Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

METASTRA: COMPUTER-AIDED EFFECTIVE FRACTURE RISK STRATIFICATION OF PATIENTS WITH VERTEBRAL METASTASES FOR PERSONALIZED TREATMENT THROUGH ROBUST COMPUTATIONAL MODELS VALIDATED IN CLINICAL SETTINGS

The European Orthopaedic Research Society (EORS) 32nd Annual Meeting, Aalborg, Denmark, 18–20 September 2024.



Abstract

Introduction

Patients (2.7M in EU) with positive cancer prognosis frequently develop metastases (≈1M) in their remaining lifetime. In 30-70% cases, metastases affect the spine, reducing the strength of the affected vertebrae. Fractures occur in ≈30% patients. Clinicians must choose between leaving the patient exposed to a high fracture risk (with dramatic consequences) and operating to stabilise the spine (exposing patients to unnecessary surgeries). Currently, surgeons rely on their sole experience. This often results in to under- or over-treatment. The standard-of-care are scoring systems (e.g. Spine Instability Neoplastic Score) based on medical images, with little consideration of the spine biomechanics, and of the structure of the vertebrae involved. Such scoring systems fail to provide clear indications in ≈60% patients.

Method

The HEU-funded METASTRA project is implemented by biomechanicians, modellers, clinicians, experts in verification, validation, uncertainty quantification and certification from 15 partners across Europe. METASTRA aims to improve the stratification of patients with vertebral metastases evaluating their risk of fracture by developing dedicated reliable computational models based on Explainable Artificial Intelligence (AI) and on personalised Physiology-based biomechanical (VPH) models.

Result

The METASTRA-AI model is expected to be able to stratify most patients with limited effort end cost, based on parameters extracted semi-automatically from the medical files and images. The cases which are not reliably stratified through the AI model, are examined through a more detailed and personalised biomechanical VPH model. These METASTRA numerical tools are trained through an unprecedentedly large multicentric retrospective study (2000 cases) and validated against biomechanical ex vivo experiments (120 specimens).

Conclusion

The METASTRA decision support system is tested in a multicentric prospective observational study (200 patients). The METASTRA approach is expected to cut down the indeterminate diagnoses from the current 60% down to 20% of cases.

METASTRA project funded by the European Union, HEU topic HLTH-2022-12-01, grant 101080135


Corresponding author: Luca Cristofolini