparin, warfarin, rivaroxaban, apixaban, and dabigatran. The primary efficacy outcome of interest was the risk of VTE, whereas the primary safety outcomes of interest were the risk of major bleeding events (MBE) and wound complications (WC). VTE was defined as the confirmed diagnosis of any deep vein thrombosis and/or pulmonary embolism. Network meta-analysis combining direct and indirect evidence was performed. Cluster rank analysis using the surface under cumulative ranking (SUCRA) was applied to compare each intervention group, weighing safety and efficacy outcomes.Aims
Methods
It is well described that patients with bone and joint infections (BJIs) commonly experience significant functional impairment and disability. Published literature is lacking on the impact of BJIs on mental health. Therefore, the aim of this study was to assess health-related quality of life (HRQoL) and the impact on mental health in patients with BJIs. The AO Trauma Infection Registry is a prospective multinational registry. In total, 229 adult patients with long-bone BJI were enrolled between 1 November 2012 and 31 August 2017 in 18 centres from ten countries. Clinical outcome data, demographic data, and details on infections and treatments were collected. Patient-reported outcomes using the 36-Item Short-Form Health Survey questionnaire (SF-36), Parker Mobility Score, and Katz Index of Independence in Activities of Daily Living were assessed at one, six, and 12 months. The SF-36 mental component subscales were analyzed and correlated with infection characteristics and clinical outcome.Aims
Methods
Knee osteoarthritis (OA) is characterized by a chronic inflammatory process involving multiple cytokine pathways, leading to articular cartilage degeneration. Intra-articular therapies using pharmaceutical or autologous anti-inflammatory factors offer potential non-surgical treatment options. Autologous protein solution (APS) is one such product that uses the patient’s blood to produce a concentrate of cells and anti-inflammatory cytokines. This study evaluated the effect of a specific APS intra-articular injection (nSTRIDE) on patient-reported outcome measures compared to saline in moderate knee OA. A parallel, double-blinded, placebo-controlled randomized controlled trial was conducted, where patients with unilateral moderate knee OA (Kellgren-Lawrence grade 2 or 3) received either nSTRIDE or saline (placebo) injection to their symptomatic knee. The primary outcome was the difference in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) total score at 12 months post-intervention. Secondary outcomes included WOMAC component scores, Knee injury and Osteoarthritis Outcome Score (KOOS), and visual analogue scale (VAS) scores at all follow-up timepoints (three, six, and 12 months).Aims
Methods
The aims of this study were to describe the demographic, socioeconomic, and educational factors associated with core surgical trainees (CSTs) who apply to and receive offers for higher surgical training (ST3) posts in Trauma & Orthopaedics (T&O). Data collected by the UK Medical Education Database (UKMED) between 1 January 2014 and 31 December 2019 were used in this retrospective longitudinal cohort study comprising 1,960 CSTs eligible for ST3. The primary outcome measures were whether CSTs applied for a T&O ST3 post and if they were subsequently offered a post. A directed acyclic graph was used for detecting confounders and adjusting logistic regression models to calculate odds ratios (ORs), which assessed the association between the primary outcomes and relevant exposures of interest, including: age, sex, ethnicity, parental socioeconomic status (SES), domiciliary status, category of medical school, Situational Judgement Test (SJT) scores at medical school, and success in postgraduate examinations. This study followed STROBE guidelines.Aims
Methods